
Adds stats to verify bandwidth and pacer stats. BUG=1788 R=mflodman@webrtc.org, pbos@webrtc.org Review URL: https://webrtc-codereview.appspot.com/24969004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7634 4adac7df-926f-26a2-2b94-8c16560cd09d
667 lines
23 KiB
C++
667 lines
23 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/video_coding/main/source/media_optimization.h"
|
|
|
|
#include "webrtc/modules/video_coding/main/source/content_metrics_processing.h"
|
|
#include "webrtc/modules/video_coding/main/source/qm_select.h"
|
|
#include "webrtc/modules/video_coding/utility/include/frame_dropper.h"
|
|
#include "webrtc/system_wrappers/interface/clock.h"
|
|
#include "webrtc/system_wrappers/interface/logging.h"
|
|
|
|
namespace webrtc {
|
|
namespace media_optimization {
|
|
namespace {
|
|
void UpdateProtectionCallback(
|
|
VCMProtectionMethod* selected_method,
|
|
uint32_t* video_rate_bps,
|
|
uint32_t* nack_overhead_rate_bps,
|
|
uint32_t* fec_overhead_rate_bps,
|
|
VCMProtectionCallback* video_protection_callback) {
|
|
FecProtectionParams delta_fec_params;
|
|
FecProtectionParams key_fec_params;
|
|
// Get the FEC code rate for Key frames (set to 0 when NA).
|
|
key_fec_params.fec_rate = selected_method->RequiredProtectionFactorK();
|
|
|
|
// Get the FEC code rate for Delta frames (set to 0 when NA).
|
|
delta_fec_params.fec_rate = selected_method->RequiredProtectionFactorD();
|
|
|
|
// Get the FEC-UEP protection status for Key frames: UEP on/off.
|
|
key_fec_params.use_uep_protection = selected_method->RequiredUepProtectionK();
|
|
|
|
// Get the FEC-UEP protection status for Delta frames: UEP on/off.
|
|
delta_fec_params.use_uep_protection =
|
|
selected_method->RequiredUepProtectionD();
|
|
|
|
// The RTP module currently requires the same |max_fec_frames| for both
|
|
// key and delta frames.
|
|
delta_fec_params.max_fec_frames = selected_method->MaxFramesFec();
|
|
key_fec_params.max_fec_frames = selected_method->MaxFramesFec();
|
|
|
|
// Set the FEC packet mask type. |kFecMaskBursty| is more effective for
|
|
// consecutive losses and little/no packet re-ordering. As we currently
|
|
// do not have feedback data on the degree of correlated losses and packet
|
|
// re-ordering, we keep default setting to |kFecMaskRandom| for now.
|
|
delta_fec_params.fec_mask_type = kFecMaskRandom;
|
|
key_fec_params.fec_mask_type = kFecMaskRandom;
|
|
|
|
// TODO(Marco): Pass FEC protection values per layer.
|
|
video_protection_callback->ProtectionRequest(&delta_fec_params,
|
|
&key_fec_params,
|
|
video_rate_bps,
|
|
nack_overhead_rate_bps,
|
|
fec_overhead_rate_bps);
|
|
}
|
|
} // namespace
|
|
|
|
struct MediaOptimization::EncodedFrameSample {
|
|
EncodedFrameSample(int size_bytes,
|
|
uint32_t timestamp,
|
|
int64_t time_complete_ms)
|
|
: size_bytes(size_bytes),
|
|
timestamp(timestamp),
|
|
time_complete_ms(time_complete_ms) {}
|
|
|
|
uint32_t size_bytes;
|
|
uint32_t timestamp;
|
|
int64_t time_complete_ms;
|
|
};
|
|
|
|
MediaOptimization::MediaOptimization(Clock* clock)
|
|
: crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
|
|
clock_(clock),
|
|
max_bit_rate_(0),
|
|
send_codec_type_(kVideoCodecUnknown),
|
|
codec_width_(0),
|
|
codec_height_(0),
|
|
user_frame_rate_(0),
|
|
frame_dropper_(new FrameDropper),
|
|
loss_prot_logic_(
|
|
new VCMLossProtectionLogic(clock_->TimeInMilliseconds())),
|
|
fraction_lost_(0),
|
|
send_statistics_zero_encode_(0),
|
|
max_payload_size_(1460),
|
|
target_bit_rate_(0),
|
|
incoming_frame_rate_(0),
|
|
enable_qm_(false),
|
|
encoded_frame_samples_(),
|
|
avg_sent_bit_rate_bps_(0),
|
|
avg_sent_framerate_(0),
|
|
key_frame_cnt_(0),
|
|
delta_frame_cnt_(0),
|
|
content_(new VCMContentMetricsProcessing()),
|
|
qm_resolution_(new VCMQmResolution()),
|
|
last_qm_update_time_(0),
|
|
last_change_time_(0),
|
|
num_layers_(0),
|
|
suspension_enabled_(false),
|
|
video_suspended_(false),
|
|
suspension_threshold_bps_(0),
|
|
suspension_window_bps_(0) {
|
|
memset(send_statistics_, 0, sizeof(send_statistics_));
|
|
memset(incoming_frame_times_, -1, sizeof(incoming_frame_times_));
|
|
}
|
|
|
|
MediaOptimization::~MediaOptimization(void) {
|
|
loss_prot_logic_->Release();
|
|
}
|
|
|
|
void MediaOptimization::Reset() {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
SetEncodingDataInternal(
|
|
kVideoCodecUnknown, 0, 0, 0, 0, 0, 0, max_payload_size_);
|
|
memset(incoming_frame_times_, -1, sizeof(incoming_frame_times_));
|
|
incoming_frame_rate_ = 0.0;
|
|
frame_dropper_->Reset();
|
|
loss_prot_logic_->Reset(clock_->TimeInMilliseconds());
|
|
frame_dropper_->SetRates(0, 0);
|
|
content_->Reset();
|
|
qm_resolution_->Reset();
|
|
loss_prot_logic_->UpdateFrameRate(incoming_frame_rate_);
|
|
loss_prot_logic_->Reset(clock_->TimeInMilliseconds());
|
|
send_statistics_zero_encode_ = 0;
|
|
target_bit_rate_ = 0;
|
|
codec_width_ = 0;
|
|
codec_height_ = 0;
|
|
user_frame_rate_ = 0;
|
|
key_frame_cnt_ = 0;
|
|
delta_frame_cnt_ = 0;
|
|
last_qm_update_time_ = 0;
|
|
last_change_time_ = 0;
|
|
encoded_frame_samples_.clear();
|
|
avg_sent_bit_rate_bps_ = 0;
|
|
num_layers_ = 1;
|
|
}
|
|
|
|
void MediaOptimization::SetEncodingData(VideoCodecType send_codec_type,
|
|
int32_t max_bit_rate,
|
|
uint32_t frame_rate,
|
|
uint32_t target_bitrate,
|
|
uint16_t width,
|
|
uint16_t height,
|
|
int num_layers,
|
|
int32_t mtu) {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
SetEncodingDataInternal(send_codec_type,
|
|
max_bit_rate,
|
|
frame_rate,
|
|
target_bitrate,
|
|
width,
|
|
height,
|
|
num_layers,
|
|
mtu);
|
|
}
|
|
|
|
void MediaOptimization::SetEncodingDataInternal(VideoCodecType send_codec_type,
|
|
int32_t max_bit_rate,
|
|
uint32_t frame_rate,
|
|
uint32_t target_bitrate,
|
|
uint16_t width,
|
|
uint16_t height,
|
|
int num_layers,
|
|
int32_t mtu) {
|
|
// Everything codec specific should be reset here since this means the codec
|
|
// has changed. If native dimension values have changed, then either user
|
|
// initiated change, or QM initiated change. Will be able to determine only
|
|
// after the processing of the first frame.
