a09a99950e
git-svn-id: http://webrtc.googlecode.com/svn/trunk@6891 4adac7df-926f-26a2-2b94-8c16560cd09d
2521 lines
99 KiB
C++
2521 lines
99 KiB
C++
/*
|
|
* libjingle
|
|
* Copyright 2004 Google Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "talk/p2p/base/basicpacketsocketfactory.h"
|
|
#include "talk/p2p/base/portproxy.h"
|
|
#include "talk/p2p/base/relayport.h"
|
|
#include "talk/p2p/base/stunport.h"
|
|
#include "talk/p2p/base/tcpport.h"
|
|
#include "talk/p2p/base/testrelayserver.h"
|
|
#include "talk/p2p/base/teststunserver.h"
|
|
#include "talk/p2p/base/testturnserver.h"
|
|
#include "talk/p2p/base/transport.h"
|
|
#include "talk/p2p/base/turnport.h"
|
|
#include "webrtc/base/crc32.h"
|
|
#include "webrtc/base/gunit.h"
|
|
#include "webrtc/base/helpers.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/base/natserver.h"
|
|
#include "webrtc/base/natsocketfactory.h"
|
|
#include "webrtc/base/physicalsocketserver.h"
|
|
#include "webrtc/base/scoped_ptr.h"
|
|
#include "webrtc/base/socketaddress.h"
|
|
#include "webrtc/base/ssladapter.h"
|
|
#include "webrtc/base/stringutils.h"
|
|
#include "webrtc/base/thread.h"
|
|
#include "webrtc/base/virtualsocketserver.h"
|
|
|
|
using rtc::AsyncPacketSocket;
|
|
using rtc::ByteBuffer;
|
|
using rtc::NATType;
|
|
using rtc::NAT_OPEN_CONE;
|
|
using rtc::NAT_ADDR_RESTRICTED;
|
|
using rtc::NAT_PORT_RESTRICTED;
|
|
using rtc::NAT_SYMMETRIC;
|
|
using rtc::PacketSocketFactory;
|
|
using rtc::scoped_ptr;
|
|
using rtc::Socket;
|
|
using rtc::SocketAddress;
|
|
using namespace cricket;
|
|
|
|
static const int kTimeout = 1000;
|
|
static const SocketAddress kLocalAddr1("192.168.1.2", 0);
|
|
static const SocketAddress kLocalAddr2("192.168.1.3", 0);
|
|
static const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_PORT);
|
|
static const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_PORT);
|
|
static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
|
|
static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
|
|
static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
|
|
static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
|
|
static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
|
|
static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
|
|
static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
|
|
static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
|
|
static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
|
|
static const RelayCredentials kRelayCredentials("test", "test");
|
|
|
|
// TODO: Update these when RFC5245 is completely supported.
|
|
// Magic value of 30 is from RFC3484, for IPv4 addresses.
|
|
static const uint32 kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
|
|
30 << 8 | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
|
|
static const int STUN_ERROR_BAD_REQUEST_AS_GICE =
|
|
STUN_ERROR_BAD_REQUEST / 256 * 100 + STUN_ERROR_BAD_REQUEST % 256;
|
|
static const int STUN_ERROR_UNAUTHORIZED_AS_GICE =
|
|
STUN_ERROR_UNAUTHORIZED / 256 * 100 + STUN_ERROR_UNAUTHORIZED % 256;
|
|
static const int STUN_ERROR_SERVER_ERROR_AS_GICE =
|
|
STUN_ERROR_SERVER_ERROR / 256 * 100 + STUN_ERROR_SERVER_ERROR % 256;
|
|
|
|
static const int kTiebreaker1 = 11111;
|
|
static const int kTiebreaker2 = 22222;
|
|
|
|
static Candidate GetCandidate(Port* port) {
|
|
assert(port->Candidates().size() == 1);
|
|
return port->Candidates()[0];
|
|
}
|
|
|
|
static SocketAddress GetAddress(Port* port) {
|
|
return GetCandidate(port).address();
|
|
}
|
|
|
|
static IceMessage* CopyStunMessage(const IceMessage* src) {
|
|
IceMessage* dst = new IceMessage();
|
|
ByteBuffer buf;
|
|
src->Write(&buf);
|
|
dst->Read(&buf);
|
|
return dst;
|
|
}
|
|
|
|
static bool WriteStunMessage(const StunMessage* msg, ByteBuffer* buf) {
|
|
buf->Resize(0); // clear out any existing buffer contents
|
|
return msg->Write(buf);
|
|
}
|
|
|
|
// Stub port class for testing STUN generation and processing.
|
|
class TestPort : public Port {
|
|
public:
|
|
TestPort(rtc::Thread* thread, const std::string& type,
|
|
rtc::PacketSocketFactory* factory, rtc::Network* network,
|
|
const rtc::IPAddress& ip, int min_port, int max_port,
|
|
const std::string& username_fragment, const std::string& password)
|
|
: Port(thread, type, factory, network, ip,
|
|
min_port, max_port, username_fragment, password) {
|
|
}
|
|
~TestPort() {}
|
|
|
|
// Expose GetStunMessage so that we can test it.
|
|
using cricket::Port::GetStunMessage;
|
|
|
|
// The last StunMessage that was sent on this Port.
|
|
// TODO: Make these const; requires changes to SendXXXXResponse.
|
|
ByteBuffer* last_stun_buf() { return last_stun_buf_.get(); }
|
|
IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
|
|
int last_stun_error_code() {
|
|
int code = 0;
|
|
if (last_stun_msg_) {
|
|
const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
|
|
if (error_attr) {
|
|
code = error_attr->code();
|
|
}
|
|
}
|
|
return code;
|
|
}
|
|
|
|
virtual void PrepareAddress() {
|
|
rtc::SocketAddress addr(ip(), min_port());
|
|
AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", Type(),
|
|
ICE_TYPE_PREFERENCE_HOST, 0, true);
|
|
}
|
|
|
|
// Exposed for testing candidate building.
|
|
void AddCandidateAddress(const rtc::SocketAddress& addr) {
|
|
AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", Type(),
|
|
type_preference_, 0, false);
|
|
}
|
|
void AddCandidateAddress(const rtc::SocketAddress& addr,
|
|
const rtc::SocketAddress& base_address,
|
|
const std::string& type,
|
|
int type_preference,
|
|
bool final) {
|
|
AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", type,
|
|
type_preference, 0, final);
|
|
}
|
|
|
|
virtual Connection* CreateConnection(const Candidate& remote_candidate,
|
|
CandidateOrigin origin) {
|
|
Connection* conn = new ProxyConnection(this, 0, remote_candidate);
|
|
AddConnection(conn);
|
|
// Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
|
|
// in STUN binding requests.
|
|
conn->set_use_candidate_attr(true);
|
|
return conn;
|
|
}
|
|
virtual int SendTo(
|
|
const void* data, size_t size, const rtc::SocketAddress& addr,
|
|
const rtc::PacketOptions& options, bool payload) {
|
|
if (!payload) {
|
|
IceMessage* msg = new IceMessage;
|
|
ByteBuffer* buf = new ByteBuffer(static_cast<const char*>(data), size);
|
|
ByteBuffer::ReadPosition pos(buf->GetReadPosition());
|
|
if (!msg->Read(buf)) {
|
|
delete msg;
|
|
delete buf;
|
|
return -1;
|
|
}
|
|
buf->SetReadPosition(pos);
|
|
last_stun_buf_.reset(buf);
|
|
last_stun_msg_.reset(msg);
|
|
}
|
|
return static_cast<int>(size);
|
|
}
|
|
virtual int SetOption(rtc::Socket::Option opt, int value) {
|
|
return 0;
|
|
}
|
|
virtual int GetOption(rtc::Socket::Option opt, int* value) {
|
|
return -1;
|
|
}
|
|
virtual int GetError() {
|
|
return 0;
|
|
}
|
|
void Reset() {
|
|
last_stun_buf_.reset();
|
|
last_stun_msg_.reset();
|
|
}
|
|
void set_type_preference(int type_preference) {
|
|
type_preference_ = type_preference;
|
|
}
|
|
|
|
private:
|
|
rtc::scoped_ptr<ByteBuffer> last_stun_buf_;
|
|
rtc::scoped_ptr<IceMessage> last_stun_msg_;
|
|
int type_preference_;
|
|
};
|
|
|
|
class TestChannel : public sigslot::has_slots<> {
|
|
public:
|
|
// Takes ownership of |p1| (but not |p2|).
|
|
TestChannel(Port* p1, Port* p2)
|
|
: ice_mode_(ICEMODE_FULL), src_(p1), dst_(p2), complete_count_(0),
|
|
conn_(NULL), remote_request_(), nominated_(false) {
|
|
src_->SignalPortComplete.connect(
|
|
this, &TestChannel::OnPortComplete);
|
|
src_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
|
|
src_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed);
|
|
}
|
|
|
|
int complete_count() { return complete_count_; }
|
|
Connection* conn() { return conn_; }
|
|
const SocketAddress& remote_address() { return remote_address_; }
|
|
const std::string remote_fragment() { return remote_frag_; }
|
|
|
|
void Start() {
|
|
src_->PrepareAddress();
|
|
}
|
|
void CreateConnection() {
|
|
conn_ = src_->CreateConnection(GetCandidate(dst_), Port::ORIGIN_MESSAGE);
|
|
IceMode remote_ice_mode =
|
|
(ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
|
|
conn_->set_remote_ice_mode(remote_ice_mode);
|
|
conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
|
|
conn_->SignalStateChange.connect(
|
|
this, &TestChannel::OnConnectionStateChange);
|
|
}
|
|
void OnConnectionStateChange(Connection* conn) {
|
|
if (conn->write_state() == Connection::STATE_WRITABLE) {
|
|
conn->set_use_candidate_attr(true);
|
|
nominated_ = true;
|
|
}
|
|
}
|
|
void AcceptConnection() {
|
|
ASSERT_TRUE(remote_request_.get() != NULL);
|
|
Candidate c = GetCandidate(dst_);
|
|
c.set_address(remote_address_);
|
|
conn_ = src_->CreateConnection(c, Port::ORIGIN_MESSAGE);
|
|
src_->SendBindingResponse(remote_request_.get(), remote_address_);
|
|
remote_request_.reset();
|
|
}
|
|
void Ping() {
|
|
Ping(0);
|
|
}
|
|
void Ping(uint32 now) {
|
|
conn_->Ping(now);
|
|
}
|
|
void Stop() {
|
|
conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
|
|
conn_->Destroy();
|
|
}
|
|
|
|
void OnPortComplete(Port* port) {
|
|
complete_count_++;
|
|
}
|
|
void SetIceMode(IceMode ice_mode) {
|
|
ice_mode_ = ice_mode;
|
|
}
|
|
|
|
void OnUnknownAddress(PortInterface* port, const SocketAddress& addr,
|
|
ProtocolType proto,
|
|
IceMessage* msg, const std::string& rf,
|
|
bool /*port_muxed*/) {
|
|
ASSERT_EQ(src_.get(), port);
|
|
if (!remote_address_.IsNil()) {
|
|
ASSERT_EQ(remote_address_, addr);
|
|
}
|
|
// MI and PRIORITY attribute should be present in ping requests when port
|
|
// is in ICEPROTO_RFC5245 mode.
