webrtc/talk/p2p/base/relayport_unittest.cc
henrike@webrtc.org 28e2075280 Adds trunk/talk folder of revision 359 from libjingles google code to
trunk/talk


git-svn-id: http://webrtc.googlecode.com/svn/trunk@4318 4adac7df-926f-26a2-2b94-8c16560cd09d
2013-07-10 00:45:36 +00:00

293 lines
12 KiB
C++

/*
* libjingle
* Copyright 2009 Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "talk/base/logging.h"
#include "talk/base/gunit.h"
#include "talk/base/helpers.h"
#include "talk/base/physicalsocketserver.h"
#include "talk/base/scoped_ptr.h"
#include "talk/base/socketadapters.h"
#include "talk/base/socketaddress.h"
#include "talk/base/thread.h"
#include "talk/base/virtualsocketserver.h"
#include "talk/p2p/base/basicpacketsocketfactory.h"
#include "talk/p2p/base/relayport.h"
#include "talk/p2p/base/relayserver.h"
using talk_base::SocketAddress;
static const SocketAddress kLocalAddress = SocketAddress("192.168.1.2", 0);
static const SocketAddress kRelayUdpAddr = SocketAddress("99.99.99.1", 5000);
static const SocketAddress kRelayTcpAddr = SocketAddress("99.99.99.2", 5001);
static const SocketAddress kRelaySslAddr = SocketAddress("99.99.99.3", 443);
static const SocketAddress kRelayExtAddr = SocketAddress("99.99.99.3", 5002);
static const int kTimeoutMs = 1000;
static const int kMaxTimeoutMs = 5000;
// Tests connecting a RelayPort to a fake relay server
// (cricket::RelayServer) using all currently available protocols. The
// network layer is faked out by using a VirtualSocketServer for
// creating sockets. The test will monitor the current state of the
// RelayPort and created sockets by listening for signals such as,
// SignalConnectFailure, SignalConnectTimeout, SignalSocketClosed and
// SignalReadPacket.
class RelayPortTest : public testing::Test,
public sigslot::has_slots<> {
public:
RelayPortTest()
: main_(talk_base::Thread::Current()),
physical_socket_server_(new talk_base::PhysicalSocketServer),
virtual_socket_server_(new talk_base::VirtualSocketServer(
physical_socket_server_.get())),
ss_scope_(virtual_socket_server_.get()),
network_("unittest", "unittest", talk_base::IPAddress(INADDR_ANY), 32),
socket_factory_(talk_base::Thread::Current()),
username_(talk_base::CreateRandomString(16)),
password_(talk_base::CreateRandomString(16)),
relay_port_(cricket::RelayPort::Create(main_, &socket_factory_,
&network_,
kLocalAddress.ipaddr(),
0, 0, username_, password_)),
relay_server_(new cricket::RelayServer(main_)) {
}
void OnReadPacket(talk_base::AsyncPacketSocket* socket,
const char* data, size_t size,
const talk_base::SocketAddress& remote_addr) {
received_packet_count_[socket]++;
}
void OnConnectFailure(const cricket::ProtocolAddress* addr) {
failed_connections_.push_back(*addr);
}
void OnSoftTimeout(const cricket::ProtocolAddress* addr) {
soft_timedout_connections_.push_back(*addr);
}
protected:
static void SetUpTestCase() {
// Ensure the RNG is inited.
talk_base::InitRandom(NULL, 0);
}
virtual void SetUp() {
// The relay server needs an external socket to work properly.
talk_base::AsyncUDPSocket* ext_socket =
CreateAsyncUdpSocket(kRelayExtAddr);
relay_server_->AddExternalSocket(ext_socket);
// Listen for failures.
relay_port_->SignalConnectFailure.
connect(this, &RelayPortTest::OnConnectFailure);
// Listen for soft timeouts.
relay_port_->SignalSoftTimeout.
connect(this, &RelayPortTest::OnSoftTimeout);
}
// Udp has the highest 'goodness' value of the three different
// protocols used for connecting to the relay server. As soon as
// PrepareAddress is called, the RelayPort will start trying to
// connect to the given UDP address. As soon as a response to the
// sent STUN allocate request message has been received, the
// RelayPort will consider the connection to be complete and will
// abort any other connection attempts.
void TestConnectUdp() {
// Add a UDP socket to the relay server.
talk_base::AsyncUDPSocket* internal_udp_socket =
CreateAsyncUdpSocket(kRelayUdpAddr);
talk_base::AsyncSocket* server_socket = CreateServerSocket(kRelayTcpAddr);
relay_server_->AddInternalSocket(internal_udp_socket);
relay_server_->AddInternalServerSocket(server_socket, cricket::PROTO_TCP);
// Now add our relay addresses to the relay port and let it start.
relay_port_->AddServerAddress(
cricket::ProtocolAddress(kRelayUdpAddr, cricket::PROTO_UDP));
relay_port_->AddServerAddress(
cricket::ProtocolAddress(kRelayTcpAddr, cricket::PROTO_TCP));
relay_port_->PrepareAddress();
// Should be connected.
EXPECT_TRUE_WAIT(relay_port_->IsReady(), kTimeoutMs);
// Make sure that we are happy with UDP, ie. not continuing with
// TCP, SSLTCP, etc.
WAIT(relay_server_->HasConnection(kRelayTcpAddr), kTimeoutMs);
// Should have only one connection.
EXPECT_EQ(1, relay_server_->GetConnectionCount());
// Should be the UDP address.
EXPECT_TRUE(relay_server_->HasConnection(kRelayUdpAddr));