|
|
last_change_time_ = clock_->TimeInMilliseconds();
|
|
content_->Reset();
|
|
content_->UpdateFrameRate(frame_rate);
|
|
|
|
max_bit_rate_ = max_bit_rate;
|
|
send_codec_type_ = send_codec_type;
|
|
target_bit_rate_ = target_bitrate;
|
|
float target_bitrate_kbps = static_cast<float>(target_bitrate) / 1000.0f;
|
|
loss_prot_logic_->UpdateBitRate(target_bitrate_kbps);
|
|
loss_prot_logic_->UpdateFrameRate(static_cast<float>(frame_rate));
|
|
loss_prot_logic_->UpdateFrameSize(width, height);
|
|
loss_prot_logic_->UpdateNumLayers(num_layers);
|
|
frame_dropper_->Reset();
|
|
frame_dropper_->SetRates(target_bitrate_kbps, static_cast<float>(frame_rate));
|
|
user_frame_rate_ = static_cast<float>(frame_rate);
|
|
codec_width_ = width;
|
|
codec_height_ = height;
|
|
num_layers_ = (num_layers <= 1) ? 1 : num_layers; // Can also be zero.
|
|
max_payload_size_ = mtu;
|
|
qm_resolution_->Initialize(target_bitrate_kbps,
|
|
user_frame_rate_,
|
|
codec_width_,
|
|
codec_height_,
|
|
num_layers_);
|
|
}
|
|
|
|
uint32_t MediaOptimization::SetTargetRates(
|
|
uint32_t target_bitrate,
|
|
uint8_t fraction_lost,
|
|
uint32_t round_trip_time_ms,
|
|
VCMProtectionCallback* protection_callback,
|
|
VCMQMSettingsCallback* qmsettings_callback) {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
// TODO(holmer): Consider putting this threshold only on the video bitrate,
|
|
// and not on protection.
|
|
if (max_bit_rate_ > 0 &&
|
|
target_bitrate > static_cast<uint32_t>(max_bit_rate_)) {
|
|
target_bitrate = max_bit_rate_;
|
|
}
|
|
VCMProtectionMethod* selected_method = loss_prot_logic_->SelectedMethod();
|
|
float target_bitrate_kbps = static_cast<float>(target_bitrate) / 1000.0f;
|
|
loss_prot_logic_->UpdateBitRate(target_bitrate_kbps);
|
|
loss_prot_logic_->UpdateRtt(round_trip_time_ms);
|
|
loss_prot_logic_->UpdateResidualPacketLoss(static_cast<float>(fraction_lost));
|
|
|
|
// Get frame rate for encoder: this is the actual/sent frame rate.
|
|
float actual_frame_rate = SentFrameRateInternal();
|
|
|
|
// Sanity check.
|
|
if (actual_frame_rate < 1.0) {
|
|
actual_frame_rate = 1.0;
|
|
}
|
|
|
|
// Update frame rate for the loss protection logic class: frame rate should
|
|
// be the actual/sent rate.
|
|
loss_prot_logic_->UpdateFrameRate(actual_frame_rate);
|
|
|
|
fraction_lost_ = fraction_lost;
|
|
|
|
// Returns the filtered packet loss, used for the protection setting.
|
|
// The filtered loss may be the received loss (no filter), or some
|
|
// filtered value (average or max window filter).
|
|
// Use max window filter for now.
|
|
FilterPacketLossMode filter_mode = kMaxFilter;
|
|
uint8_t packet_loss_enc = loss_prot_logic_->FilteredLoss(
|
|
clock_->TimeInMilliseconds(), filter_mode, fraction_lost);
|
|
|
|
// For now use the filtered loss for computing the robustness settings.
|
|
loss_prot_logic_->UpdateFilteredLossPr(packet_loss_enc);
|
|
|
|
// Rate cost of the protection methods.
|
|
uint32_t protection_overhead_bps = 0;
|
|
|
|
// Update protection settings, when applicable.
|
|
float sent_video_rate_kbps = 0.0f;
|
|
if (selected_method) {
|
|
// Update protection method with content metrics.
|
|
selected_method->UpdateContentMetrics(content_->ShortTermAvgData());
|
|
|
|
// Update method will compute the robustness settings for the given
|
|
// protection method and the overhead cost
|
|
// the protection method is set by the user via SetVideoProtection.
|
|
loss_prot_logic_->UpdateMethod();
|
|
|
|
// Update protection callback with protection settings.
