/* * libjingle * Copyright 2004--2005, Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "talk/p2p/client/basicportallocator.h" #include #include #include "webrtc/base/common.h" #include "webrtc/base/helpers.h" #include "webrtc/base/logging.h" #include "talk/p2p/base/basicpacketsocketfactory.h" #include "talk/p2p/base/common.h" #include "talk/p2p/base/port.h" #include "talk/p2p/base/relayport.h" #include "talk/p2p/base/stunport.h" #include "talk/p2p/base/tcpport.h" #include "talk/p2p/base/turnport.h" #include "talk/p2p/base/udpport.h" using rtc::CreateRandomId; using rtc::CreateRandomString; namespace { const uint32 MSG_CONFIG_START = 1; const uint32 MSG_CONFIG_READY = 2; const uint32 MSG_ALLOCATE = 3; const uint32 MSG_ALLOCATION_PHASE = 4; const uint32 MSG_SHAKE = 5; const uint32 MSG_SEQUENCEOBJECTS_CREATED = 6; const uint32 MSG_CONFIG_STOP = 7; const int PHASE_UDP = 0; const int PHASE_RELAY = 1; const int PHASE_TCP = 2; const int PHASE_SSLTCP = 3; const int kNumPhases = 4; const int SHAKE_MIN_DELAY = 45 * 1000; // 45 seconds const int SHAKE_MAX_DELAY = 90 * 1000; // 90 seconds int ShakeDelay() { int range = SHAKE_MAX_DELAY - SHAKE_MIN_DELAY + 1; return SHAKE_MIN_DELAY + CreateRandomId() % range; } } // namespace namespace cricket { const uint32 DISABLE_ALL_PHASES = PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY; // Performs the allocation of ports, in a sequenced (timed) manner, for a given // network and IP address. class AllocationSequence : public rtc::MessageHandler, public sigslot::has_slots<> { public: enum State { kInit, // Initial state. kRunning, // Started allocating ports. kStopped, // Stopped from running. kCompleted, // All ports are allocated. // kInit --> kRunning --> {kCompleted|kStopped} }; AllocationSequence(BasicPortAllocatorSession* session, rtc::Network* network, PortConfiguration* config, uint32 flags); ~AllocationSequence(); bool Init(); void Clear(); State state() const { return state_; } // Disables the phases for a new sequence that this one already covers for an // equivalent network setup. void DisableEquivalentPhases(rtc::Network* network, PortConfiguration* config, uint32* flags); // Starts and stops the sequence. When started, it will continue allocating // new ports on its own timed schedule. void Start(); void Stop(); // MessageHandler void OnMessage(rtc::Message* msg); void EnableProtocol(ProtocolType proto); bool ProtocolEnabled(ProtocolType proto) const; // Signal from AllocationSequence, when it's done with allocating ports. // This signal is useful, when port allocation fails which doesn't result // in any candidates. Using this signal BasicPortAllocatorSession can send // its candidate discovery conclusion signal. Without this signal, // BasicPortAllocatorSession doesn't have any event to trigger signal. This // can also be achieved by starting timer in BPAS. sigslot::signal1 SignalPortAllocationComplete; private: typedef std::vector ProtocolList; bool IsFlagSet(uint32 flag) { return ((flags_ & flag) != 0); } void CreateUDPPorts(); void CreateTCPPorts(); void CreateStunPorts(); void CreateRelayPorts(); void CreateGturnPort(const RelayServerConfig& config); void CreateTurnPort(const RelayServerConfig& config); void OnReadPacket(rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& remote_addr, const rtc::PacketTime& packet_time); void OnPortDestroyed(PortInterface* port); void OnResolvedTurnServerAddress( TurnPort* port, const rtc::SocketAddress& server_address, const rtc::SocketAddress& resolved_server_address); BasicPortAllocatorSession* session_; rtc::Network* network_; rtc::IPAddress ip_; PortConfiguration* config_; State state_; uint32 flags_; ProtocolList protocols_; rtc::scoped_ptr udp_socket_; // There will be only one udp port per AllocationSequence. UDPPort* udp_port_; // Keeping a map for turn ports keyed with server addresses. std::map turn_ports_; int phase_; }; // BasicPortAllocator BasicPortAllocator::BasicPortAllocator( rtc::NetworkManager* network_manager, rtc::PacketSocketFactory* socket_factory) : network_manager_(network_manager), socket_factory_(socket_factory) { ASSERT(socket_factory_ != NULL); Construct(); } BasicPortAllocator::BasicPortAllocator( rtc::NetworkManager* network_manager) : network_manager_(network_manager), socket_factory_(NULL) { Construct(); } BasicPortAllocator::BasicPortAllocator( rtc::NetworkManager* network_manager, rtc::PacketSocketFactory* socket_factory, const ServerAddresses& stun_servers) : network_manager_(network_manager), socket_factory_(socket_factory), stun_servers_(stun_servers) { ASSERT(socket_factory_ != NULL); Construct(); } BasicPortAllocator::BasicPortAllocator( rtc::NetworkManager* network_manager, const ServerAddresses& stun_servers, const rtc::SocketAddress& relay_address_udp, const rtc::SocketAddress& relay_address_tcp, const rtc::SocketAddress& relay_address_ssl) : network_manager_(network_manager), socket_factory_(NULL), stun_servers_(stun_servers) { RelayServerConfig config(RELAY_GTURN); if (!relay_address_udp.IsNil()) config.ports.push_back(ProtocolAddress(relay_address_udp, PROTO_UDP)); if (!relay_address_tcp.IsNil()) config.ports.push_back(ProtocolAddress(relay_address_tcp, PROTO_TCP)); if (!relay_address_ssl.IsNil()) config.ports.push_back(ProtocolAddress(relay_address_ssl, PROTO_SSLTCP)); if (!config.ports.empty()) AddRelay(config); Construct(); } void BasicPortAllocator::Construct() { allow_tcp_listen_ = true; } BasicPortAllocator::~BasicPortAllocator() { } PortAllocatorSession *BasicPortAllocator::CreateSessionInternal( const std::string& content_name, int component, const std::string& ice_ufrag, const std::string& ice_pwd) { return new BasicPortAllocatorSession(this, content_name, component, ice_ufrag, ice_pwd); } // BasicPortAllocatorSession BasicPortAllocatorSession::BasicPortAllocatorSession( BasicPortAllocator *allocator, const std::string& content_name, int component, const std::string& ice_ufrag, const std::string& ice_pwd) : PortAllocatorSession(content_name, component, ice_ufrag, ice_pwd, allocator->flags()), allocator_(allocator), network_thread_(NULL), socket_factory_(allocator->socket_factory()), allocation_started_(false), network_manager_started_(false), running_(false), allocation_sequences_created_(false) { allocator_->network_manager()->SignalNetworksChanged.connect( this, &BasicPortAllocatorSession::OnNetworksChanged); allocator_->network_manager()->StartUpdating(); } BasicPortAllocatorSession::~BasicPortAllocatorSession() { allocator_->network_manager()->StopUpdating(); if (network_thread_ != NULL) network_thread_->Clear(this); for (uint32 i = 0; i < sequences_.size(); ++i) { // AllocationSequence should clear it's map entry for turn ports before // ports are destroyed. sequences_[i]->Clear(); } std::vector::iterator it; for (it = ports_.begin(); it != ports_.end(); it++) delete it->port(); for (uint32 i = 0; i < configs_.size(); ++i) delete configs_[i]; for (uint32 i = 0; i < sequences_.size(); ++i) delete sequences_[i]; } void BasicPortAllocatorSession::StartGettingPorts() { network_thread_ = rtc::Thread::Current(); if (!socket_factory_) { owned_socket_factory_.reset( new rtc::BasicPacketSocketFactory(network_thread_)); socket_factory_ = owned_socket_factory_.get(); } running_ = true; network_thread_->Post(this, MSG_CONFIG_START); if (flags() & PORTALLOCATOR_ENABLE_SHAKER) network_thread_->PostDelayed(ShakeDelay(), this, MSG_SHAKE); } void BasicPortAllocatorSession::StopGettingPorts() { ASSERT(rtc::Thread::Current() == network_thread_); running_ = false; network_thread_->Clear(this, MSG_ALLOCATE); for (uint32 i = 0; i < sequences_.size(); ++i) sequences_[i]->Stop(); network_thread_->Post(this, MSG_CONFIG_STOP); } void BasicPortAllocatorSession::OnMessage(rtc::Message *message) { switch (message->message_id) { case MSG_CONFIG_START: ASSERT(rtc::Thread::Current() == network_thread_); GetPortConfigurations(); break; case MSG_CONFIG_READY: ASSERT(rtc::Thread::Current() == network_thread_); OnConfigReady(static_cast(message->pdata)); break; case MSG_ALLOCATE: ASSERT(rtc::Thread::Current() == network_thread_); OnAllocate(); break; case