}
// TCP has the second best 'goodness' value, and as soon as UDP
// connection has failed, the RelayPort will attempt to connect via
// TCP. Here we add a fake UDP address together with a real TCP
// address to simulate an UDP failure. As soon as UDP has failed the
// RelayPort will try the TCP adress and succed.
void TestConnectTcp() {
// Create a fake UDP address for relay port to simulate a failure.
cricket::ProtocolAddress fake_protocol_address =
cricket::ProtocolAddress(kRelayUdpAddr, cricket::PROTO_UDP);
// Create a server socket for the RelayServer.
talk_base::AsyncSocket* server_socket = CreateServerSocket(kRelayTcpAddr);
relay_server_->AddInternalServerSocket(server_socket, cricket::PROTO_TCP);
// Add server addresses to the relay port and let it start.
relay_port_->AddServerAddress(
cricket::ProtocolAddress(fake_protocol_address));
relay_port_->AddServerAddress(
cricket::ProtocolAddress(kRelayTcpAddr, cricket::PROTO_TCP));
relay_port_->PrepareAddress();
EXPECT_FALSE(relay_port_->IsReady());
// Should have timed out in 200 + 200 + 400 + 800 + 1600 ms.
EXPECT_TRUE_WAIT(HasFailed(&fake_protocol_address), 3600);
// Wait until relayport is ready.
EXPECT_TRUE_WAIT(relay_port_->IsReady(), kMaxTimeoutMs);
// Should have only one connection.
EXPECT_EQ(1, relay_server_->GetConnectionCount());
// Should be the TCP address.
EXPECT_TRUE(relay_server_->HasConnection(kRelayTcpAddr));
}
void TestConnectSslTcp() {
// Create a fake TCP address for relay port to simulate a failure.
// We skip UDP here since transition from UDP to TCP has been
// tested above.
cricket::ProtocolAddress fake_protocol_address =
cricket::ProtocolAddress(kRelayTcpAddr, cricket::PROTO_TCP);
// Create a ssl server socket for the RelayServer.
talk_base::AsyncSocket* ssl_server_socket =
CreateServerSocket(kRelaySslAddr);
relay_server_->AddInternalServerSocket(ssl_server_socket,
cricket::PROTO_SSLTCP);
// Create a tcp server socket that listens on the fake address so
// the relay port can attempt to connect to it.
talk_base::scoped_ptr<talk_base::AsyncSocket> tcp_server_socket(
CreateServerSocket(kRelayTcpAddr));
// Add server addresses to the relay port and let it start.
relay_port_->AddServerAddress(fake_protocol_address);
relay_port_->AddServerAddress(
cricket::ProtocolAddress(kRelaySslAddr, cricket::PROTO_SSLTCP));
relay_port_->PrepareAddress();
EXPECT_FALSE(relay_port_->IsReady());
// Should have timed out in 3000 ms(relayport.cc, kSoftConnectTimeoutMs).
EXPECT_TRUE_WAIT_MARGIN(HasTimedOut(&fake_protocol_address), 3000, 100);
// Wait until relayport is ready.
EXPECT_TRUE_WAIT(relay_port_->IsReady(), kMaxTimeoutMs);
// Should have only one connection.
EXPECT_EQ(1, relay_server_->GetConnectionCount());
// Should be the SSLTCP address.
EXPECT_TRUE(relay_server_->HasConnection(kRelaySslAddr));
}
private:
talk_base::AsyncUDPSocket* CreateAsyncUdpSocket(const SocketAddress addr) {
talk_base::AsyncSocket* socket =
virtual_socket_server_->CreateAsyncSocket(SOCK_DGRAM);
talk_base::AsyncUDPSocket* packet_socket =
talk_base::AsyncUDPSocket::Create(socket, addr);
EXPECT_TRUE(packet_socket != NULL);
packet_socket->SignalReadPacket.connect(this, &RelayPortTest::OnReadPacket);
return packet_socket;
}
talk_base::AsyncSocket* CreateServerSocket(const SocketAddress addr) {
talk_base::AsyncSocket* socket =
virtual_socket_server_->CreateAsyncSocket(SOCK_STREAM);
EXPECT_GE(socket->Bind(addr), 0);
EXPECT_GE(socket->Listen(5), 0);
return socket;
}
bool HasFailed(cricket::ProtocolAddress* addr) {
for (size_t i = 0; i < failed_connections_.size(); i++) {
if (failed_connections_[i].address == addr->address &&
failed_connections_[i].proto == addr->proto) {
return true;
}
}
return false;
}
bool HasTimedOut(cricket::ProtocolAddress* addr) {
for (size_t i = 0; i < soft_timedout_connections_.size(); i++) {
if (soft_timedout_connections_[i].address == addr->address &&
soft_timedout_connections_[i].proto == addr->proto) {
return true;
}
}
return false;
}
typedef std::map<talk_base::AsyncPacketSocket*, int> PacketMap;
talk_base::Thread* main_;
talk_base::scoped_ptr<talk_base::PhysicalSocketServer>
physical_socket_server_;
talk_base::scoped_ptr<talk_base::VirtualSocketServer> virtual_socket_server_;
talk_base::SocketServerScope ss_scope_;
talk_base::Network network_;
talk_base::BasicPacketSocketFactory socket_factory_;
std::string username_;
std::string password_;
talk_base::scoped_ptr<cricket::RelayPort> relay_port_;
talk_base::scoped_ptr<cricket::RelayServer> relay_server_;
std::vector<cricket::ProtocolAddress> failed_connections_;
std::vector<cricket::ProtocolAddress> soft_timedout_connections_;
PacketMap received_packet_count_;
};
TEST_F(RelayPortTest, ConnectUdp) {
TestConnectUdp();
}
TEST_F(RelayPortTest, ConnectTcp) {
TestConnectTcp();
}
TEST_F(RelayPortTest, ConnectSslTcp) {
TestConnectSslTcp();
}