|
|
uint32_t sent_video_rate_bps = 0;
|
|
uint32_t sent_nack_rate_bps = 0;
|
|
uint32_t sent_fec_rate_bps = 0;
|
|
// Get the bit cost of protection method, based on the amount of
|
|
// overhead data actually transmitted (including headers) the last
|
|
// second.
|
|
if (protection_callback) {
|
|
UpdateProtectionCallback(selected_method,
|
|
&sent_video_rate_bps,
|
|
&sent_nack_rate_bps,
|
|
&sent_fec_rate_bps,
|
|
protection_callback);
|
|
}
|
|
uint32_t sent_total_rate_bps =
|
|
sent_video_rate_bps + sent_nack_rate_bps + sent_fec_rate_bps;
|
|
// Estimate the overhead costs of the next second as staying the same
|
|
// wrt the source bitrate.
|
|
if (sent_total_rate_bps > 0) {
|
|
protection_overhead_bps = static_cast<uint32_t>(
|
|
target_bitrate *
|
|
static_cast<double>(sent_nack_rate_bps + sent_fec_rate_bps) /
|
|
sent_total_rate_bps +
|
|
0.5);
|
|
}
|
|
// Cap the overhead estimate to 50%.
|
|
if (protection_overhead_bps > target_bitrate / 2)
|
|
protection_overhead_bps = target_bitrate / 2;
|
|
|
|
// Get the effective packet loss for encoder ER when applicable. Should be
|
|
// passed to encoder via fraction_lost.
|
|
packet_loss_enc = selected_method->RequiredPacketLossER();
|
|
sent_video_rate_kbps = static_cast<float>(sent_video_rate_bps) / 1000.0f;
|
|
}
|
|
|
|
// Source coding rate: total rate - protection overhead.
|
|
target_bit_rate_ = target_bitrate - protection_overhead_bps;
|
|
|
|
// Update encoding rates following protection settings.
|
|
float target_video_bitrate_kbps =
|
|
static_cast<float>(target_bit_rate_) / 1000.0f;
|
|
frame_dropper_->SetRates(target_video_bitrate_kbps, incoming_frame_rate_);
|
|
|
|
if (enable_qm_ && qmsettings_callback) {
|
|
// Update QM with rates.
|
|
qm_resolution_->UpdateRates(target_video_bitrate_kbps,
|
|
sent_video_rate_kbps,
|
|
incoming_frame_rate_,
|
|
fraction_lost_);
|
|
// Check for QM selection.
|
|
bool select_qm = CheckStatusForQMchange();
|
|
if (select_qm) {
|
|
SelectQuality(qmsettings_callback);
|
|
}
|
|
// Reset the short-term averaged content data.
|
|
content_->ResetShortTermAvgData();
|
|
}
|
|
|
|
CheckSuspendConditions();
|
|
|
|
return target_bit_rate_;
|
|
}
|
|
|
|
void MediaOptimization::EnableProtectionMethod(bool enable,
|
|
VCMProtectionMethodEnum method) {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
bool updated = false;
|
|
if (enable) {
|
|
updated = loss_prot_logic_->SetMethod(method);
|
|
} else {
|
|
loss_prot_logic_->RemoveMethod(method);
|
|
}
|
|
if (updated) {
|
|
loss_prot_logic_->UpdateMethod();
|
|
}
|
|
}
|
|
|
|
uint32_t MediaOptimization::InputFrameRate() {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
return InputFrameRateInternal();
|
|
}
|
|
|
|
uint32_t MediaOptimization::InputFrameRateInternal() {
|
|
ProcessIncomingFrameRate(clock_->TimeInMilliseconds());
|
|
return uint32_t(incoming_frame_rate_ + 0.5f);
|
|
}
|
|
|
|
uint32_t MediaOptimization::SentFrameRate() {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
return SentFrameRateInternal();
|
|
}
|
|
|
|
uint32_t MediaOptimization::SentFrameRateInternal() {
|
|
PurgeOldFrameSamples(clock_->TimeInMilliseconds());
|
|
UpdateSentFramerate();
|
|
return avg_sent_framerate_;
|
|
}
|
|
|
|
uint32_t MediaOptimization::SentBitRate() {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
const int64_t now_ms = clock_->TimeInMilliseconds();
|
|
PurgeOldFrameSamples(now_ms);
|
|
UpdateSentBitrate(now_ms);
|
|
return avg_sent_bit_rate_bps_;
|
|
}
|
|
|
|
VCMFrameCount MediaOptimization::SentFrameCount() {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
VCMFrameCount count;
|
|
count.numDeltaFrames = delta_frame_cnt_;
|
|
count.numKeyFrames = key_frame_cnt_;
|
|
return count;
|
|
}
|
|
|
|
int32_t MediaOptimization::UpdateWithEncodedData(int encoded_length,
|
|
uint32_t timestamp,
|
|
FrameType encoded_frame_type) {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
const int64_t now_ms = clock_->TimeInMilliseconds();
|
|
PurgeOldFrameSamples(now_ms);
|
|
if (encoded_frame_samples_.size() > 0 &&
|
|
encoded_frame_samples_.back().timestamp == timestamp) {
|
|
// Frames having the same timestamp are generated from the same input
|
|
// frame. We don't want to double count them, but only increment the
|
|
// size_bytes.
