/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "audio_buffer.h" #include "module_common_types.h" namespace webrtc { namespace { enum { kSamplesPer8kHzChannel = 80, kSamplesPer16kHzChannel = 160, kSamplesPer32kHzChannel = 320 }; void StereoToMono(const WebRtc_Word16* left, const WebRtc_Word16* right, WebRtc_Word16* out, int samples_per_channel) { WebRtc_Word32 data_int32 = 0; for (int i = 0; i < samples_per_channel; i++) { data_int32 = (left[i] + right[i]) >> 1; if (data_int32 > 32767) { data_int32 = 32767; } else if (data_int32 < -32768) { data_int32 = -32768; } out[i] = static_cast(data_int32); } } } // namespace struct AudioChannel { AudioChannel() { memset(data, 0, sizeof(data)); } WebRtc_Word16 data[kSamplesPer32kHzChannel]; }; struct SplitAudioChannel { SplitAudioChannel() { memset(low_pass_data, 0, sizeof(low_pass_data)); memset(high_pass_data, 0, sizeof(high_pass_data)); memset(analysis_filter_state1, 0, sizeof(analysis_filter_state1)); memset(analysis_filter_state2, 0, sizeof(analysis_filter_state2)); memset(synthesis_filter_state1, 0, sizeof(synthesis_filter_state1)); memset(synthesis_filter_state2, 0, sizeof(synthesis_filter_state2)); } WebRtc_Word16 low_pass_data[kSamplesPer16kHzChannel]; WebRtc_Word16 high_pass_data[kSamplesPer16kHzChannel]; WebRtc_Word32 analysis_filter_state1[6]; WebRtc_Word32 analysis_filter_state2[6]; WebRtc_Word32 synthesis_filter_state1[6]; WebRtc_Word32 synthesis_filter_state2[6]; }; // TODO(am): check range of input parameters? AudioBuffer::AudioBuffer(WebRtc_Word32 max_num_channels, WebRtc_Word32 samples_per_channel) : max_num_channels_(max_num_channels), num_channels_(0), num_mixed_channels_(0), num_mixed_low_pass_channels_(0), samples_per_channel_(samples_per_channel), samples_per_split_channel_(samples_per_channel), reference_copied_(false), data_(NULL), channels_(NULL), split_channels_(NULL), mixed_low_pass_channels_(NULL), low_pass_reference_channels_(NULL) { if (max_num_channels_ > 1) { channels_ = new AudioChannel[max_num_channels_]; mixed_low_pass_channels_ = new AudioChannel[max_num_channels_]; } low_pass_reference_channels_ = new AudioChannel[max_num_channels_]; if (samples_per_channel_ == kSamplesPer32kHzChannel) { split_channels_ = new SplitAudioChannel[max_num_channels_]; samples_per_split_channel_ = kSamplesPer16kHzChannel; } } AudioBuffer::~AudioBuffer() { if (channels_ != NULL) { delete [] channels_; } if (mixed_low_pass_channels_ != NULL) { delete [] mixed_low_pass_channels_; } if (low_pass_reference_channels_ != NULL) { delete [] low_pass_reference_channels_; } if (split_channels_ != NULL) { delete [] split_channels_; } } WebRtc_Word16* AudioBuffer::data(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_channels_); if (data_ != NULL) { return data_; } return channels_[channel].data; } WebRtc_Word16* AudioBuffer::low_pass_split_data(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_channels_); if (split_channels_ == NULL) { return data(channel); } return split_channels_[channel].low_pass_data; } WebRtc_Word16* AudioBuffer::high_pass_split_data(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_channels_); if (split_channels_ == NULL) { return NULL; } return split_channels_[channel].high_pass_data; } WebRtc_Word16* AudioBuffer::mixed_low_pass_data(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_mixed_low_pass_channels_); return mixed_low_pass_channels_[channel].data; } WebRtc_Word16* AudioBuffer::low_pass_reference(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_channels_); if (!reference_copied_) { return NULL; } return