|
|
const cricket::StunUInt32Attribute* priority_attr =
|
|
msg->GetUInt32(STUN_ATTR_PRIORITY);
|
|
const cricket::StunByteStringAttribute* mi_attr =
|
|
msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
|
|
const cricket::StunUInt32Attribute* fingerprint_attr =
|
|
msg->GetUInt32(STUN_ATTR_FINGERPRINT);
|
|
if (src_->IceProtocol() == cricket::ICEPROTO_RFC5245) {
|
|
EXPECT_TRUE(priority_attr != NULL);
|
|
EXPECT_TRUE(mi_attr != NULL);
|
|
EXPECT_TRUE(fingerprint_attr != NULL);
|
|
} else {
|
|
EXPECT_TRUE(priority_attr == NULL);
|
|
EXPECT_TRUE(mi_attr == NULL);
|
|
EXPECT_TRUE(fingerprint_attr == NULL);
|
|
}
|
|
remote_address_ = addr;
|
|
remote_request_.reset(CopyStunMessage(msg));
|
|
remote_frag_ = rf;
|
|
}
|
|
|
|
void OnDestroyed(Connection* conn) {
|
|
ASSERT_EQ(conn_, conn);
|
|
conn_ = NULL;
|
|
}
|
|
|
|
void OnSrcPortDestroyed(PortInterface* port) {
|
|
Port* destroyed_src = src_.release();
|
|
ASSERT_EQ(destroyed_src, port);
|
|
}
|
|
|
|
bool nominated() const { return nominated_; }
|
|
|
|
private:
|
|
IceMode ice_mode_;
|
|
rtc::scoped_ptr<Port> src_;
|
|
Port* dst_;
|
|
|
|
int complete_count_;
|
|
Connection* conn_;
|
|
SocketAddress remote_address_;
|
|
rtc::scoped_ptr<StunMessage> remote_request_;
|
|
std::string remote_frag_;
|
|
bool nominated_;
|
|
};
|
|
|
|
class PortTest : public testing::Test, public sigslot::has_slots<> {
|
|
public:
|
|
PortTest()
|
|
: main_(rtc::Thread::Current()),
|
|
pss_(new rtc::PhysicalSocketServer),
|
|
ss_(new rtc::VirtualSocketServer(pss_.get())),
|
|
ss_scope_(ss_.get()),
|
|
network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32),
|
|
socket_factory_(rtc::Thread::Current()),
|
|
nat_factory1_(ss_.get(), kNatAddr1),
|
|
nat_factory2_(ss_.get(), kNatAddr2),
|
|
nat_socket_factory1_(&nat_factory1_),
|
|
nat_socket_factory2_(&nat_factory2_),
|
|
stun_server_(main_, kStunAddr),
|
|
turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
|
|
relay_server_(main_, kRelayUdpIntAddr, kRelayUdpExtAddr,
|
|
kRelayTcpIntAddr, kRelayTcpExtAddr,
|
|
kRelaySslTcpIntAddr, kRelaySslTcpExtAddr),
|
|
username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)),
|
|
password_(rtc::CreateRandomString(ICE_PWD_LENGTH)),
|
|
ice_protocol_(cricket::ICEPROTO_GOOGLE),
|
|
role_conflict_(false),
|
|
destroyed_(false) {
|
|
network_.AddIP(rtc::IPAddress(INADDR_ANY));
|
|
}
|
|
|
|
protected:
|
|
static void SetUpTestCase() {
|
|
rtc::InitializeSSL();
|
|
}
|
|
|
|
static void TearDownTestCase() {
|
|
rtc::CleanupSSL();
|
|
}
|
|
|
|
|
|
void TestLocalToLocal() {
|
|
Port* port1 = CreateUdpPort(kLocalAddr1);
|
|
Port* port2 = CreateUdpPort(kLocalAddr2);
|
|
TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
|
|
}
|
|
void TestLocalToStun(NATType ntype) {
|
|
Port* port1 = CreateUdpPort(kLocalAddr1);
|
|
nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
|
|
Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
|
|
TestConnectivity("udp", port1, StunName(ntype), port2,
|
|
ntype == NAT_OPEN_CONE, true,
|
|
ntype != NAT_SYMMETRIC, true);
|
|
}
|
|
void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
|
|
Port* port1 = CreateUdpPort(kLocalAddr1);
|
|
Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
|
|
TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
|
|
rtype == RELAY_GTURN, true, true, true);
|
|
}
|
|
void TestStunToLocal(NATType ntype) {
|
|
nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
|
|
Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
|
|
Port* port2 = CreateUdpPort(kLocalAddr2);
|
|
TestConnectivity(StunName(ntype), port1, "udp", port2,
|
|
true, ntype != NAT_SYMMETRIC, true, true);
|
|
}
|
|
void TestStunToStun(NATType ntype1, NATType ntype2) {
|
|
nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
|
|
Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
|
|
nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
|
|
Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
|
|
TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
|
|
ntype2 == NAT_OPEN_CONE,
|
|
ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
|
|
ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
|
|
}
|
|
void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
|
|
nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
|
|
Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
|
|
Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
|
|
TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
|
|
rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
|
|
}
|
|
void TestTcpToTcp() {
|
|
Port* port1 = CreateTcpPort(kLocalAddr1);
|
|
Port* port2 = CreateTcpPort(kLocalAddr2);
|
|
TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
|
|
}
|
|
void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
|
|
Port* port1 = CreateTcpPort(kLocalAddr1);
|
|
Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
|
|
TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
|
|
rtype == RELAY_GTURN, false, true, true);
|
|
}
|
|
void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
|
|
Port* port1 = CreateTcpPort(kLocalAddr1);
|
|
Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
|
|
TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
|
|
rtype == RELAY_GTURN, false, true, true);
|
|
}
|
|
|
|
// helpers for above functions
|
|
UDPPort* CreateUdpPort(const SocketAddress& addr) {
|
|
return CreateUdpPort(addr, &socket_factory_);
|
|
}
|
|
UDPPort* CreateUdpPort(const SocketAddress& addr,
|
|
PacketSocketFactory* socket_factory) {
|
|
UDPPort* port = UDPPort::Create(main_, socket_factory, &network_,
|
|
addr.ipaddr(), 0, 0, username_, password_);
|
|
port->SetIceProtocolType(ice_protocol_);
|
|
return port;
|
|
}
|
|
TCPPort* CreateTcpPort(const SocketAddress& addr) {
|
|
TCPPort* port = CreateTcpPort(addr, &socket_factory_);
|
|
port->SetIceProtocolType(ice_protocol_);
|
|
return port;
|
|
}
|
|
TCPPort* CreateTcpPort(const SocketAddress& addr,
|
|
PacketSocketFactory* socket_factory) {
|
|
TCPPort* port = TCPPort::Create(main_, socket_factory, &network_,
|
|
addr.ipaddr(), 0, 0, username_, password_,
|
|
true);
|
|
port->SetIceProtocolType(ice_protocol_);
|
|
return port;
|
|
}
|
|
StunPort* CreateStunPort(const SocketAddress& addr,
|
|
rtc::PacketSocketFactory* factory) {
|
|
ServerAddresses stun_servers;
|
|
stun_servers.insert(kStunAddr);
|
|
StunPort* port = StunPort::Create(main_, factory, &network_,
|
|
addr.ipaddr(), 0, 0,
|
|
username_, password_, stun_servers);
|
|
port->SetIceProtocolType(ice_protocol_);
|
|
return port;
|
|
}
|
|
Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype,
|
|
ProtocolType int_proto, ProtocolType ext_proto) {
|
|
if (rtype == RELAY_TURN) {
|
|
return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
|
|
} else {
|
|
return CreateGturnPort(addr, int_proto, ext_proto);
|
|
}
|
|
}
|
|
TurnPort* CreateTurnPort(const SocketAddress& addr,
|
|
PacketSocketFactory* socket_factory,
|
|
ProtocolType int_proto, ProtocolType ext_proto) {
|
|
return CreateTurnPort(addr, socket_factory,
|
|
int_proto, ext_proto, kTurnUdpIntAddr);
|
|
}
|
|
TurnPort* CreateTurnPort(const SocketAddress& addr,
|
|
PacketSocketFactory* socket_factory,
|
|
ProtocolType int_proto, ProtocolType ext_proto,
|
|
const rtc::SocketAddress& server_addr) {
|
|
TurnPort* port = TurnPort::Create(main_, socket_factory, &network_,
|
|
addr.ipaddr(), 0, 0,
|
|
username_, password_, ProtocolAddress(
|
|
server_addr, PROTO_UDP),
|
|
kRelayCredentials, 0);
|
|
port->SetIceProtocolType(ice_protocol_);
|
|
return port;
|
|
}
|
|
RelayPort* CreateGturnPort(const SocketAddress& addr,
|
|
ProtocolType int_proto, ProtocolType ext_proto) {
|
|
RelayPort* port = CreateGturnPort(addr);
|
|
SocketAddress addrs[] =
|
|
{ kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr };
|
|
port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
|
|
return port;
|
|
}
|
|
RelayPort* CreateGturnPort(const SocketAddress& addr) {
|
|
RelayPort* port = RelayPort::Create(main_, &socket_factory_, &network_,
|
|
addr.ipaddr(), 0, 0,
|
|
username_, password_);
|
|
// TODO: Add an external address for ext_proto, so that the
|
|
// other side can connect to this port using a non-UDP protocol.
|
|
port->SetIceProtocolType(ice_protocol_);
|
|
return port;
|
|
}
|
|
rtc::NATServer* CreateNatServer(const SocketAddress& addr,
|
|
rtc::NATType type) {
|
|
return new rtc::NATServer(type, ss_.get(), addr, ss_.get(), addr);
|
|
}
|
|
static const char* StunName(NATType type) {
|
|
switch (type) {
|
|
case NAT_OPEN_CONE: return "stun(open cone)";
|
|
case NAT_ADDR_RESTRICTED: return "stun(addr restricted)";
|
|
case NAT_PORT_RESTRICTED: return "stun(port restricted)";
|
|
case NAT_SYMMETRIC: return "stun(symmetric)";
|
|
default: return "stun(?)";
|
|
}
|
|
}
|
|
static const char* RelayName(RelayType type, ProtocolType proto) {
|
|
if (type == RELAY_TURN) {
|
|
switch (proto) {
|
|
case PROTO_UDP: return "turn(udp)";
|
|
case PROTO_TCP: return "turn(tcp)";
|
|
case PROTO_SSLTCP: return "turn(ssltcp)";
|
|
default: return "turn(?)";
|
|
}
|
|
} else {
|
|
switch (proto) {
|
|
case PROTO_UDP: return "gturn(udp)";
|
|
case PROTO_TCP: return "gturn(tcp)";
|
|
case PROTO_SSLTCP: return "gturn(ssltcp)";
|
|
default: return "gturn(?)";
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestCrossFamilyPorts(int type);
|
|
|
|
// This does all the work and then deletes |port1| and |port2|.