|
|
encoded_frame_samples_.back().size_bytes += encoded_length;
|
|
encoded_frame_samples_.back().time_complete_ms = now_ms;
|
|
} else {
|
|
encoded_frame_samples_.push_back(
|
|
EncodedFrameSample(encoded_length, timestamp, now_ms));
|
|
}
|
|
UpdateSentBitrate(now_ms);
|
|
UpdateSentFramerate();
|
|
if (encoded_length > 0) {
|
|
const bool delta_frame = (encoded_frame_type != kVideoFrameKey);
|
|
|
|
frame_dropper_->Fill(encoded_length, delta_frame);
|
|
if (max_payload_size_ > 0 && encoded_length > 0) {
|
|
const float min_packets_per_frame =
|
|
encoded_length / static_cast<float>(max_payload_size_);
|
|
if (delta_frame) {
|
|
loss_prot_logic_->UpdatePacketsPerFrame(min_packets_per_frame,
|
|
clock_->TimeInMilliseconds());
|
|
} else {
|
|
loss_prot_logic_->UpdatePacketsPerFrameKey(
|
|
min_packets_per_frame, clock_->TimeInMilliseconds());
|
|
}
|
|
|
|
if (enable_qm_) {
|
|
// Update quality select with encoded length.
|
|
qm_resolution_->UpdateEncodedSize(encoded_length, encoded_frame_type);
|
|
}
|
|
}
|
|
if (!delta_frame && encoded_length > 0) {
|
|
loss_prot_logic_->UpdateKeyFrameSize(static_cast<float>(encoded_length));
|
|
}
|
|
|
|
// Updating counters.
|
|
if (delta_frame) {
|
|
delta_frame_cnt_++;
|
|
} else {
|
|
key_frame_cnt_++;
|
|
}
|
|
}
|
|
|
|
return VCM_OK;
|
|
}
|
|
|
|
void MediaOptimization::EnableQM(bool enable) {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
enable_qm_ = enable;
|
|
}
|
|
|
|
void MediaOptimization::EnableFrameDropper(bool enable) {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
frame_dropper_->Enable(enable);
|
|
}
|
|
|
|
void MediaOptimization::SuspendBelowMinBitrate(int threshold_bps,
|
|
int window_bps) {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
assert(threshold_bps > 0 && window_bps >= 0);
|
|
suspension_threshold_bps_ = threshold_bps;
|
|
suspension_window_bps_ = window_bps;
|
|
suspension_enabled_ = true;
|
|
video_suspended_ = false;
|
|
}
|
|
|
|
bool MediaOptimization::IsVideoSuspended() const {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
return video_suspended_;
|
|
}
|
|
|
|
bool MediaOptimization::DropFrame() {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
UpdateIncomingFrameRate();
|
|
// Leak appropriate number of bytes.
|
|
frame_dropper_->Leak((uint32_t)(InputFrameRateInternal() + 0.5f));
|
|
if (video_suspended_) {
|
|
return true; // Drop all frames when muted.