MSG_SHAKE: ASSERT(rtc::Thread::Current() == network_thread_); OnShake(); break; case MSG_SEQUENCEOBJECTS_CREATED: ASSERT(rtc::Thread::Current() == network_thread_); OnAllocationSequenceObjectsCreated(); break; case MSG_CONFIG_STOP: ASSERT(rtc::Thread::Current() == network_thread_); OnConfigStop(); break; default: ASSERT(false); } } void BasicPortAllocatorSession::GetPortConfigurations() { PortConfiguration* config = new PortConfiguration(allocator_->stun_servers(), username(), password()); for (size_t i = 0; i < allocator_->relays().size(); ++i) { config->AddRelay(allocator_->relays()[i]); } ConfigReady(config); } void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) { network_thread_->Post(this, MSG_CONFIG_READY, config); } // Adds a configuration to the list. void BasicPortAllocatorSession::OnConfigReady(PortConfiguration* config) { if (config) configs_.push_back(config); AllocatePorts(); } void BasicPortAllocatorSession::OnConfigStop() { ASSERT(rtc::Thread::Current() == network_thread_); // If any of the allocated ports have not completed the candidates allocation, // mark those as error. Since session doesn't need any new candidates // at this stage of the allocation, it's safe to discard any new candidates. bool send_signal = false; for (std::vector::iterator it = ports_.begin(); it != ports_.end(); ++it) { if (!it->complete()) { // Updating port state to error, which didn't finish allocating candidates // yet. it->set_error(); send_signal = true; } } // Did we stop any running sequences? for (std::vector::iterator it = sequences_.begin(); it != sequences_.end() && !send_signal; ++it) { if ((*it)->state() == AllocationSequence::kStopped) { send_signal = true; } } // If we stopped anything that was running, send a done signal now. if (send_signal) { MaybeSignalCandidatesAllocationDone(); } } void BasicPortAllocatorSession::AllocatePorts() { ASSERT(rtc::Thread::Current() == network_thread_); network_thread_->Post(this, MSG_ALLOCATE); } void BasicPortAllocatorSession::OnAllocate() { if (network_manager_started_) DoAllocate(); allocation_started_ = true; } // For each network, see if we have a sequence that covers it already. If not, // create a new sequence to create the appropriate ports. void BasicPortAllocatorSession::DoAllocate() { bool done_signal_needed = false; std::vector networks; allocator_->network_manager()->GetNetworks(&networks); if (networks.empty()) { LOG(LS_WARNING) << "Machine has no networks; no ports will be allocated"; done_signal_needed = true; } else { for (uint32 i = 0; i < networks.size(); ++i) { PortConfiguration* config = NULL; if (configs_.size() > 0) config = configs_.back(); uint32 sequence_flags = flags(); if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) { // If all the ports are disabled we should just fire the allocation // done event and return. done_signal_needed = true; break; } // Disables phases that are not specified in this config. if (!config || config->StunServers().empty()) { // No STUN ports specified in this config. sequence_flags |= PORTALLOCATOR_DISABLE_STUN; } if (!config || config->relays.empty()) { // No relay ports specified in this config. sequence_flags |= PORTALLOCATOR_DISABLE_RELAY; } if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) && networks[i]->ip().family() == AF_INET6) { // Skip IPv6 networks unless the flag's been set. continue; } // Disable phases that would only create ports equivalent to // ones that we have already made. DisableEquivalentPhases(networks[i], config, &sequence_flags); if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) { // New AllocationSequence would have nothing to do, so don't make it. continue; } AllocationSequence* sequence = new AllocationSequence(this, networks[i], config, sequence_flags); if (!sequence->Init()) { delete sequence; continue; } done_signal_needed = true; sequence->SignalPortAllocationComplete.connect( this, &BasicPortAllocatorSession::OnPortAllocationComplete); if (running_) sequence->Start(); sequences_.push_back(sequence); } } if (done_signal_needed) { network_thread_->Post(this, MSG_SEQUENCEOBJECTS_CREATED); } } void BasicPortAllocatorSession::OnNetworksChanged() { network_manager_started_ = true; if (allocation_started_) DoAllocate(); } void BasicPortAllocatorSession::DisableEquivalentPhases( rtc::Network* network, PortConfiguration* config, uint32* flags) { for (uint32 i = 0; i < sequences_.size() && (*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES; ++i) { sequences_[i]->DisableEquivalentPhases(network, config, flags); } } void BasicPortAllocatorSession::AddAllocatedPort(Port* port, AllocationSequence * seq, bool prepare_address) { if (!port) return; LOG(LS_INFO) << "Adding allocated port for " << content_name(); port->set_content_name(content_name()); port->set_component(component_); port->set_generation(generation()); if (allocator_->proxy().type != rtc::PROXY_NONE) port->set_proxy(allocator_->user_agent(), allocator_->proxy()); port->set_send_retransmit_count_attribute((allocator_->flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0); PortData data(port, seq); ports_.push_back(data); port->SignalCandidateReady.connect( this, &BasicPortAllocatorSession::OnCandidateReady); port->SignalPortComplete.connect(this, &BasicPortAllocatorSession::OnPortComplete); port->SignalDestroyed.connect(this, &BasicPortAllocatorSession::OnPortDestroyed); port->SignalPortError.connect( this, &BasicPortAllocatorSession::OnPortError); LOG_J(LS_INFO, port) << "Added port to allocator"; if (prepare_address) port->PrepareAddress(); } void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() { allocation_sequences_created_ = true; // Send candidate allocation complete signal if we have no sequences. MaybeSignalCandidatesAllocationDone(); } void BasicPortAllocatorSession::OnCandidateReady( Port* port, const Candidate& c) { ASSERT(rtc::Thread::Current() == network_thread_); PortData* data = FindPort(port); ASSERT(data != NULL); // Discarding any candidate signal if port allocation status is // already in completed state. if (data->complete()) return; // Send candidates whose protocol is enabled. std::vector candidates; ProtocolType pvalue; if (StringToProto(c.protocol().c_str(), &pvalue) && data->sequence()->ProtocolEnabled(pvalue)) { candidates.push_back(c); } if (!candidates.empty()) { SignalCandidatesReady(this, candidates); } // Moving to READY state as we have atleast one candidate from the port. // Since this port has atleast one candidate we should forward this port // to listners, to allow connections from this port. if (!data->ready()) { data->set_ready(); SignalPortReady(this, port); } } void BasicPortAllocatorSession::OnPortComplete(Port* port) { ASSERT(rtc::Thread::Current() == network_thread_); PortData* data = FindPort(port); ASSERT(data != NULL); // Ignore any late signals. if (data->complete()) return; // Moving to COMPLETE state. data->set_complete(); // Send candidate allocation complete signal if this was the last port. MaybeSignalCandidatesAllocationDone(); } void BasicPortAllocatorSession::OnPortError(Port* port) { ASSERT(rtc::Thread::Current() == network_thread_); PortData* data = FindPort(port); ASSERT(data != NULL); // We might have already given up on this port and stopped it. if (data->complete()) return; // SignalAddressError is currently sent from StunPort/TurnPort. // But this signal itself is generic. data->set_error(); // Send candidate allocation complete signal if this was the last port. MaybeSignalCandidatesAllocationDone(); } void BasicPortAllocatorSession::OnProtocolEnabled(AllocationSequence* seq, ProtocolType proto) { std::vector candidates; for (std::vector::iterator it = ports_.begin(); it != ports_.end(); ++it) { if (it->sequence() != seq) continue; const std::vector& potentials = it->port()->Candidates(); for (size_t i = 0; i < potentials.size(); ++i) { ProtocolType pvalue; if (!StringToProto(potentials[i].protocol().c_str(), &pvalue)) continue; if (pvalue == proto) { candidates.push_back(potentials[i]); } } } if (!candidates.empty()) { SignalCandidatesReady(this, candidates); } } void