|
|
void TestConnectivity(const char* name1, Port* port1,
|
|
const char* name2, Port* port2,
|
|
bool accept, bool same_addr1,
|
|
bool same_addr2, bool possible);
|
|
|
|
// This connects and disconnects the provided channels in the same sequence as
|
|
// TestConnectivity with all options set to |true|. It does not delete either
|
|
// channel.
|
|
void ConnectAndDisconnectChannels(TestChannel* ch1, TestChannel* ch2);
|
|
|
|
void SetIceProtocolType(cricket::IceProtocolType protocol) {
|
|
ice_protocol_ = protocol;
|
|
}
|
|
|
|
IceMessage* CreateStunMessage(int type) {
|
|
IceMessage* msg = new IceMessage();
|
|
msg->SetType(type);
|
|
msg->SetTransactionID("TESTTESTTEST");
|
|
return msg;
|
|
}
|
|
IceMessage* CreateStunMessageWithUsername(int type,
|
|
const std::string& username) {
|
|
IceMessage* msg = CreateStunMessage(type);
|
|
msg->AddAttribute(
|
|
new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
|
|
return msg;
|
|
}
|
|
TestPort* CreateTestPort(const rtc::SocketAddress& addr,
|
|
const std::string& username,
|
|
const std::string& password) {
|
|
TestPort* port = new TestPort(main_, "test", &socket_factory_, &network_,
|
|
addr.ipaddr(), 0, 0, username, password);
|
|
port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
|
|
return port;
|
|
}
|
|
TestPort* CreateTestPort(const rtc::SocketAddress& addr,
|
|
const std::string& username,
|
|
const std::string& password,
|
|
cricket::IceProtocolType type,
|
|
cricket::IceRole role,
|
|
int tiebreaker) {
|
|
TestPort* port = CreateTestPort(addr, username, password);
|
|
port->SetIceProtocolType(type);
|
|
port->SetIceRole(role);
|
|
port->SetIceTiebreaker(tiebreaker);
|
|
return port;
|
|
}
|
|
|
|
void OnRoleConflict(PortInterface* port) {
|
|
role_conflict_ = true;
|
|
}
|
|
bool role_conflict() const { return role_conflict_; }
|
|
|
|
void ConnectToSignalDestroyed(PortInterface* port) {
|
|
port->SignalDestroyed.connect(this, &PortTest::OnDestroyed);
|
|
}
|
|
|
|
void OnDestroyed(PortInterface* port) {
|
|
destroyed_ = true;
|
|
}
|
|
bool destroyed() const { return destroyed_; }
|
|
|
|
rtc::BasicPacketSocketFactory* nat_socket_factory1() {
|
|
return &nat_socket_factory1_;
|
|
}
|
|
|
|
private:
|
|
rtc::Thread* main_;
|
|
rtc::scoped_ptr<rtc::PhysicalSocketServer> pss_;
|
|
rtc::scoped_ptr<rtc::VirtualSocketServer> ss_;
|
|
rtc::SocketServerScope ss_scope_;
|
|
rtc::Network network_;
|
|
rtc::BasicPacketSocketFactory socket_factory_;
|
|
rtc::scoped_ptr<rtc::NATServer> nat_server1_;
|
|
rtc::scoped_ptr<rtc::NATServer> nat_server2_;
|
|
rtc::NATSocketFactory nat_factory1_;
|
|
rtc::NATSocketFactory nat_factory2_;
|
|
rtc::BasicPacketSocketFactory nat_socket_factory1_;
|
|
rtc::BasicPacketSocketFactory nat_socket_factory2_;
|
|
TestStunServer stun_server_;
|
|
TestTurnServer turn_server_;
|
|
TestRelayServer relay_server_;
|
|
std::string username_;
|
|
std::string password_;
|
|
cricket::IceProtocolType ice_protocol_;
|
|
bool role_conflict_;
|
|
bool destroyed_;
|
|
};
|
|
|
|
void PortTest::TestConnectivity(const char* name1, Port* port1,
|
|
const char* name2, Port* port2,
|
|
bool accept, bool same_addr1,
|
|
bool same_addr2, bool possible) {
|
|
LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
|
|
port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
|
|
port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
|
|
|
|
// Set up channels and ensure both ports will be deleted.
|
|
TestChannel ch1(port1, port2);
|
|
TestChannel ch2(port2, port1);
|
|
EXPECT_EQ(0, ch1.complete_count());
|
|
EXPECT_EQ(0, ch2.complete_count());
|
|
|
|
// Acquire addresses.
|
|
ch1.Start();
|
|
ch2.Start();
|
|
ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
|
|
ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
|
|
|
|
// Send a ping from src to dst. This may or may not make it.
|
|
ch1.CreateConnection();
|
|
ASSERT_TRUE(ch1.conn() != NULL);
|
|
EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
|
|
ch1.Ping();
|
|
WAIT(!ch2.remote_address().IsNil(), kTimeout);
|
|
|
|
if (accept) {
|
|
// We are able to send a ping from src to dst. This is the case when
|
|
// sending to UDP ports and cone NATs.
|
|
EXPECT_TRUE(ch1.remote_address().IsNil());
|
|
EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
|
|
|
|
// Ensure the ping came from the same address used for src.
|
|
// This is the case unless the source NAT was symmetric.
|
|
if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
|
|
EXPECT_TRUE(same_addr2);
|
|
|
|
// Send a ping from dst to src.
|
|
ch2.AcceptConnection();
|
|
ASSERT_TRUE(ch2.conn() != NULL);
|
|
ch2.Ping();
|
|
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
|
|
kTimeout);
|
|
} else {
|
|
// We can't send a ping from src to dst, so flip it around. This will happen
|
|
// when the destination NAT is addr/port restricted or symmetric.
|
|
EXPECT_TRUE(ch1.remote_address().IsNil());
|
|
EXPECT_TRUE(ch2.remote_address().IsNil());
|
|
|
|
// Send a ping from dst to src. Again, this may or may not make it.
|
|
ch2.CreateConnection();
|
|
ASSERT_TRUE(ch2.conn() != NULL);
|
|
ch2.Ping();
|
|
WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout);
|
|
|
|
if (same_addr1 && same_addr2) {
|
|
// The new ping got back to the source.
|
|
EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
|
|
EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
|
|
|
|
// First connection may not be writable if the first ping did not get
|
|
// through. So we will have to do another.
|
|
if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
|
|
ch1.Ping();
|
|
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
|
|
kTimeout);
|
|
}
|
|
} else if (!same_addr1 && possible) {
|
|
// The new ping went to the candidate address, but that address was bad.
|
|
// This will happen when the source NAT is symmetric.
|
|
EXPECT_TRUE(ch1.remote_address().IsNil());
|
|
EXPECT_TRUE(ch2.remote_address().IsNil());
|
|
|
|
// However, since we have now sent a ping to the source IP, we should be
|
|
// able to get a ping from it. This gives us the real source address.
|
|
ch1.Ping();
|
|
EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout);
|
|
EXPECT_EQ(Connection::STATE_READ_INIT, ch2.conn()->read_state());
|
|
EXPECT_TRUE(ch1.remote_address().IsNil());
|
|
|
|
// Pick up the actual address and establish the connection.
|
|
ch2.AcceptConnection();
|
|
ASSERT_TRUE(ch2.conn() != NULL);
|
|
ch2.Ping();
|
|
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
|
|
kTimeout);
|
|
} else if (!same_addr2 && possible) {
|
|
// The new ping came in, but from an unexpected address. This will happen
|
|
// when the destination NAT is symmetric.
|
|
EXPECT_FALSE(ch1.remote_address().IsNil());
|
|
EXPECT_EQ(Connection::STATE_READ_INIT, ch1.conn()->read_state());
|
|
|
|
// Update our address and complete the connection.
|
|
ch1.AcceptConnection();
|
|
ch1.Ping();
|
|
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
|
|
kTimeout);
|
|
} else { // (!possible)
|
|
// There should be s no way for the pings to reach each other. Check it.
|
|
EXPECT_TRUE(ch1.remote_address().IsNil());
|
|
EXPECT_TRUE(ch2.remote_address().IsNil());
|
|
ch1.Ping();
|
|
WAIT(!ch2.remote_address().IsNil(), kTimeout);
|
|
EXPECT_TRUE(ch1.remote_address().IsNil());
|
|
EXPECT_TRUE(ch2.remote_address().IsNil());
|
|
}
|
|
}
|
|
|
|
// Everything should be good, unless we know the situation is impossible.
|
|
ASSERT_TRUE(ch1.conn() != NULL);
|
|
ASSERT_TRUE(ch2.conn() != NULL);
|
|
if (possible) {
|
|
EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
|
|
EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
|
|
EXPECT_EQ(Connection::STATE_READABLE, ch2.conn()->read_state());
|
|
EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
|
|
} else {
|
|
EXPECT_NE(Connection::STATE_READABLE, ch1.conn()->read_state());
|
|
EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
|
|
EXPECT_NE(Connection::STATE_READABLE, ch2.conn()->read_state());
|
|
EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
|
|
}
|
|
|
|
// Tear down and ensure that goes smoothly.
|
|
ch1.Stop();
|
|
ch2.Stop();
|
|
EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
|
|
EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
|
|
}
|
|
|
|
void PortTest::ConnectAndDisconnectChannels(TestChannel* ch1,
|
|
TestChannel* ch2) {
|
|
// Acquire addresses.
|
|
ch1->Start();
|
|
ch2->Start();
|
|
|
|
// Send a ping from src to dst.
|
|
ch1->CreateConnection();
|
|
EXPECT_TRUE_WAIT(ch1->conn()->connected(), kTimeout); // for TCP connect
|
|
ch1->Ping();
|
|
WAIT(!ch2->remote_address().IsNil(), kTimeout);
|
|
|
|
// Send a ping from dst to src.
|
|
ch2->AcceptConnection();
|
|
ch2->Ping();
|
|
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
|
|
kTimeout);
|
|
|
|
// Destroy the connections.
