
The C++ headers define the C functions within the std:: namespace, but we mainly don't use the std:: namespace for C functions. Therefore we should include the C headers. BUG=1833 R=tommi@webrtc.org Review URL: https://webrtc-codereview.appspot.com/1917004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@4486 4adac7df-926f-26a2-2b94-8c16560cd09d
147 lines
5.3 KiB
C++
147 lines
5.3 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
#include "webrtc/modules/video_coding/main/interface/video_coding.h"
|
|
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
|
|
#include "webrtc/modules/video_coding/main/source/timing.h"
|
|
#include "webrtc/modules/video_coding/main/test/receiver_tests.h"
|
|
#include "webrtc/modules/video_coding/main/test/test_util.h"
|
|
#include "webrtc/system_wrappers/interface/trace.h"
|
|
#include "webrtc/test/testsupport/fileutils.h"
|
|
|
|
namespace webrtc {
|
|
|
|
TEST(ReceiverTiming, Tests) {
|
|
SimulatedClock clock(0);
|
|
VCMTiming timing(&clock);
|
|
uint32_t waitTime = 0;
|
|
uint32_t jitterDelayMs = 0;
|
|
uint32_t maxDecodeTimeMs = 0;
|
|
uint32_t timeStamp = 0;
|
|
|
|
timing.Reset();
|
|
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
|
|
timing.Reset();
|
|
|
|
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
|
jitterDelayMs = 20;
|
|
timing.SetJitterDelay(jitterDelayMs);
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
timing.set_render_delay(0);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
// First update initializes the render time. Since we have no decode delay
|
|
// we get waitTime = renderTime - now - renderDelay = jitter.
|
|
EXPECT_EQ(jitterDelayMs, waitTime);
|
|
|
|
jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
|
|
timeStamp += 90000;
|
|
clock.AdvanceTimeMilliseconds(1000);
|
|
timing.SetJitterDelay(jitterDelayMs);
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(
|
|
timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds());
|
|
// Since we gradually increase the delay we only get 100 ms every second.
|
|
EXPECT_EQ(jitterDelayMs - 10, waitTime);
|
|
|
|
timeStamp += 90000;
|
|
clock.AdvanceTimeMilliseconds(1000);
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(waitTime, jitterDelayMs);
|
|
|
|
// 300 incoming frames without jitter, verify that this gives the exact wait
|
|
// time.
|
|
for (int i = 0; i < 300; i++) {
|
|
clock.AdvanceTimeMilliseconds(1000 / 25);
|
|
timeStamp += 90000 / 25;
|
|
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
|
}
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(waitTime, jitterDelayMs);
|
|
|
|
// Add decode time estimates.
|
|
for (int i = 0; i < 10; i++) {
|
|
int64_t startTimeMs = clock.TimeInMilliseconds();
|
|
clock.AdvanceTimeMilliseconds(10);
|
|
timing.StopDecodeTimer(timeStamp, startTimeMs,
|
|
clock.TimeInMilliseconds());
|
|
timeStamp += 90000 / 25;
|
|
clock.AdvanceTimeMilliseconds(1000 / 25 - 10);
|
|
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
|
}
|
|
maxDecodeTimeMs = 10;
|
|
timing.SetJitterDelay(jitterDelayMs);
|
|
clock.AdvanceTimeMilliseconds(1000);
|
|
timeStamp += 90000;
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(waitTime, jitterDelayMs);
|
|
|
|
uint32_t minTotalDelayMs = 200;
|
|
timing.set_min_playout_delay(minTotalDelayMs);
|
|
clock.AdvanceTimeMilliseconds(5000);
|
|
timeStamp += 5*90000;
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
const int kRenderDelayMs = 10;
|
|
timing.set_render_delay(kRenderDelayMs);
|
|
waitTime = timing.MaxWaitingTime(
|
|
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
|
clock.TimeInMilliseconds());
|
|
// We should at least have minTotalDelayMs - decodeTime (10) - renderTime
|
|
// (10) to wait.
|
|
EXPECT_EQ(waitTime, minTotalDelayMs - maxDecodeTimeMs - kRenderDelayMs);
|
|
// The total video delay should be equal to the min total delay.
|
|
EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay());
|
|
|
|
// Reset playout delay.
|
|
timing.set_min_playout_delay(0);
|
|
clock.AdvanceTimeMilliseconds(5000);
|
|
timeStamp += 5*90000;
|
|
timing.UpdateCurrentDelay(timeStamp);
|
|
}
|
|
|
|
TEST(ReceiverTiming, WrapAround) {
|
|
const int kFramerate = 25;
|
|
SimulatedClock clock(0);
|
|
VCMTiming timing(&clock);
|
|
// Provoke a wrap-around. The forth frame will have wrapped at 25 fps.
|
|
uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate;
|
|
for (int i = 0; i < 4; ++i) {
|
|
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
|
clock.AdvanceTimeMilliseconds(1000 / kFramerate);
|
|
timestamp += 90000 / kFramerate;
|
|
int64_t render_time = timing.RenderTimeMs(0xFFFFFFFFu,
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(3 * 1000 / kFramerate, render_time);
|
|
render_time = timing.RenderTimeMs(89u, // One second later in 90 kHz.
|
|
clock.TimeInMilliseconds());
|
|
EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|