BasicPortAllocatorSession::OnPortAllocationComplete( AllocationSequence* seq) { // Send candidate allocation complete signal if all ports are done. MaybeSignalCandidatesAllocationDone(); } void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() { // Send signal only if all required AllocationSequence objects // are created. if (!allocation_sequences_created_) return; // Check that all port allocation sequences are complete. for (std::vector::iterator it = sequences_.begin(); it != sequences_.end(); ++it) { if ((*it)->state() == AllocationSequence::kRunning) return; } // If all allocated ports are in complete state, session must have got all // expected candidates. Session will trigger candidates allocation complete // signal. for (std::vector::iterator it = ports_.begin(); it != ports_.end(); ++it) { if (!it->complete()) return; } LOG(LS_INFO) << "All candidates gathered for " << content_name_ << ":" << component_ << ":" << generation(); SignalCandidatesAllocationDone(this); } void BasicPortAllocatorSession::OnPortDestroyed( PortInterface* port) { ASSERT(rtc::Thread::Current() == network_thread_); for (std::vector::iterator iter = ports_.begin(); iter != ports_.end(); ++iter) { if (port == iter->port()) { ports_.erase(iter); LOG_J(LS_INFO, port) << "Removed port from allocator (" << static_cast(ports_.size()) << " remaining)"; return; } } ASSERT(false); } void BasicPortAllocatorSession::OnShake() { LOG(INFO) << ">>>>> SHAKE <<<<< >>>>> SHAKE <<<<< >>>>> SHAKE <<<<<"; std::vector ports; std::vector connections; for (size_t i = 0; i < ports_.size(); ++i) { if (ports_[i].ready()) ports.push_back(ports_[i].port()); } for (size_t i = 0; i < ports.size(); ++i) { Port::AddressMap::const_iterator iter; for (iter = ports[i]->connections().begin(); iter != ports[i]->connections().end(); ++iter) { connections.push_back(iter->second); } } LOG(INFO) << ">>>>> Destroying " << ports.size() << " ports and " << connections.size() << " connections"; for (size_t i = 0; i < connections.size(); ++i) connections[i]->Destroy(); if (running_ || (ports.size() > 0) || (connections.size() > 0)) network_thread_->PostDelayed(ShakeDelay(), this, MSG_SHAKE); } BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort( Port* port) { for (std::vector::iterator it = ports_.begin(); it != ports_.end(); ++it) { if (it->port() == port) { return &*it; } } return NULL; } // AllocationSequence AllocationSequence::AllocationSequence(BasicPortAllocatorSession* session, rtc::Network* network, PortConfiguration* config, uint32 flags) : session_(session), network_(network), ip_(network->ip()), config_(config), state_(kInit), flags_(flags), udp_socket_(), udp_port_(NULL), phase_(0) { } bool AllocationSequence::Init() { if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && !IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_UFRAG)) { LOG(LS_ERROR) << "Shared socket option can't be set without " << "shared ufrag."; ASSERT(false); return false; } if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { udp_socket_.reset(session_->socket_factory()->CreateUdpSocket( rtc::SocketAddress(ip_, 0), session_->allocator()->min_port(), session_->allocator()->max_port())); if (udp_socket_) { udp_socket_->SignalReadPacket.connect( this, &AllocationSequence::OnReadPacket); } // Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP // are next available options to setup a communication channel. } return true; } void AllocationSequence::Clear() { udp_port_ = NULL; turn_ports_.clear(); } AllocationSequence::~AllocationSequence() { session_->network_thread()->Clear(this); } void AllocationSequence::DisableEquivalentPhases(rtc::Network* network, PortConfiguration* config, uint32* flags) { if (!