|
|
ch1->Stop();
|
|
ch2->Stop();
|
|
}
|
|
|
|
class FakePacketSocketFactory : public rtc::PacketSocketFactory {
|
|
public:
|
|
FakePacketSocketFactory()
|
|
: next_udp_socket_(NULL),
|
|
next_server_tcp_socket_(NULL),
|
|
next_client_tcp_socket_(NULL) {
|
|
}
|
|
virtual ~FakePacketSocketFactory() { }
|
|
|
|
virtual AsyncPacketSocket* CreateUdpSocket(
|
|
const SocketAddress& address, int min_port, int max_port) {
|
|
EXPECT_TRUE(next_udp_socket_ != NULL);
|
|
AsyncPacketSocket* result = next_udp_socket_;
|
|
next_udp_socket_ = NULL;
|
|
return result;
|
|
}
|
|
|
|
virtual AsyncPacketSocket* CreateServerTcpSocket(
|
|
const SocketAddress& local_address, int min_port, int max_port,
|
|
int opts) {
|
|
EXPECT_TRUE(next_server_tcp_socket_ != NULL);
|
|
AsyncPacketSocket* result = next_server_tcp_socket_;
|
|
next_server_tcp_socket_ = NULL;
|
|
return result;
|
|
}
|
|
|
|
// TODO: |proxy_info| and |user_agent| should be set
|
|
// per-factory and not when socket is created.
|
|
virtual AsyncPacketSocket* CreateClientTcpSocket(
|
|
const SocketAddress& local_address, const SocketAddress& remote_address,
|
|
const rtc::ProxyInfo& proxy_info,
|
|
const std::string& user_agent, int opts) {
|
|
EXPECT_TRUE(next_client_tcp_socket_ != NULL);
|
|
AsyncPacketSocket* result = next_client_tcp_socket_;
|
|
next_client_tcp_socket_ = NULL;
|
|
return result;
|
|
}
|
|
|
|
void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
|
|
next_udp_socket_ = next_udp_socket;
|
|
}
|
|
void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
|
|
next_server_tcp_socket_ = next_server_tcp_socket;
|
|
}
|
|
void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
|
|
next_client_tcp_socket_ = next_client_tcp_socket;
|
|
}
|
|
rtc::AsyncResolverInterface* CreateAsyncResolver() {
|
|
return NULL;
|
|
}
|
|
|
|
private:
|
|
AsyncPacketSocket* next_udp_socket_;
|
|
AsyncPacketSocket* next_server_tcp_socket_;
|
|
AsyncPacketSocket* next_client_tcp_socket_;
|
|
};
|
|
|
|
class FakeAsyncPacketSocket : public AsyncPacketSocket {
|
|
public:
|
|
// Returns current local address. Address may be set to NULL if the
|
|
// socket is not bound yet (GetState() returns STATE_BINDING).
|
|
virtual SocketAddress GetLocalAddress() const {
|
|
return SocketAddress();
|
|
}
|
|
|
|
// Returns remote address. Returns zeroes if this is not a client TCP socket.
|
|
virtual SocketAddress GetRemoteAddress() const {
|
|
return SocketAddress();
|
|
}
|
|
|
|
// Send a packet.
|
|
virtual int Send(const void *pv, size_t cb,
|
|
const rtc::PacketOptions& options) {
|
|
return static_cast<int>(cb);
|
|
}
|
|
virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr,
|
|
const rtc::PacketOptions& options) {
|
|
return static_cast<int>(cb);
|
|
}
|
|
virtual int Close() {
|
|
return 0;
|
|
}
|
|
|
|
virtual State GetState() const { return state_; }
|
|
virtual int GetOption(Socket::Option opt, int* value) { return 0; }
|
|
virtual int SetOption(Socket::Option opt, int value) { return 0; }
|
|
virtual int GetError() const { return 0; }
|
|
virtual void SetError(int error) { }
|
|
|
|
void set_state(State state) { state_ = state; }
|
|
|
|
private:
|
|
State state_;
|
|
};
|
|
|
|
// Local -> XXXX
|
|
TEST_F(PortTest, TestLocalToLocal) {
|
|
TestLocalToLocal();
|
|
}
|
|
|
|
TEST_F(PortTest, TestLocalToConeNat) {
|
|
TestLocalToStun(NAT_OPEN_CONE);
|
|
}
|
|
|
|
TEST_F(PortTest, TestLocalToARNat) {
|
|
TestLocalToStun(NAT_ADDR_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestLocalToPRNat) {
|
|
TestLocalToStun(NAT_PORT_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestLocalToSymNat) {
|
|
TestLocalToStun(NAT_SYMMETRIC);
|
|
}
|
|
|
|
// Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
|
|
TEST_F(PortTest, DISABLED_TestLocalToTurn) {
|
|
TestLocalToRelay(RELAY_TURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestLocalToGturn) {
|
|
TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestLocalToTcpGturn) {
|
|
TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestLocalToSslTcpGturn) {
|
|
TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
|
|
}
|
|
|
|
// Cone NAT -> XXXX
|
|
TEST_F(PortTest, TestConeNatToLocal) {
|
|
TestStunToLocal(NAT_OPEN_CONE);
|
|
}
|
|
|
|
TEST_F(PortTest, TestConeNatToConeNat) {
|
|
TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
|
|
}
|
|
|
|
TEST_F(PortTest, TestConeNatToARNat) {
|
|
TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestConeNatToPRNat) {
|
|
TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestConeNatToSymNat) {
|
|
TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
|
|
}
|
|
|
|
TEST_F(PortTest, TestConeNatToTurn) {
|
|
TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestConeNatToGturn) {
|
|
TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestConeNatToTcpGturn) {
|
|
TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
|
|
}
|
|
|
|
// Address-restricted NAT -> XXXX
|
|
TEST_F(PortTest, TestARNatToLocal) {
|
|
TestStunToLocal(NAT_ADDR_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestARNatToConeNat) {
|
|
TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
|
|
}
|
|
|
|
TEST_F(PortTest, TestARNatToARNat) {
|
|
TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestARNatToPRNat) {
|
|
TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestARNatToSymNat) {
|
|
TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
|
|
}
|
|
|
|
TEST_F(PortTest, TestARNatToTurn) {
|
|
TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestARNatToGturn) {
|
|
TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestARNATNatToTcpGturn) {
|
|
TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
|
|
}
|
|
|
|
// Port-restricted NAT -> XXXX
|
|
TEST_F(PortTest, TestPRNatToLocal) {
|
|
TestStunToLocal(NAT_PORT_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestPRNatToConeNat) {
|
|
TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
|
|
}
|
|
|
|
TEST_F(PortTest, TestPRNatToARNat) {
|
|
TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestPRNatToPRNat) {
|
|
TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestPRNatToSymNat) {
|
|
// Will "fail"
|
|
TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
|
|
}
|
|
|
|
TEST_F(PortTest, TestPRNatToTurn) {
|
|
TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestPRNatToGturn) {
|
|
TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestPRNatToTcpGturn) {
|
|
TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
|
|
}
|
|
|
|
// Symmetric NAT -> XXXX
|
|
TEST_F(PortTest, TestSymNatToLocal) {
|
|
TestStunToLocal(NAT_SYMMETRIC);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSymNatToConeNat) {
|
|
TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSymNatToARNat) {
|
|
TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSymNatToPRNat) {
|
|
// Will "fail"
|
|
TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSymNatToSymNat) {
|
|
// Will "fail"
|
|
TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSymNatToTurn) {
|
|
TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSymNatToGturn) {
|
|
TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSymNatToTcpGturn) {
|
|
TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
|
|
}
|
|
|
|
// Outbound TCP -> XXXX
|
|
TEST_F(PortTest, TestTcpToTcp) {
|
|
TestTcpToTcp();
|
|
}
|
|
|
|
/* TODO: Enable these once testrelayserver can accept external TCP.
|
|
TEST_F(PortTest, TestTcpToTcpRelay) {
|
|
TestTcpToRelay(PROTO_TCP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestTcpToSslTcpRelay) {
|
|
TestTcpToRelay(PROTO_SSLTCP);
|
|
}
|
|
*/
|
|
|
|
// Outbound SSLTCP -> XXXX
|
|
/* TODO: Enable these once testrelayserver can accept external SSL.
|
|
TEST_F(PortTest, TestSslTcpToTcpRelay) {
|
|
TestSslTcpToRelay(PROTO_TCP);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
|
|
TestSslTcpToRelay(PROTO_SSLTCP);
|
|
}
|
|
*/
|
|
|
|
// This test case verifies standard ICE features in STUN messages. Currently it
|
|
// verifies Message Integrity attribute in STUN messages and username in STUN
|
|
// binding request will have colon (":") between remote and local username.
|
|
TEST_F(PortTest, TestLocalToLocalAsIce) {
|
|
SetIceProtocolType(cricket::ICEPROTO_RFC5245);
|
|
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
|
|
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
port1->SetIceTiebreaker(kTiebreaker1);
|
|
ASSERT_EQ(cricket::ICEPROTO_RFC5245, port1->IceProtocol());
|
|
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
|
|
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
|
|
port2->SetIceTiebreaker(kTiebreaker2);
|
|
ASSERT_EQ(cricket::ICEPROTO_RFC5245, port2->IceProtocol());
|
|
// Same parameters as TestLocalToLocal above.
|
|
TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
|
|
}
|
|
|
|
// This test is trying to validate a successful and failure scenario in a
|
|
// loopback test when protocol is RFC5245. For success IceTiebreaker, username
|
|
// should remain equal to the request generated by the port and role of port
|
|
// must be in controlling.
|
|
TEST_F(PortTest, TestLoopbackCallAsIce) {
|
|
rtc::scoped_ptr<TestPort> lport(
|
|
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
|
|
lport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
lport->SetIceTiebreaker(kTiebreaker1);
|
|
lport->PrepareAddress();
|
|
ASSERT_FALSE(lport->Candidates().empty());
|
|
Connection* conn = lport->CreateConnection(lport->Candidates()[0],
|
|
Port::ORIGIN_MESSAGE);
|
|
conn->Ping(0);
|
|
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
IceMessage* msg = lport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
|
|
conn->OnReadPacket(lport->last_stun_buf()->Data(),
|
|
lport->last_stun_buf()->Length(),
|
|
rtc::PacketTime());
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
msg = lport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
|
|
|
|
// If the tiebreaker value is different from port, we expect a error
|
|
// response.
|
|
lport->Reset();
|
|
lport->AddCandidateAddress(kLocalAddr2);
|
|
// Creating a different connection as |conn| is in STATE_READABLE.
|
|
Connection* conn1 = lport->CreateConnection(lport->Candidates()[1],
|
|
Port::ORIGIN_MESSAGE);
|
|
conn1->Ping(0);
|
|
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
msg = lport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
|
|
rtc::scoped_ptr<IceMessage> modified_req(
|
|
CreateStunMessage(STUN_BINDING_REQUEST));
|
|
const StunByteStringAttribute* username_attr = msg->GetByteString(
|
|
STUN_ATTR_USERNAME);
|
|
modified_req->AddAttribute(new StunByteStringAttribute(
|
|
STUN_ATTR_USERNAME, username_attr->GetString()));
|
|
// To make sure we receive error response, adding tiebreaker less than
|
|
// what's present in request.