|
|
}
|
|
return frame_dropper_->DropFrame();
|
|
}
|
|
|
|
void MediaOptimization::UpdateContentData(
|
|
const VideoContentMetrics* content_metrics) {
|
|
CriticalSectionScoped lock(crit_sect_.get());
|
|
// Updating content metrics.
|
|
if (content_metrics == NULL) {
|
|
// Disable QM if metrics are NULL.
|
|
enable_qm_ = false;
|
|
qm_resolution_->Reset();
|
|
} else {
|
|
content_->UpdateContentData(content_metrics);
|
|
}
|
|
}
|
|
|
|
void MediaOptimization::UpdateIncomingFrameRate() {
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if (incoming_frame_times_[0] == 0) {
|
|
// No shifting if this is the first time.
|
|
} else {
|
|
// Shift all times one step.
|
|
for (int32_t i = (kFrameCountHistorySize - 2); i >= 0; i--) {
|
|
incoming_frame_times_[i + 1] = incoming_frame_times_[i];
|
|
}
|
|
}
|
|
incoming_frame_times_[0] = now;
|
|
ProcessIncomingFrameRate(now);
|
|
}
|
|
|
|
int32_t MediaOptimization::SelectQuality(
|
|
VCMQMSettingsCallback* video_qmsettings_callback) {
|
|
// Reset quantities for QM select.
|
|
qm_resolution_->ResetQM();
|
|
|
|
// Update QM will long-term averaged content metrics.
|
|
qm_resolution_->UpdateContent(content_->LongTermAvgData());
|
|
|
|
// Select quality mode.
|
|
VCMResolutionScale* qm = NULL;
|
|
int32_t ret = qm_resolution_->SelectResolution(&qm);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
// Check for updates to spatial/temporal modes.
|
|
QMUpdate(qm, video_qmsettings_callback);
|
|
|
|
// Reset all the rate and related frame counters quantities.
|
|
qm_resolution_->ResetRates();
|
|
|
|
// Reset counters.
|
|
last_qm_update_time_ = clock_->TimeInMilliseconds();
|
|
|
|
// Reset content metrics.
|
|
content_->Reset();
|
|
|
|
return VCM_OK;
|
|
}
|
|
|
|
void MediaOptimization::PurgeOldFrameSamples(int64_t now_ms) {
|
|
while (!encoded_frame_samples_.empty()) {
|
|
if (now_ms - encoded_frame_samples_.front().time_complete_ms >
|
|
kBitrateAverageWinMs) {
|
|
encoded_frame_samples_.pop_front();
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MediaOptimization::UpdateSentBitrate(int64_t now_ms) {
|
|
if (encoded_frame_samples_.empty()) {
|
|
avg_sent_bit_rate_bps_ = 0;
|
|
return;
|
|
}
|
|
int framesize_sum = 0;
|
|
for (FrameSampleList::iterator it = encoded_frame_samples_.begin();
|
|
it != encoded_frame_samples_.end();
|
|
++it) {
|
|
framesize_sum += it->size_bytes;
|
|
}
|
|
float denom = static_cast<float>(
|
|
now_ms - encoded_frame_samples_.front().time_complete_ms);
|
|
if (denom >= 1.0f) {
|
|
avg_sent_bit_rate_bps_ =
|
|
static_cast<uint32_t>(framesize_sum * 8.0f * 1000.0f / denom + 0.5f);
|
|
} else {
|
|
avg_sent_bit_rate_bps_ = framesize_sum * 8;
|
|
}
|
|
}
|
|
|
|
void MediaOptimization::UpdateSentFramerate() {
|
|
if (encoded_frame_samples_.size() <= 1) {
|
|
avg_sent_framerate_ = encoded_frame_samples_.size();
|
|
return;
|
|
}
|
|
int denom = encoded_frame_samples_.back().timestamp -
|
|
encoded_frame_samples_.front().timestamp;
|
|
if (denom > 0) {
|
|
avg_sent_framerate_ =
|
|
(90000 * (encoded_frame_samples_.size() - 1) + denom / 2) / denom;
|
|
} else {
|
|
avg_sent_framerate_ = encoded_frame_samples_.size();
|
|
}
|
|
}
|
|
|
|
bool MediaOptimization::QMUpdate(
|
|
VCMResolutionScale* qm,
|
|
VCMQMSettingsCallback* video_qmsettings_callback) {
|
|
// Check for no change.