((network == network_) && (ip_ == network->ip()))) { // Different network setup; nothing is equivalent. return; } // Else turn off the stuff that we've already got covered. // Every config implicitly specifies local, so turn that off right away. *flags |= PORTALLOCATOR_DISABLE_UDP; *flags |= PORTALLOCATOR_DISABLE_TCP; if (config_ && config) { if (config_->StunServers() == config->StunServers()) { // Already got this STUN servers covered. *flags |= PORTALLOCATOR_DISABLE_STUN; } if (!config_->relays.empty()) { // Already got relays covered. // NOTE: This will even skip a _different_ set of relay servers if we // were to be given one, but that never happens in our codebase. Should // probably get rid of the list in PortConfiguration and just keep a // single relay server in each one. *flags |= PORTALLOCATOR_DISABLE_RELAY; } } } void AllocationSequence::Start() { state_ = kRunning; session_->network_thread()->Post(this, MSG_ALLOCATION_PHASE); } void AllocationSequence::Stop() { // If the port is completed, don't set it to stopped. if (state_ == kRunning) { state_ = kStopped; session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE); } } void AllocationSequence::OnMessage(rtc::Message* msg) { ASSERT(rtc::Thread::Current() == session_->network_thread()); ASSERT(msg->message_id == MSG_ALLOCATION_PHASE); const char* const PHASE_NAMES[kNumPhases] = { "Udp", "Relay", "Tcp", "SslTcp" }; // Perform all of the phases in the current step. LOG_J(LS_INFO, network_) << "Allocation Phase=" << PHASE_NAMES[phase_]; switch (phase_) { case PHASE_UDP: CreateUDPPorts(); CreateStunPorts(); EnableProtocol(PROTO_UDP); break; case PHASE_RELAY: CreateRelayPorts(); break; case PHASE_TCP: CreateTCPPorts(); EnableProtocol(PROTO_TCP); break; case PHASE_SSLTCP: state_ = kCompleted; EnableProtocol(PROTO_SSLTCP); break; default: ASSERT(false); } if (state() == kRunning) { ++phase_; session_->network_thread()->PostDelayed( session_->allocator()->step_delay(), this, MSG_ALLOCATION_PHASE); } else { // If all phases in AllocationSequence are completed, no allocation // steps needed further. Canceling pending signal. session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE); SignalPortAllocationComplete(this); } } void AllocationSequence::EnableProtocol(ProtocolType proto) { if (!ProtocolEnabled(proto)) { protocols_.push_back(proto); session_->OnProtocolEnabled(this, proto); } } bool AllocationSequence::ProtocolEnabled(ProtocolType proto) const { for (ProtocolList::const_iterator it = protocols_.begin(); it != protocols_.end(); ++it) { if (*it == proto) return true; } return false; } void AllocationSequence::CreateUDPPorts() { if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) { LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping."; return; } // TODO(mallinath) - Remove UDPPort creating socket after shared socket // is enabled completely. UDPPort* port = NULL; if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) { port = UDPPort::Create(session_->network_thread(), session_->socket_factory(), network_, udp_socket_.get(), session_->username(), session_->password()); } else { port = UDPPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), session_->username(), session_->password()); } if (port) { // If shared socket is enabled, STUN candidate will be allocated by the // UDPPort. if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { udp_port_ = port; // If STUN is not disabled, setting stun server address to port. if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) { // If config has stun_servers, use it to get server reflexive candidate // otherwise use first TURN server which supports UDP. if (config_ && !config_->StunServers().empty()) { LOG(LS_INFO) << "AllocationSequence: UDPPort will be handling the " << "STUN candidate generation."; port->set_server_addresses(config_->StunServers()); } else if (config_ && config_->SupportsProtocol(RELAY_TURN, PROTO_UDP)) { port->set_server_addresses(config_->GetRelayServerAddresses( RELAY_TURN, PROTO_UDP)); LOG(LS_INFO) << "AllocationSequence: TURN Server address will be " << " used for generating STUN candidate."; } } } session_->AddAllocatedPort(port, this, true); port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed); } } void AllocationSequence::CreateTCPPorts() { if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) { LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping."; return; } Port* port = TCPPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), session_->username(), session_->password(), session_->allocator()->allow_tcp_listen()); if (port) { session_->AddAllocatedPort(port, this, true); // Since TCPPort is not created using shared socket, |port| will not be // added to the dequeue. } } void AllocationSequence::CreateStunPorts() { if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) { LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping."; return; } if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { return; } // If BasicPortAllocatorSession::OnAllocate left STUN ports enabled then we // ought to have an address for them here. ASSERT(config_ && !config_->StunServers().empty()); if (!(config_ && !config_->StunServers().empty())) { LOG(LS_WARNING) << "AllocationSequence: No STUN server configured, skipping."; return; } StunPort* port = StunPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), session_->username(), session_->password(), config_->StunServers()); if (port) { session_->AddAllocatedPort(port, this, true); // Since StunPort is not created using shared socket, |port| will not be // added to the dequeue. } } void AllocationSequence::CreateRelayPorts() { if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) { LOG(LS_VERBOSE) << "AllocationSequence: Relay ports disabled, skipping."; return; } // If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we // ought to have a relay list for them here. ASSERT(config_ && !config_->relays.empty()); if (!(config_ && !config_->relays.empty())) { LOG(LS_WARNING) << "AllocationSequence: No relay server configured, skipping."; return; } PortConfiguration::RelayList::const_iterator relay; for (relay = config_->relays.begin(); relay != config_->relays.end(); ++relay) { if (relay->type == RELAY_GTURN) { CreateGturnPort(*relay); } else if (relay->type == RELAY_TURN) { CreateTurnPort(*relay); } else { ASSERT(false); } } } void AllocationSequence::CreateGturnPort(const RelayServerConfig& config) { // TODO(mallinath) - Rename RelayPort to GTurnPort. RelayPort* port = RelayPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), config_->username, config_->password); if (port) { // Since RelayPort is not created using shared socket, |port| will not be // added to the dequeue. // Note: We must add the allocated port before we add addresses because // the latter will create candidates that need name and preference // settings. However, we also can't prepare the address (normally // done by AddAllocatedPort) until we have these addresses. So we // wait to do that until below. session_->AddAllocatedPort(port, this, false); // Add the addresses of this protocol. PortList::const_iterator relay_port; for (relay_port = config.ports.begin(); relay_port != config.ports.end(); ++relay_port) { port->AddServerAddress(*relay_port); port->AddExternalAddress(*relay_port); } // Start fetching an address for this port. port->PrepareAddress(); } } void AllocationSequence::CreateTurnPort(const RelayServerConfig& config) { PortList::const_iterator relay_port; for (relay_port = config.ports.begin(); relay_port != config.ports.end(); ++relay_port) { TurnPort* port = NULL; // Shared socket mode must be enabled only for UDP based ports. Hence // don't pass shared socket for ports which will create TCP sockets. // TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled // due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537 if (IsFlagSet(PORTALLOCATOR_ENABLE_TURN_SHARED_SOCKET) && relay_port->proto == PROTO_UDP) { port = TurnPort::Create(session_->network_thread(), session_->socket_factory(), network_, udp_socket_.get(), session_->username(), session_->password(), *relay_port, config.credentials, config.priority); // If we are using shared socket for TURN and udp ports, we need to // find a way to demux the packets to the correct port when received. // Mapping against server_address is one way of doing this. When packet // is received the remote_address will be