|
|
modified_req->AddAttribute(new StunUInt64Attribute(
|
|
STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
|
|
modified_req->AddMessageIntegrity("lpass");
|
|
modified_req->AddFingerprint();
|
|
|
|
lport->Reset();
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
WriteStunMessage(modified_req.get(), buf.get());
|
|
conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
msg = lport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
|
|
}
|
|
|
|
// This test verifies role conflict signal is received when there is
|
|
// conflict in the role. In this case both ports are in controlling and
|
|
// |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
|
|
// value of tiebreaker, when it receives ping request from |rport| it will
|
|
// send role conflict signal.
|
|
TEST_F(PortTest, TestIceRoleConflict) {
|
|
rtc::scoped_ptr<TestPort> lport(
|
|
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
|
|
lport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
lport->SetIceTiebreaker(kTiebreaker1);
|
|
rtc::scoped_ptr<TestPort> rport(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
rport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
rport->SetIceTiebreaker(kTiebreaker2);
|
|
|
|
lport->PrepareAddress();
|
|
rport->PrepareAddress();
|
|
ASSERT_FALSE(lport->Candidates().empty());
|
|
ASSERT_FALSE(rport->Candidates().empty());
|
|
Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
|
|
Port::ORIGIN_MESSAGE);
|
|
Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
|
|
Port::ORIGIN_MESSAGE);
|
|
rconn->Ping(0);
|
|
|
|
ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
|
|
IceMessage* msg = rport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
|
|
// Send rport binding request to lport.
|
|
lconn->OnReadPacket(rport->last_stun_buf()->Data(),
|
|
rport->last_stun_buf()->Length(),
|
|
rtc::PacketTime());
|
|
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
|
|
EXPECT_TRUE(role_conflict());
|
|
}
|
|
|
|
TEST_F(PortTest, TestTcpNoDelay) {
|
|
TCPPort* port1 = CreateTcpPort(kLocalAddr1);
|
|
int option_value = -1;
|
|
int success = port1->GetOption(rtc::Socket::OPT_NODELAY,
|
|
&option_value);
|
|
ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0
|
|
ASSERT_EQ(1, option_value);
|
|
delete port1;
|
|
}
|
|
|
|
TEST_F(PortTest, TestDelayedBindingUdp) {
|
|
FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
|
|
FakePacketSocketFactory socket_factory;
|
|
|
|
socket_factory.set_next_udp_socket(socket);
|
|
scoped_ptr<UDPPort> port(
|
|
CreateUdpPort(kLocalAddr1, &socket_factory));
|
|
|
|
socket->set_state(AsyncPacketSocket::STATE_BINDING);
|
|
port->PrepareAddress();
|
|
|
|
EXPECT_EQ(0U, port->Candidates().size());
|
|
socket->SignalAddressReady(socket, kLocalAddr2);
|
|
|
|
EXPECT_EQ(1U, port->Candidates().size());
|
|
}
|
|
|
|
TEST_F(PortTest, TestDelayedBindingTcp) {
|
|
FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
|
|
FakePacketSocketFactory socket_factory;
|
|
|
|
socket_factory.set_next_server_tcp_socket(socket);
|
|
scoped_ptr<TCPPort> port(
|
|
CreateTcpPort(kLocalAddr1, &socket_factory));
|
|
|
|
socket->set_state(AsyncPacketSocket::STATE_BINDING);
|
|
port->PrepareAddress();
|
|
|
|
EXPECT_EQ(0U, port->Candidates().size());
|
|
socket->SignalAddressReady(socket, kLocalAddr2);
|
|
|
|
EXPECT_EQ(1U, port->Candidates().size());
|
|
}
|
|
|
|
void PortTest::TestCrossFamilyPorts(int type) {
|
|
FakePacketSocketFactory factory;
|
|
scoped_ptr<Port> ports[4];
|
|
SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0),
|
|
SocketAddress("192.168.1.4", 0),
|
|
SocketAddress("2001:db8::1", 0),
|
|
SocketAddress("2001:db8::2", 0)};
|
|
for (int i = 0; i < 4; i++) {
|
|
FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
|
|
if (type == SOCK_DGRAM) {
|
|
factory.set_next_udp_socket(socket);
|
|
ports[i].reset(CreateUdpPort(addresses[i], &factory));
|
|
} else if (type == SOCK_STREAM) {
|
|
factory.set_next_server_tcp_socket(socket);
|
|
ports[i].reset(CreateTcpPort(addresses[i], &factory));
|
|
}
|
|
socket->set_state(AsyncPacketSocket::STATE_BINDING);
|
|
socket->SignalAddressReady(socket, addresses[i]);
|
|
ports[i]->PrepareAddress();
|
|
}
|
|
|
|
// IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
|
|
if (type == SOCK_STREAM) {
|
|
FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
|
|
factory.set_next_client_tcp_socket(clientsocket);
|
|
}
|
|
Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
|
|
Port::ORIGIN_MESSAGE);
|
|
EXPECT_TRUE(NULL == c);
|
|
EXPECT_EQ(0U, ports[0]->connections().size());
|
|
c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
|
|
Port::ORIGIN_MESSAGE);
|
|
EXPECT_FALSE(NULL == c);
|
|
EXPECT_EQ(1U, ports[0]->connections().size());
|
|
|
|
// IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
|
|
if (type == SOCK_STREAM) {
|
|
FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
|
|
factory.set_next_client_tcp_socket(clientsocket);
|
|
}
|
|
c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
|
|
Port::ORIGIN_MESSAGE);
|
|
EXPECT_TRUE(NULL == c);
|
|
EXPECT_EQ(0U, ports[2]->connections().size());
|
|
c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
|
|
Port::ORIGIN_MESSAGE);
|
|
EXPECT_FALSE(NULL == c);
|
|
EXPECT_EQ(1U, ports[2]->connections().size());
|
|
}
|
|
|
|
TEST_F(PortTest, TestSkipCrossFamilyTcp) {
|
|
TestCrossFamilyPorts(SOCK_STREAM);
|
|
}
|
|
|
|
TEST_F(PortTest, TestSkipCrossFamilyUdp) {
|
|
TestCrossFamilyPorts(SOCK_DGRAM);
|
|
}
|
|
|
|
// This test verifies DSCP value set through SetOption interface can be
|
|
// get through DefaultDscpValue.
|
|
TEST_F(PortTest, TestDefaultDscpValue) {
|
|
int dscp;
|
|
rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
|
|
EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP,
|
|
rtc::DSCP_CS6));
|
|
EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
|
|
rtc::scoped_ptr<TCPPort> tcpport(CreateTcpPort(kLocalAddr1));
|
|
EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP,
|
|
rtc::DSCP_AF31));
|
|
EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
|
|
EXPECT_EQ(rtc::DSCP_AF31, dscp);
|
|
rtc::scoped_ptr<StunPort> stunport(
|
|
CreateStunPort(kLocalAddr1, nat_socket_factory1()));
|
|
EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP,
|
|
rtc::DSCP_AF41));
|
|
EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
|
|
EXPECT_EQ(rtc::DSCP_AF41, dscp);
|
|
rtc::scoped_ptr<TurnPort> turnport1(CreateTurnPort(
|
|
kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
|
|
// Socket is created in PrepareAddress.
|
|
turnport1->PrepareAddress();
|
|
EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP,
|
|
rtc::DSCP_CS7));
|
|
EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp));
|
|
EXPECT_EQ(rtc::DSCP_CS7, dscp);
|
|
// This will verify correct value returned without the socket.
|
|
rtc::scoped_ptr<TurnPort> turnport2(CreateTurnPort(
|
|
kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
|
|
EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP,
|
|
rtc::DSCP_CS6));
|
|
EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp));
|
|
EXPECT_EQ(rtc::DSCP_CS6, dscp);
|
|
}
|
|
|
|
// Test sending STUN messages in GICE format.
|
|
TEST_F(PortTest, TestSendStunMessageAsGice) {
|
|
rtc::scoped_ptr<TestPort> lport(
|
|
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
|
|
rtc::scoped_ptr<TestPort> rport(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
lport->SetIceProtocolType(ICEPROTO_GOOGLE);
|
|
rport->SetIceProtocolType(ICEPROTO_GOOGLE);
|
|
|
|
// Send a fake ping from lport to rport.
|
|
lport->PrepareAddress();
|
|
rport->PrepareAddress();
|
|
ASSERT_FALSE(rport->Candidates().empty());
|
|
Connection* conn = lport->CreateConnection(rport->Candidates()[0],
|
|
Port::ORIGIN_MESSAGE);
|
|
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
|
|
conn->Ping(0);
|
|
|
|
// Check that it's a proper BINDING-REQUEST.
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
IceMessage* msg = lport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
|
|
EXPECT_FALSE(msg->IsLegacy());
|
|
const StunByteStringAttribute* username_attr = msg->GetByteString(
|
|
STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username_attr != NULL);
|
|
EXPECT_EQ("rfraglfrag", username_attr->GetString());
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
|
|
|
|
// Save a copy of the BINDING-REQUEST for use below.
|
|
rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
|
|
|
|
// Respond with a BINDING-RESPONSE.
|
|
rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
|
|
msg = rport->last_stun_msg();
|
|
ASSERT_TRUE(msg != NULL);
|
|
EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
|
|
EXPECT_FALSE(msg->IsLegacy());
|
|
username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
|
|
EXPECT_EQ("rfraglfrag", username_attr->GetString());
|
|
const StunAddressAttribute* addr_attr = msg->GetAddress(
|
|
STUN_ATTR_MAPPED_ADDRESS);
|
|
ASSERT_TRUE(addr_attr != NULL);
|
|
EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_XOR_MAPPED_ADDRESS) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
|
|
|
|
// Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
|
|
// but we can do it here.
|
|
rport->SendBindingErrorResponse(request.get(),
|
|
rport->Candidates()[0].address(),
|
|
STUN_ERROR_SERVER_ERROR,
|
|
STUN_ERROR_REASON_SERVER_ERROR);
|
|
msg = rport->last_stun_msg();
|
|
ASSERT_TRUE(msg != NULL);
|
|
EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
|
|
EXPECT_FALSE(msg->IsLegacy());
|
|
username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
|
|
EXPECT_EQ("rfraglfrag", username_attr->GetString());
|
|
const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
|
|
ASSERT_TRUE(error_attr != NULL);
|
|
// The GICE wire format for error codes is incorrect.
|
|
EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, error_attr->code());
|
|
EXPECT_EQ(STUN_ERROR_SERVER_ERROR / 256, error_attr->eclass());
|
|
EXPECT_EQ(STUN_ERROR_SERVER_ERROR % 256, error_attr->number());
|
|
EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
|
|
}
|
|
|
|
// Test sending STUN messages in ICE format.
|
|
TEST_F(PortTest, TestSendStunMessageAsIce) {
|
|
rtc::scoped_ptr<TestPort> lport(
|
|
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
|
|
rtc::scoped_ptr<TestPort> rport(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
lport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
lport->SetIceTiebreaker(kTiebreaker1);
|
|
rport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
|
|
rport->SetIceTiebreaker(kTiebreaker2);
|
|
|
|
// Send a fake ping from lport to rport.
|
|
lport->PrepareAddress();
|
|
rport->PrepareAddress();
|
|
ASSERT_FALSE(rport->Candidates().empty());
|
|
Connection* lconn = lport->CreateConnection(
|
|
rport->Candidates()[0], Port::ORIGIN_MESSAGE);
|
|
Connection* rconn = rport->CreateConnection(
|
|
lport->Candidates()[0], Port::ORIGIN_MESSAGE);
|
|
lconn->Ping(0);
|
|
|
|
// Check that it's a proper BINDING-REQUEST.
