// libjingle // Copyright 2010 Google Inc. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // 3. The name of the author may not be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO // EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; // OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Implementation file of class VideoCapturer. #include "talk/media/base/videocapturer.h" #include #if !defined(DISABLE_YUV) #include "libyuv/scale_argb.h" #endif #include "talk/media/base/videoframefactory.h" #include "talk/media/base/videoprocessor.h" #include "webrtc/base/common.h" #include "webrtc/base/logging.h" #include "webrtc/base/systeminfo.h" #if defined(HAVE_WEBRTC_VIDEO) #include "talk/media/webrtc/webrtcvideoframe.h" #include "talk/media/webrtc/webrtcvideoframefactory.h" #endif // HAVE_WEBRTC_VIDEO namespace cricket { namespace { // TODO(thorcarpenter): This is a BIG hack to flush the system with black // frames. Frontends should coordinate to update the video state of a muted // user. When all frontends to this consider removing the black frame business. const int kNumBlackFramesOnMute = 30; // MessageHandler constants. enum { MSG_DO_PAUSE = 0, MSG_DO_UNPAUSE, MSG_STATE_CHANGE }; static const int64 kMaxDistance = ~(static_cast(1) << 63); #ifdef LINUX static const int kYU12Penalty = 16; // Needs to be higher than MJPG index. #endif static const int kDefaultScreencastFps = 5; typedef rtc::TypedMessageData StateChangeParams; // Limit stats data collections to ~20 seconds of 30fps data before dropping // old data in case stats aren't reset for long periods of time. static const size_t kMaxAccumulatorSize = 600; } // namespace ///////////////////////////////////////////////////////////////////// // Implementation of struct CapturedFrame ///////////////////////////////////////////////////////////////////// CapturedFrame::CapturedFrame() : width(0), height(0), fourcc(0), pixel_width(0), pixel_height(0), elapsed_time(0), time_stamp(0), data_size(0), rotation(0), data(NULL) {} // TODO(fbarchard): Remove this function once lmimediaengine stops using it. bool CapturedFrame::GetDataSize(uint32* size) const { if (!size || data_size == CapturedFrame::kUnknownDataSize) { return false; } *size = data_size; return true; } ///////////////////////////////////////////////////////////////////// // Implementation of class VideoCapturer ///////////////////////////////////////////////////////////////////// VideoCapturer::VideoCapturer() : thread_(rtc::Thread::Current()), adapt_frame_drops_data_(kMaxAccumulatorSize), effect_frame_drops_data_(kMaxAccumulatorSize), frame_time_data_(kMaxAccumulatorSize) { Construct(); } VideoCapturer::VideoCapturer(rtc::Thread* thread) : thread_(thread), adapt_frame_drops_data_(kMaxAccumulatorSize), effect_frame_drops_data_(kMaxAccumulatorSize), frame_time_data_(kMaxAccumulatorSize) { Construct(); } void VideoCapturer::Construct() { ClearAspectRatio(); enable_camera_list_ = false; square_pixel_aspect_ratio_ = false; capture_state_ = CS_STOPPED; SignalFrameCaptured.connect(this, &VideoCapturer::OnFrameCaptured); scaled_width_ = 0; scaled_height_ = 0; screencast_max_pixels_ = 0; muted_ = false; black_frame_count_down_ = kNumBlackFramesOnMute; enable_video_adapter_ = true; adapt_frame_drops_ = 0; effect_frame_drops_ = 0; previous_frame_time_ = 0.0; } const std::vector* VideoCapturer::GetSupportedFormats() const { return &filtered_supported_formats_; } bool VideoCapturer::StartCapturing(const VideoFormat& capture_format) { previous_frame_time_ = frame_length_time_reporter_.TimerNow(); CaptureState result = Start(capture_format); const bool success = (result == CS_RUNNING) || (result == CS_STARTING); if (!success) { return false; } if (result == CS_RUNNING) { SetCaptureState(result); } return true; } void VideoCapturer::UpdateAspectRatio(int ratio_w, int ratio_h) { if (ratio_w == 0 || ratio_h == 0) { LOG(LS_WARNING) << "UpdateAspectRatio ignored invalid ratio: " << ratio_w << "x" << ratio_h; return; } ratio_w_ = ratio_w; ratio_h_ = ratio_h; } void VideoCapturer::ClearAspectRatio() { ratio_w_ = 0; ratio_h_ = 0; } // Override this to have more control of how your device is started/stopped. bool VideoCapturer::Pause(bool pause) { if (pause) { if (capture_state() == CS_PAUSED) { return true; } bool is_running = capture_state() == CS_STARTING || capture_state() == CS_RUNNING; if (!is_running) { LOG(LS_ERROR) << "Cannot pause a stopped camera."; return false; } LOG(LS_INFO) << "Pausing a camera."; rtc::scoped_ptr capture_format_when_paused( capture_format_ ? new VideoFormat(*capture_format_) : NULL); Stop(); SetCaptureState(CS_PAUSED); // If