|
|
if (!qm->change_resolution_spatial && !qm->change_resolution_temporal) {
|
|
return false;
|
|
}
|
|
|
|
// Check for change in frame rate.
|
|
if (qm->change_resolution_temporal) {
|
|
incoming_frame_rate_ = qm->frame_rate;
|
|
// Reset frame rate estimate.
|
|
memset(incoming_frame_times_, -1, sizeof(incoming_frame_times_));
|
|
}
|
|
|
|
// Check for change in frame size.
|
|
if (qm->change_resolution_spatial) {
|
|
codec_width_ = qm->codec_width;
|
|
codec_height_ = qm->codec_height;
|
|
}
|
|
|
|
LOG(LS_INFO) << "Media optimizer requests the video resolution to be changed "
|
|
"to " << qm->codec_width << "x" << qm->codec_height << "@"
|
|
<< qm->frame_rate;
|
|
|
|
// Update VPM with new target frame rate and frame size.
|
|
// Note: use |qm->frame_rate| instead of |_incoming_frame_rate| for updating
|
|
// target frame rate in VPM frame dropper. The quantity |_incoming_frame_rate|
|
|
// will vary/fluctuate, and since we don't want to change the state of the
|
|
// VPM frame dropper, unless a temporal action was selected, we use the
|
|
// quantity |qm->frame_rate| for updating.
|
|
video_qmsettings_callback->SetVideoQMSettings(
|
|
qm->frame_rate, codec_width_, codec_height_);
|
|
content_->UpdateFrameRate(qm->frame_rate);
|
|
qm_resolution_->UpdateCodecParameters(
|
|
qm->frame_rate, codec_width_, codec_height_);
|
|
return true;
|
|
}
|
|
|
|
// Check timing constraints and look for significant change in:
|
|
// (1) scene content,
|
|
// (2) target bit rate.
|
|
bool MediaOptimization::CheckStatusForQMchange() {
|
|
bool status = true;
|
|
|
|
// Check that we do not call QMSelect too often, and that we waited some time
|
|
// (to sample the metrics) from the event last_change_time
|
|
// last_change_time is the time where user changed the size/rate/frame rate
|
|
// (via SetEncodingData).
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if ((now - last_qm_update_time_) < kQmMinIntervalMs ||
|
|
(now - last_change_time_) < kQmMinIntervalMs) {
|
|
status = false;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
// Allowing VCM to keep track of incoming frame rate.
|
|
void MediaOptimization::ProcessIncomingFrameRate(int64_t now) {
|
|
int32_t num = 0;
|
|
int32_t nr_of_frames = 0;
|
|
for (num = 1; num < (kFrameCountHistorySize - 1); ++num) {
|
|
if (incoming_frame_times_[num] <= 0 ||
|
|
// don't use data older than 2 s
|
|
now - incoming_frame_times_[num] > kFrameHistoryWinMs) {
|
|
break;
|
|
} else {
|
|
nr_of_frames++;
|
|
}
|
|
}
|
|
if (num > 1) {
|
|
const int64_t diff = now - incoming_frame_times_[num - 1];
|
|
incoming_frame_rate_ = 1.0;
|
|
if (diff > 0) {
|
|
incoming_frame_rate_ = nr_of_frames * 1000.0f / static_cast<float>(diff);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MediaOptimization::CheckSuspendConditions() {
|
|
// Check conditions for SuspendBelowMinBitrate. |target_bit_rate_| is in bps.
|
|
if (suspension_enabled_) {
|
|
if (!video_suspended_) {
|
|
// Check if we just went below the threshold.
|
|
if (target_bit_rate_ < suspension_threshold_bps_) {
|
|
video_suspended_ = true;
|
|
}
|
|
} else {
|
|
// Video is already suspended. Check if we just went over the threshold
|
|
// with a margin.
|
|
if (target_bit_rate_ >
|
|
suspension_threshold_bps_ + suspension_window_bps_) {
|
|
video_suspended_ = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace media_optimization
|
|
} // namespace webrtc
|