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
IceMessage* msg = lport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
|
|
EXPECT_FALSE(msg->IsLegacy());
|
|
const StunByteStringAttribute* username_attr =
|
|
msg->GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username_attr != NULL);
|
|
const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
|
|
ASSERT_TRUE(priority_attr != NULL);
|
|
EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
|
|
EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length(),
|
|
"rpass"));
|
|
const StunUInt64Attribute* ice_controlling_attr =
|
|
msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
|
|
ASSERT_TRUE(ice_controlling_attr != NULL);
|
|
EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
|
|
EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
|
|
EXPECT_TRUE(StunMessage::ValidateFingerprint(
|
|
lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
|
|
|
|
// Request should not include ping count.
|
|
ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
|
|
|
|
// Save a copy of the BINDING-REQUEST for use below.
|
|
rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
|
|
|
|
// Respond with a BINDING-RESPONSE.
|
|
rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
|
|
msg = rport->last_stun_msg();
|
|
ASSERT_TRUE(msg != NULL);
|
|
EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
|
|
|
|
|
|
EXPECT_FALSE(msg->IsLegacy());
|
|
const StunAddressAttribute* addr_attr = msg->GetAddress(
|
|
STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
ASSERT_TRUE(addr_attr != NULL);
|
|
EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
|
|
"rpass"));
|
|
EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
|
|
EXPECT_TRUE(StunMessage::ValidateFingerprint(
|
|
lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
|
|
// No USERNAME or PRIORITY in ICE responses.
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
|
|
|
|
// Response should not include ping count.
|
|
ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
|
|
|
|
// Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
|
|
// but we can do it here.
|
|
rport->SendBindingErrorResponse(request.get(),
|
|
lport->Candidates()[0].address(),
|
|
STUN_ERROR_SERVER_ERROR,
|
|
STUN_ERROR_REASON_SERVER_ERROR);
|
|
msg = rport->last_stun_msg();
|
|
ASSERT_TRUE(msg != NULL);
|
|
EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
|
|
EXPECT_FALSE(msg->IsLegacy());
|
|
const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
|
|
ASSERT_TRUE(error_attr != NULL);
|
|
EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
|
|
EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
|
|
"rpass"));
|
|
EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
|
|
EXPECT_TRUE(StunMessage::ValidateFingerprint(
|
|
lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
|
|
// No USERNAME with ICE.
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
|
|
|
|
// Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
|
|
// and (incremented) RETRANSMIT_COUNT attributes.
|
|
rport->Reset();
|
|
rport->set_send_retransmit_count_attribute(true);
|
|
rconn->Ping(0);
|
|
rconn->Ping(0);
|
|
rconn->Ping(0);
|
|
ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
|
|
msg = rport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
|
|
const StunUInt64Attribute* ice_controlled_attr =
|
|
msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
|
|
ASSERT_TRUE(ice_controlled_attr != NULL);
|
|
EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
|
|
|
|
// Request should include ping count.
|
|
const StunUInt32Attribute* retransmit_attr =
|
|
msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
|
|
ASSERT_TRUE(retransmit_attr != NULL);
|
|
EXPECT_EQ(2U, retransmit_attr->value());
|
|
|
|
// Respond with a BINDING-RESPONSE.
|
|
request.reset(CopyStunMessage(msg));
|
|
lport->SendBindingResponse(request.get(), rport->Candidates()[0].address());
|
|
msg = lport->last_stun_msg();
|
|
|
|
// Response should include same ping count.
|
|
retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
|
|
ASSERT_TRUE(retransmit_attr != NULL);
|
|
EXPECT_EQ(2U, retransmit_attr->value());
|
|
}
|
|
|
|
TEST_F(PortTest, TestUseCandidateAttribute) {
|
|
rtc::scoped_ptr<TestPort> lport(
|
|
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
|
|
rtc::scoped_ptr<TestPort> rport(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
lport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
lport->SetIceTiebreaker(kTiebreaker1);
|
|
rport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
|
|
rport->SetIceTiebreaker(kTiebreaker2);
|
|
|
|
// Send a fake ping from lport to rport.
|
|
lport->PrepareAddress();
|
|
rport->PrepareAddress();
|
|
ASSERT_FALSE(rport->Candidates().empty());
|
|
Connection* lconn = lport->CreateConnection(
|
|
rport->Candidates()[0], Port::ORIGIN_MESSAGE);
|
|
lconn->Ping(0);
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
IceMessage* msg = lport->last_stun_msg();
|
|
const StunUInt64Attribute* ice_controlling_attr =
|
|
msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
|
|
ASSERT_TRUE(ice_controlling_attr != NULL);
|
|
const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(
|
|
STUN_ATTR_USE_CANDIDATE);
|
|
ASSERT_TRUE(use_candidate_attr != NULL);
|
|
}
|
|
|
|
// Test handling STUN messages in GICE format.
|
|
TEST_F(PortTest, TestHandleStunMessageAsGice) {
|
|
// Our port will act as the "remote" port.
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_GOOGLE);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST from local to remote with valid GICE username and no M-I.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"rfraglfrag"));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
|
|
EXPECT_EQ("lfrag", username);
|
|
|
|
// Add M-I; should be ignored and rest of message parsed normally.
|
|
in_msg->AddMessageIntegrity("password");
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ("lfrag", username);
|
|
|
|
// BINDING-RESPONSE with username, as done in GICE. Should succeed.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_RESPONSE,
|
|
"rfraglfrag"));
|
|
in_msg->AddAttribute(
|
|
new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ("", username);
|
|
|
|
// BINDING-RESPONSE without username. Should be tolerated as well.
|
|
in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
|
|
in_msg->AddAttribute(
|
|
new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ("", username);
|
|
|
|
// BINDING-ERROR-RESPONSE with username and error code.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_ERROR_RESPONSE,
|
|
"rfraglfrag"));
|
|
in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
|
|
STUN_ERROR_SERVER_ERROR_AS_GICE, STUN_ERROR_REASON_SERVER_ERROR));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
ASSERT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ("", username);
|
|
ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
|
|
// GetStunMessage doesn't unmunge the GICE error code (happens downstream).
|
|
EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, out_msg->GetErrorCode()->code());
|
|
EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
|
|
out_msg->GetErrorCode()->reason());
|
|
}
|
|
|
|
// Test handling STUN messages in ICE format.
|
|
TEST_F(PortTest, TestHandleStunMessageAsIce) {
|
|
// Our port will act as the "remote" port.
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST from local to remote with valid ICE username,
|
|
// MESSAGE-INTEGRITY, and FINGERPRINT.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"rfrag:lfrag"));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ("lfrag", username);
|
|
|
|
// BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
|
|
in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
|
|
in_msg->AddAttribute(
|
|
new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ("", username);
|
|
|
|
// BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
|
|
in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
|
|
in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
|
|
STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ("", username);
|
|
ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
|
|
EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
|
|
EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
|
|
out_msg->GetErrorCode()->reason());
|
|
}
|
|
|
|
// This test verifies port can handle ICE messages in Hybrid mode and switches
|
|
// ICEPROTO_RFC5245 mode after successfully handling the message.
|
|
TEST_F(PortTest, TestHandleStunMessageAsIceInHybridMode) {
|
|
// Our port will act as the "remote" port.
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_HYBRID);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST from local to remote with valid ICE username,
|
|
// MESSAGE-INTEGRITY, and FINGERPRINT.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"rfrag:lfrag"));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ("lfrag", username);
|
|
EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
|
|
}
|
|
|
|
// This test verifies port can handle GICE messages in Hybrid mode and switches
|
|
// ICEPROTO_GOOGLE mode after successfully handling the message.
|
|
TEST_F(PortTest, TestHandleStunMessageAsGiceInHybridMode) {
|
|
// Our port will act as the "remote" port.
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_HYBRID);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST from local to remote with valid GICE username and no M-I.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"rfraglfrag"));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
|
|
EXPECT_EQ("lfrag", username);
|
|
EXPECT_EQ(ICEPROTO_GOOGLE, port->IceProtocol());
|
|
}
|
|
|
|
// Verify port is not switched out of RFC5245 mode if GICE message is received
|
|
// in that mode.
|
|
TEST_F(PortTest, TestHandleStunMessageAsGiceInIceMode) {
|
|
// Our port will act as the "remote" port.
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST from local to remote with valid GICE username and no M-I.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"rfraglfrag"));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
// Should fail as there is no MI and fingerprint.
|
|
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
|
|
}
|
|
|
|
|
|
// Tests handling of GICE binding requests with missing or incorrect usernames.
|
|
TEST_F(PortTest, TestHandleStunMessageAsGiceBadUsername) {
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_GOOGLE);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST with no username.
|
|
in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_BAD_REQUEST_AS_GICE, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST with empty username.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST with too-short username.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfra"));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST with reversed username.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"lfragrfrag"));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST with garbage username.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"abcdefgh"));
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
|
|
}
|
|
|
|
// Tests handling of ICE binding requests with missing or incorrect usernames.
|
|
TEST_F(PortTest, TestHandleStunMessageAsIceBadUsername) {
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST with no username.
|
|
in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST with empty username.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST with too-short username.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST with reversed username.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"lfrag:rfrag"));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST with garbage username.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"abcd:efgh"));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
|
|
}
|
|
|
|
// Test handling STUN messages (as ICE) with missing or malformed M-I.
|
|
TEST_F(PortTest, TestHandleStunMessageAsIceBadMessageIntegrity) {
|
|
// Our port will act as the "remote" port.
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST from local to remote with valid ICE username and
|
|
// FINGERPRINT, but no MESSAGE-INTEGRITY.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"rfrag:lfrag"));
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
|
|
|
|
// BINDING-REQUEST from local to remote with valid ICE username and
|
|
// FINGERPRINT, but invalid MESSAGE-INTEGRITY.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"rfrag:lfrag"));
|
|
in_msg->AddMessageIntegrity("invalid");
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() == NULL);
|
|
EXPECT_EQ("", username);
|
|
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
|
|
|
|
// TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
|
|
// by the Connection, not the Port, since they require the remote username.
|
|
// Change this test to pass in data via Connection::OnReadPacket instead.
|
|
}
|
|
|
|
// Test handling STUN messages (as ICE) with missing or malformed FINGERPRINT.
|
|
TEST_F(PortTest, TestHandleStunMessageAsIceBadFingerprint) {
|
|
// Our port will act as the "remote" port.