checked against the map. // If server address is not resolved, a signal will be sent from the port // after the address is resolved. The map entry will updated with the // resolved address when the signal is received from the port. if ((*relay_port).address.IsUnresolved()) { // If server address is not resolved then listen for signal from port. port->SignalResolvedServerAddress.connect( this, &AllocationSequence::OnResolvedTurnServerAddress); } turn_ports_[(*relay_port).address] = port; // Listen to the port destroyed signal, to allow AllocationSequence to // remove entrt from it's map. port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed); } else { port = TurnPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), session_->username(), session_->password(), *relay_port, config.credentials, config.priority); } ASSERT(port != NULL); session_->AddAllocatedPort(port, this, true); } } void AllocationSequence::OnReadPacket( rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& remote_addr, const rtc::PacketTime& packet_time) { ASSERT(socket == udp_socket_.get()); // If the packet is received from one of the TURN server in the config, then // pass down the packet to that port, otherwise it will be handed down to // the local udp port. Port* port = NULL; std::map::iterator iter = turn_ports_.find(remote_addr); if (iter != turn_ports_.end()) { port = iter->second; } else if (udp_port_) { port = udp_port_; } ASSERT(port != NULL); if (port) { port->HandleIncomingPacket(socket, data, size, remote_addr, packet_time); } } void AllocationSequence::OnPortDestroyed(PortInterface* port) { if (udp_port_ == port) { udp_port_ = NULL; } else { std::map::iterator iter; for (iter = turn_ports_.begin(); iter != turn_ports_.end(); ++iter) { if (iter->second == port) { turn_ports_.erase(iter); break; } } } } void AllocationSequence::OnResolvedTurnServerAddress( TurnPort* port, const rtc::SocketAddress& server_address, const rtc::SocketAddress& resolved_server_address) { std::map::iterator iter; iter = turn_ports_.find(server_address); if (iter == turn_ports_.end()) { LOG(LS_INFO) << "TurnPort entry is not found in the map."; return; } ASSERT(iter->second == port); // Remove old entry and then insert using the resolved address as key. turn_ports_.erase(iter); turn_ports_[resolved_server_address] = port; } // PortConfiguration PortConfiguration::PortConfiguration( const rtc::SocketAddress& stun_address, const std::string& username, const std::string& password) : stun_address(stun_address), username(username), password(password) { if (!stun_address.IsNil()) stun_servers.insert(stun_address); } PortConfiguration::PortConfiguration(const ServerAddresses& stun_servers, const std::string& username, const std::string& password) : stun_servers(stun_servers), username(username), password(password) { if (!stun_servers.empty()) stun_address = *(stun_servers.begin()); } ServerAddresses PortConfiguration::StunServers() { if (!stun_address.IsNil() && stun_servers.find(stun_address) == stun_servers.end()) { stun_servers.insert(stun_address); } return stun_servers; } void PortConfiguration::AddRelay(const RelayServerConfig& config) { relays.push_back(config); } bool PortConfiguration::SupportsProtocol( const RelayServerConfig& relay, ProtocolType type) const { PortList::const_iterator relay_port; for (relay_port = relay.ports.begin(); relay_port != relay.ports.end(); ++relay_port) { if (relay_port->proto == type) return true; } return false; } bool PortConfiguration::SupportsProtocol(RelayType turn_type, ProtocolType type) const { for (size_t i = 0; i < relays.size(); ++i) { if (relays[i].type == turn_type && SupportsProtocol(relays[i], type)) return true; } return false; } ServerAddresses PortConfiguration::GetRelayServerAddresses( RelayType turn_type, ProtocolType type) const { ServerAddresses servers; for (size_t i = 0; i < relays.size(); ++i) { if (relays[i].type == turn_type && SupportsProtocol(relays[i], type)) { servers.insert(relays[i].ports.front().address); } } return servers; } } // namespace cricket