low_pass_reference_channels_[channel].data; } WebRtc_Word32* AudioBuffer::analysis_filter_state1(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_channels_); return split_channels_[channel].analysis_filter_state1; } WebRtc_Word32* AudioBuffer::analysis_filter_state2(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_channels_); return split_channels_[channel].analysis_filter_state2; } WebRtc_Word32* AudioBuffer::synthesis_filter_state1(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_channels_); return split_channels_[channel].synthesis_filter_state1; } WebRtc_Word32* AudioBuffer::synthesis_filter_state2(WebRtc_Word32 channel) const { assert(channel >= 0 && channel < num_channels_); return split_channels_[channel].synthesis_filter_state2; } WebRtc_Word32 AudioBuffer::num_channels() const { return num_channels_; } WebRtc_Word32 AudioBuffer::samples_per_channel() const { return samples_per_channel_; } WebRtc_Word32 AudioBuffer::samples_per_split_channel() const { return samples_per_split_channel_; } // TODO(ajm): Do deinterleaving and mixing in one step? void AudioBuffer::DeinterleaveFrom(AudioFrame* audioFrame) { assert(audioFrame->_audioChannel <= max_num_channels_); assert(audioFrame->_payloadDataLengthInSamples == samples_per_channel_); num_channels_ = audioFrame->_audioChannel; num_mixed_channels_ = 0; num_mixed_low_pass_channels_ = 0; reference_copied_ = false; if (num_channels_ == 1) { // We can get away with a pointer assignment in this case. data_ = audioFrame->_payloadData; return; } for (int i = 0; i < num_channels_; i++) { WebRtc_Word16* deinterleaved = channels_[i].data; WebRtc_Word16* interleaved = audioFrame->_payloadData; WebRtc_Word32 interleaved_idx = i; for (int j = 0; j < samples_per_channel_; j++) { deinterleaved[j] = interleaved[interleaved_idx]; interleaved_idx += num_channels_; } } } void AudioBuffer::InterleaveTo(AudioFrame* audioFrame) const { assert(audioFrame->_audioChannel == num_channels_); assert(audioFrame->_payloadDataLengthInSamples == samples_per_channel_); if (num_channels_ == 1) { if (num_mixed_channels_ == 1) { memcpy(audioFrame->_payloadData, channels_[0].data, sizeof(WebRtc_Word16) * samples_per_channel_); } else { // These should point to the same buffer in this case. assert(data_ == audioFrame->_payloadData); } return; } for (int i = 0; i < num_channels_; i++) { WebRtc_Word16* deinterleaved = channels_[i].data; WebRtc_Word16* interleaved = audioFrame->_payloadData; WebRtc_Word32 interleaved_idx = i; for (int j = 0; j < samples_per_channel_; j++) { interleaved[interleaved_idx] = deinterleaved[j]; interleaved_idx += num_channels_; } } } // TODO(ajm): would be good to support the no-mix case with pointer assignment. // TODO(ajm): handle mixing to multiple channels? void AudioBuffer::Mix(WebRtc_Word32 num_mixed_channels) { // We currently only support the stereo to mono case. assert(num_channels_ == 2); assert(num_mixed_channels == 1); StereoToMono(channels_[0].data, channels_[1].data, channels_[0].data, samples_per_channel_); num_channels_ = num_mixed_channels; num_mixed_channels_ = num_mixed_channels; } void AudioBuffer::CopyAndMixLowPass(WebRtc_Word32 num_mixed_channels) { // We currently only support the stereo to mono case. assert(num_channels_ == 2); assert(num_mixed_channels == 1); StereoToMono(low_pass_split_data(0), low_pass_split_data(1), mixed_low_pass_channels_[0].data, samples_per_split_channel_); num_mixed_low_pass_channels_ = num_mixed_channels; } void AudioBuffer::CopyLowPassToReference() { reference_copied_ = true; for (int i = 0; i < num_channels_; i++) { memcpy(low_pass_reference_channels_[i].data, low_pass_split_data(i), sizeof(WebRtc_Word16) * samples_per_split_channel_); } } } // namespace webrtc