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
port->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
// BINDING-REQUEST from local to remote with valid ICE username and
|
|
// MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
|
|
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
|
|
"rfrag:lfrag"));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_EQ(0, port->last_stun_error_code());
|
|
|
|
// Now, add a fingerprint, but munge the message so it's not valid.
|
|
in_msg->AddFingerprint();
|
|
in_msg->SetTransactionID("TESTTESTBADD");
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_EQ(0, port->last_stun_error_code());
|
|
|
|
// Valid BINDING-RESPONSE, except no FINGERPRINT.
|
|
in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
|
|
in_msg->AddAttribute(
|
|
new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_EQ(0, port->last_stun_error_code());
|
|
|
|
// Now, add a fingerprint, but munge the message so it's not valid.
|
|
in_msg->AddFingerprint();
|
|
in_msg->SetTransactionID("TESTTESTBADD");
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_EQ(0, port->last_stun_error_code());
|
|
|
|
// Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
|
|
in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
|
|
in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
|
|
STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
|
|
in_msg->AddMessageIntegrity("rpass");
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_EQ(0, port->last_stun_error_code());
|
|
|
|
// Now, add a fingerprint, but munge the message so it's not valid.
|
|
in_msg->AddFingerprint();
|
|
in_msg->SetTransactionID("TESTTESTBADD");
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_EQ(0, port->last_stun_error_code());
|
|
}
|
|
|
|
// Test handling of STUN binding indication messages (as ICE). STUN binding
|
|
// indications are allowed only to the connection which is in read mode.
|
|
TEST_F(PortTest, TestHandleStunBindingIndication) {
|
|
rtc::scoped_ptr<TestPort> lport(
|
|
CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
|
|
lport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
lport->SetIceTiebreaker(kTiebreaker1);
|
|
|
|
// Verifying encoding and decoding STUN indication message.
|
|
rtc::scoped_ptr<IceMessage> in_msg, out_msg;
|
|
rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
|
|
rtc::SocketAddress addr(kLocalAddr1);
|
|
std::string username;
|
|
|
|
in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
|
|
in_msg->AddFingerprint();
|
|
WriteStunMessage(in_msg.get(), buf.get());
|
|
EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr,
|
|
out_msg.accept(), &username));
|
|
EXPECT_TRUE(out_msg.get() != NULL);
|
|
EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
|
|
EXPECT_EQ("", username);
|
|
|
|
// Verify connection can handle STUN indication and updates
|
|
// last_ping_received.
|
|
rtc::scoped_ptr<TestPort> rport(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
rport->SetIceProtocolType(ICEPROTO_RFC5245);
|
|
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
|
|
rport->SetIceTiebreaker(kTiebreaker2);
|
|
|
|
lport->PrepareAddress();
|
|
rport->PrepareAddress();
|
|
ASSERT_FALSE(lport->Candidates().empty());
|
|
ASSERT_FALSE(rport->Candidates().empty());
|
|
|
|
Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
|
|
Port::ORIGIN_MESSAGE);
|
|
Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
|
|
Port::ORIGIN_MESSAGE);
|
|
rconn->Ping(0);
|
|
|
|
ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
|
|
IceMessage* msg = rport->last_stun_msg();
|
|
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
|
|
// Send rport binding request to lport.
|
|
lconn->OnReadPacket(rport->last_stun_buf()->Data(),
|
|
rport->last_stun_buf()->Length(),
|
|
rtc::PacketTime());
|
|
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
|
|
EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
|
|
uint32 last_ping_received1 = lconn->last_ping_received();
|
|
|
|
// Adding a delay of 100ms.
|
|
rtc::Thread::Current()->ProcessMessages(100);
|
|
// Pinging lconn using stun indication message.
|
|
lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
|
|
uint32 last_ping_received2 = lconn->last_ping_received();
|
|
EXPECT_GT(last_ping_received2, last_ping_received1);
|
|
}
|
|
|
|
TEST_F(PortTest, TestComputeCandidatePriority) {
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr1, "name", "pass"));
|
|
port->set_type_preference(90);
|
|
port->set_component(177);
|
|
port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
|
|
port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
|
|
port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
|
|
port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
|
|
port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
|
|
port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
|
|
port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
|
|
port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
|
|
port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
|
|
// These should all be:
|
|
// (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
|
|
uint32 expected_priority_v4 = 1509957199U;
|
|
uint32 expected_priority_v6 = 1509959759U;
|
|
uint32 expected_priority_ula = 1509962319U;
|
|
uint32 expected_priority_v4mapped = expected_priority_v4;
|
|
uint32 expected_priority_v4compat = 1509949775U;
|
|
uint32 expected_priority_6to4 = 1509954639U;
|
|
uint32 expected_priority_teredo = 1509952079U;
|
|
uint32 expected_priority_sitelocal = 1509949775U;
|
|
uint32 expected_priority_6bone = 1509949775U;
|
|
ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
|
|
ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
|
|
ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
|
|
ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
|
|
ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
|
|
ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
|
|
ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
|
|
ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
|
|
ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
|
|
}
|
|
|
|
TEST_F(PortTest, TestPortProxyProperties) {
|
|
rtc::scoped_ptr<TestPort> port(
|
|
CreateTestPort(kLocalAddr1, "name", "pass"));
|
|
port->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
port->SetIceTiebreaker(kTiebreaker1);
|
|
|
|
// Create a proxy port.
|
|
rtc::scoped_ptr<PortProxy> proxy(new PortProxy());
|
|
proxy->set_impl(port.get());
|
|
EXPECT_EQ(port->Type(), proxy->Type());
|
|
EXPECT_EQ(port->Network(), proxy->Network());
|
|
EXPECT_EQ(port->GetIceRole(), proxy->GetIceRole());
|
|
EXPECT_EQ(port->IceTiebreaker(), proxy->IceTiebreaker());
|
|
}
|
|
|
|
// In the case of shared socket, one port may be shared by local and stun.
|
|
// Test that candidates with different types will have different foundation.
|
|
TEST_F(PortTest, TestFoundation) {
|
|
rtc::scoped_ptr<TestPort> testport(
|
|
CreateTestPort(kLocalAddr1, "name", "pass"));
|
|
testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1,
|
|
LOCAL_PORT_TYPE,
|
|
cricket::ICE_TYPE_PREFERENCE_HOST, false);
|
|
testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1,
|
|
STUN_PORT_TYPE,
|
|
cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
|
|
EXPECT_NE(testport->Candidates()[0].foundation(),
|
|
testport->Candidates()[1].foundation());
|
|
}
|
|
|
|
// This test verifies the foundation of different types of ICE candidates.
|
|
TEST_F(PortTest, TestCandidateFoundation) {
|
|
rtc::scoped_ptr<rtc::NATServer> nat_server(
|
|
CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
|
|
rtc::scoped_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
|
|
udpport1->PrepareAddress();
|
|
rtc::scoped_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
|
|
udpport2->PrepareAddress();
|
|
EXPECT_EQ(udpport1->Candidates()[0].foundation(),
|
|
udpport2->Candidates()[0].foundation());
|
|
rtc::scoped_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
|
|
tcpport1->PrepareAddress();
|
|
rtc::scoped_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
|
|
tcpport2->PrepareAddress();
|
|
EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
|
|
tcpport2->Candidates()[0].foundation());
|
|
rtc::scoped_ptr<Port> stunport(
|
|
CreateStunPort(kLocalAddr1, nat_socket_factory1()));
|
|
stunport->PrepareAddress();
|
|
ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
|
|
EXPECT_NE(tcpport1->Candidates()[0].foundation(),
|
|
stunport->Candidates()[0].foundation());
|
|
EXPECT_NE(tcpport2->Candidates()[0].foundation(),
|
|
stunport->Candidates()[0].foundation());
|
|
EXPECT_NE(udpport1->Candidates()[0].foundation(),
|
|
stunport->Candidates()[0].foundation());
|
|
EXPECT_NE(udpport2->Candidates()[0].foundation(),
|
|
stunport->Candidates()[0].foundation());
|
|
// Verify GTURN candidate foundation.
|
|
rtc::scoped_ptr<RelayPort> relayport(
|
|
CreateGturnPort(kLocalAddr1));
|
|
relayport->AddServerAddress(
|
|
cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
|
|
relayport->PrepareAddress();
|
|
ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
|
|
EXPECT_NE(udpport1->Candidates()[0].foundation(),
|
|
relayport->Candidates()[0].foundation());
|
|
EXPECT_NE(udpport2->Candidates()[0].foundation(),
|
|
relayport->Candidates()[0].foundation());
|
|
// Verifying TURN candidate foundation.
|
|
rtc::scoped_ptr<Port> turnport1(CreateTurnPort(
|
|
kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
|
|
turnport1->PrepareAddress();
|
|
ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kTimeout);
|
|
EXPECT_NE(udpport1->Candidates()[0].foundation(),
|
|
turnport1->Candidates()[0].foundation());
|
|
EXPECT_NE(udpport2->Candidates()[0].foundation(),
|
|
turnport1->Candidates()[0].foundation());
|
|
EXPECT_NE(stunport->Candidates()[0].foundation(),
|
|
turnport1->Candidates()[0].foundation());
|
|
rtc::scoped_ptr<Port> turnport2(CreateTurnPort(
|
|
kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
|
|
turnport2->PrepareAddress();
|
|
ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kTimeout);
|
|
EXPECT_EQ(turnport1->Candidates()[0].foundation(),
|
|
turnport2->Candidates()[0].foundation());
|
|
|
|
// Running a second turn server, to get different base IP address.
|
|
SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
|
|
SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
|
|
TestTurnServer turn_server2(
|
|
rtc::Thread::Current(), kTurnUdpIntAddr2, kTurnUdpExtAddr2);
|
|
rtc::scoped_ptr<Port> turnport3(CreateTurnPort(
|
|
kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP,
|
|
kTurnUdpIntAddr2));
|
|
turnport3->PrepareAddress();
|
|
ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kTimeout);
|
|
EXPECT_NE(turnport3->Candidates()[0].foundation(),
|
|
turnport2->Candidates()[0].foundation());
|
|
}
|
|
|
|
// This test verifies the related addresses of different types of
|
|
// ICE candiates.
|
|
TEST_F(PortTest, TestCandidateRelatedAddress) {
|
|
rtc::scoped_ptr<rtc::NATServer> nat_server(
|
|
CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
|
|
rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
|
|
udpport->PrepareAddress();
|
|
// For UDPPort, related address will be empty.
|
|
EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
|
|
// Testing related address for stun candidates.
|
|
// For stun candidate related address must be equal to the base
|
|
// socket address.
|
|
rtc::scoped_ptr<StunPort> stunport(
|
|
CreateStunPort(kLocalAddr1, nat_socket_factory1()));
|
|
stunport->PrepareAddress();
|
|
ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
|
|
// Check STUN candidate address.
|
|
EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(),
|
|
kNatAddr1.ipaddr());
|
|
// Check STUN candidate related address.
|
|
EXPECT_EQ(stunport->Candidates()[0].related_address(),
|
|
stunport->GetLocalAddress());
|
|
// Verifying the related address for the GTURN candidates.
|
|
// NOTE: In case of GTURN related address will be equal to the mapped
|
|
// address, but address(mapped) will not be XOR.
|
|
rtc::scoped_ptr<RelayPort> relayport(
|
|
CreateGturnPort(kLocalAddr1));
|
|
relayport->AddServerAddress(
|
|
cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
|
|
relayport->PrepareAddress();
|
|
ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
|
|
// For Gturn related address is set to "0.0.0.0:0"
|
|
EXPECT_EQ(rtc::SocketAddress(),
|
|
relayport->Candidates()[0].related_address());
|
|
// Verifying the related address for TURN candidate.
|
|
// For TURN related address must be equal to the mapped address.
|
|
rtc::scoped_ptr<Port> turnport(CreateTurnPort(
|
|
kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
|
|
turnport->PrepareAddress();
|
|
ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
|
|
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
|
|
turnport->Candidates()[0].address().ipaddr());
|
|
EXPECT_EQ(kNatAddr1.ipaddr(),
|
|
turnport->Candidates()[0].related_address().ipaddr());
|
|
}
|
|
|
|
// Test priority value overflow handling when preference is set to 3.
|
|
TEST_F(PortTest, TestCandidatePreference) {
|
|
cricket::Candidate cand1;
|
|
cand1.set_preference(3);
|
|
cricket::Candidate cand2;
|
|
cand2.set_preference(1);
|
|
EXPECT_TRUE(cand1.preference() > cand2.preference());
|
|
}
|
|
|
|
// Test the Connection priority is calculated correctly.
|
|
TEST_F(PortTest, TestConnectionPriority) {
|
|
rtc::scoped_ptr<TestPort> lport(
|
|
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
|
|
lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
|
|
rtc::scoped_ptr<TestPort> rport(
|
|
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
|
|
rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY);
|
|
lport->set_component(123);
|
|
lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
|
|
rport->set_component(23);
|
|
rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
|
|
|
|
EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
|
|
EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
|
|
|
|
// RFC 5245
|
|
// pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
|
|
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
|
|
Connection* lconn = lport->CreateConnection(
|
|
rport->Candidates()[0], Port::ORIGIN_MESSAGE);
|
|
#if defined(WIN32)
|
|
EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
|
|
#else
|
|
EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
|
|
#endif
|
|
|
|
lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
|
|
rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
Connection* rconn = rport->CreateConnection(
|
|
lport->Candidates()[0], Port::ORIGIN_MESSAGE);
|
|
#if defined(WIN32)
|
|
EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
|
|
#else
|
|
EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
|
|
#endif
|
|
}
|
|
|
|
TEST_F(PortTest, TestWritableState) {
|
|
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
|
|
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
|
|
|
|
// Set up channels.
|
|
TestChannel ch1(port1, port2);
|
|
TestChannel ch2(port2, port1);
|
|
|
|
// Acquire addresses.
|
|
ch1.Start();
|
|
ch2.Start();
|
|
ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
|
|
ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
|
|
|
|
// Send a ping from src to dst.
|
|
ch1.CreateConnection();
|
|
ASSERT_TRUE(ch1.conn() != NULL);
|
|
EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
|
|
EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
|
|
ch1.Ping();
|
|
WAIT(!ch2.remote_address().IsNil(), kTimeout);
|
|
|
|
// Data should be unsendable until the connection is accepted.
|
|
char data[] = "abcd";
|
|
int data_size = ARRAY_SIZE(data);
|
|
rtc::PacketOptions options;
|
|
EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
|
|
|
|
// Accept the connection to return the binding response, transition to
|
|
// writable, and allow data to be sent.
|
|
ch2.AcceptConnection();
|
|
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
|
|
kTimeout);
|
|
EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
|
|
|
|
// Ask the connection to update state as if enough time has passed to lose
|
|
// full writability and 5 pings went unresponded to. We'll accomplish the
|
|
// latter by sending pings but not pumping messages.
|
|
for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
|
|
ch1.Ping(i);
|
|
}
|
|
uint32 unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500u;
|
|
ch1.conn()->UpdateState(unreliable_timeout_delay);
|
|
EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
|
|
|
|
// Data should be able to be sent in this state.
|
|
EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
|
|
|
|
// And now allow the other side to process the pings and send binding
|
|
// responses.
|
|
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
|
|
kTimeout);
|
|
|
|
// Wait long enough for a full timeout (past however long we've already
|
|
// waited).
|
|
for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
|
|
ch1.Ping(unreliable_timeout_delay + i);
|
|
}
|
|
ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
|
|
500u);
|
|
EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
|
|
|
|
// Now that the connection has completely timed out, data send should fail.
|
|
EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
|
|
|
|
ch1.Stop();
|
|
ch2.Stop();
|
|
}
|
|
|
|
TEST_F(PortTest, TestTimeoutForNeverWritable) {
|
|
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
|
|
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
|
|
|
|
// Set up channels.
|
|
TestChannel ch1(port1, port2);
|
|
TestChannel ch2(port2, port1);
|
|
|
|
// Acquire addresses.
|
|
ch1.Start();
|
|
ch2.Start();
|
|
|
|
ch1.CreateConnection();
|
|
ASSERT_TRUE(ch1.conn() != NULL);
|
|
EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
|
|
|
|
// Attempt to go directly to write timeout.
|
|
for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
|
|
ch1.Ping(i);
|
|
}
|
|
ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u);
|
|
EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
|
|
}
|
|
|
|
// This test verifies the connection setup between ICEMODE_FULL
|
|
// and ICEMODE_LITE.
|
|
// In this test |ch1| behaves like FULL mode client and we have created
|
|
// port which responds to the ping message just like LITE client.
|
|
TEST_F(PortTest, TestIceLiteConnectivity) {
|
|
TestPort* ice_full_port = CreateTestPort(
|
|
kLocalAddr1, "lfrag", "lpass", cricket::ICEPROTO_RFC5245,
|
|
cricket::ICEROLE_CONTROLLING, kTiebreaker1);
|
|
|
|
rtc::scoped_ptr<TestPort> ice_lite_port(CreateTestPort(
|
|
kLocalAddr2, "rfrag", "rpass", cricket::ICEPROTO_RFC5245,
|
|
cricket::ICEROLE_CONTROLLED, kTiebreaker2));
|
|
// Setup TestChannel. This behaves like FULL mode client.
|
|
TestChannel ch1(ice_full_port, ice_lite_port.get());
|
|
ch1.SetIceMode(ICEMODE_FULL);
|
|
|
|
// Start gathering candidates.
|
|
ch1.Start();
|
|
ice_lite_port->PrepareAddress();
|
|
|
|
ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
|
|
ASSERT_FALSE(ice_lite_port->Candidates().empty());
|
|
|
|
ch1.CreateConnection();
|
|
ASSERT_TRUE(ch1.conn() != NULL);
|
|
EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
|
|
|
|
// Send ping from full mode client.
|
|
// This ping must not have USE_CANDIDATE_ATTR.
|
|
ch1.Ping();
|
|
|
|
// Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
|
|
// from port.
|
|
ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
|
|
IceMessage* msg = ice_full_port->last_stun_msg();
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
|
|
|
|
// Respond with a BINDING-RESPONSE from litemode client.
|
|
// NOTE: Ideally we should't create connection at this stage from lite
|
|
// port, as it should be done only after receiving ping with USE_CANDIDATE.
|
|
// But we need a connection to send a response message.
|
|
ice_lite_port->CreateConnection(
|
|
ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
|
|
rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
|
|
ice_lite_port->SendBindingResponse(
|
|
request.get(), ice_full_port->Candidates()[0].address());
|
|
|
|
// Feeding the respone message from litemode to the full mode connection.
|
|
ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->Data(),
|
|
ice_lite_port->last_stun_buf()->Length(),
|
|
rtc::PacketTime());
|
|
// Verifying full mode connection becomes writable from the response.
|
|
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
|
|
kTimeout);
|
|
EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout);
|
|
|
|
// Clear existing stun messsages. Otherwise we will process old stun
|
|
// message right after we send ping.
|
|
ice_full_port->Reset();
|
|
// Send ping. This must have USE_CANDIDATE_ATTR.
|
|
ch1.Ping();
|
|
ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
|
|
msg = ice_full_port->last_stun_msg();
|
|
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
|
|
ch1.Stop();
|
|
}
|
|
|
|
// This test case verifies that the CONTROLLING port does not time out.
|
|
TEST_F(PortTest, TestControllingNoTimeout) {
|
|
SetIceProtocolType(cricket::ICEPROTO_RFC5245);
|
|
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
|
|
ConnectToSignalDestroyed(port1);
|
|
port1->set_timeout_delay(10); // milliseconds
|
|
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
port1->SetIceTiebreaker(kTiebreaker1);
|
|
|
|
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
|
|
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
|
|
port2->SetIceTiebreaker(kTiebreaker2);
|
|
|
|
// Set up channels and ensure both ports will be deleted.
|
|
TestChannel ch1(port1, port2);
|
|
TestChannel ch2(port2, port1);
|
|
|
|
// Simulate a connection that succeeds, and then is destroyed.
|
|
ConnectAndDisconnectChannels(&ch1, &ch2);
|
|
|
|
// After the connection is destroyed, the port should not be destroyed.
|
|
rtc::Thread::Current()->ProcessMessages(kTimeout);
|
|
EXPECT_FALSE(destroyed());
|
|
}
|
|
|
|
// This test case verifies that the CONTROLLED port does time out, but only
|
|
// after connectivity is lost.
|
|
TEST_F(PortTest, TestControlledTimeout) {
|
|
SetIceProtocolType(cricket::ICEPROTO_RFC5245);
|
|
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
|
|
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
|
|
port1->SetIceTiebreaker(kTiebreaker1);
|
|
|
|
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
|
|
ConnectToSignalDestroyed(port2);
|
|
port2->set_timeout_delay(10); // milliseconds
|
|
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
|
|
port2->SetIceTiebreaker(kTiebreaker2);
|
|
|
|
// The connection must not be destroyed before a connection is attempted.
|
|
EXPECT_FALSE(destroyed());
|
|
|
|
port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
|
|
port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
|
|
|
|
// Set up channels and ensure both ports will be deleted.
|
|
TestChannel ch1(port1, port2);
|
|
TestChannel ch2(port2, port1);
|
|
|
|
// Simulate a connection that succeeds, and then is destroyed.
|
|
ConnectAndDisconnectChannels(&ch1, &ch2);
|
|
|
|
// The controlled port should be destroyed after 10 milliseconds.
|
|
EXPECT_TRUE_WAIT(destroyed(), kTimeout);
|
|
}
|