you override this function be sure to restore the capture format // after calling Stop(). SetCaptureFormat(capture_format_when_paused.get()); } else { // Unpause. if (capture_state() != CS_PAUSED) { LOG(LS_WARNING) << "Cannot unpause a camera that hasn't been paused."; return false; } if (!capture_format_) { LOG(LS_ERROR) << "Missing capture_format_, cannot unpause a camera."; return false; } if (muted_) { LOG(LS_WARNING) << "Camera cannot be unpaused while muted."; return false; } LOG(LS_INFO) << "Unpausing a camera."; if (!Start(*capture_format_)) { LOG(LS_ERROR) << "Camera failed to start when unpausing."; return false; } } return true; } bool VideoCapturer::Restart(const VideoFormat& capture_format) { if (!IsRunning()) { return StartCapturing(capture_format); } if (GetCaptureFormat() != NULL && *GetCaptureFormat() == capture_format) { // The reqested format is the same; nothing to do. return true; } Stop(); return StartCapturing(capture_format); } bool VideoCapturer::MuteToBlackThenPause(bool muted) { if (muted == IsMuted()) { return true; } LOG(LS_INFO) << (muted ? "Muting" : "Unmuting") << " this video capturer."; muted_ = muted; // Do this before calling Pause(). if (muted) { // Reset black frame count down. black_frame_count_down_ = kNumBlackFramesOnMute; // Following frames will be overritten with black, then the camera will be // paused. return true; } // Start the camera. thread_->Clear(this, MSG_DO_PAUSE); return Pause(false); } void VideoCapturer::SetSupportedFormats( const std::vector& formats) { supported_formats_ = formats; UpdateFilteredSupportedFormats(); } bool VideoCapturer::GetBestCaptureFormat(const VideoFormat& format, VideoFormat* best_format) { // TODO(fbarchard): Directly support max_format. UpdateFilteredSupportedFormats(); const std::vector* supported_formats = GetSupportedFormats(); if (supported_formats->empty()) { return false; } LOG(LS_INFO) << " Capture Requested " << format.ToString(); int64 best_distance = kMaxDistance; std::vector::const_iterator best = supported_formats->end(); std::vector::const_iterator i; for (i = supported_formats->begin(); i != supported_formats->end(); ++i) { int64 distance = GetFormatDistance(format, *i); // TODO(fbarchard): Reduce to LS_VERBOSE if/when camera capture is // relatively bug free. LOG(LS_INFO) << " Supported " << i->ToString() << " distance " << distance; if (distance < best_distance) { best_distance = distance; best = i; } } if (supported_formats->end() == best) { LOG(LS_ERROR) << " No acceptable camera format found"; return false; } if (best_format) { best_format->width = best->width; best_format->height = best->height; best_format->fourcc = best->fourcc; best_format->interval = best->interval; LOG(LS_INFO) << " Best " << best_format->ToString() << " Interval " << best_format->interval << " distance " << best_distance; } return true; } void VideoCapturer::AddVideoProcessor(VideoProcessor* video_processor) { rtc::CritScope cs(&crit_); ASSERT(std::find(video_processors_.begin(), video_processors_.end(), video_processor) == video_processors_.end()); video_processors_.push_back(video_processor); } bool VideoCapturer::RemoveVideoProcessor(VideoProcessor* video_processor) { rtc::CritScope cs(&crit_); VideoProcessors::iterator found = std::find( video_processors_.begin(), video_processors_.end(), video_processor); if (found == video_processors_.end()) { return false; } video_processors_.erase(found); return true; } void VideoCapturer::ConstrainSupportedFormats(const VideoFormat& max_format) { max_format_.reset(new VideoFormat(max_format)); LOG(LS_VERBOSE) << " ConstrainSupportedFormats " << max_format.ToString(); UpdateFilteredSupportedFormats(); } std::string VideoCapturer::ToString(const CapturedFrame* captured_frame) const { std::string fourcc_name = GetFourccName(captured_frame->fourcc) + " "; for (std::string::const_iterator i = fourcc_name.begin(); i < fourcc_name.end(); ++i) { // Test character is printable; Avoid isprint() which asserts on negatives. if (*i < 32 || *i >= 127) { fourcc_name = ""; break; } } std::ostringstream ss; ss << fourcc_name << captured_frame->width << "x" << captured_frame->height << "x" << VideoFormat::IntervalToFpsFloat(captured_frame->elapsed_time); return ss.str(); } void VideoCapturer::GetStats(VariableInfo* adapt_drops_stats, VariableInfo* effect_drops_stats, VariableInfo* frame_time_stats, VideoFormat* last_captured_frame_format) { rtc::CritScope cs(&frame_stats_crit_); GetVariableSnapshot(adapt_frame_drops_data_, adapt_drops_stats); GetVariableSnapshot(effect_frame_drops_data_, effect_drops_stats); GetVariableSnapshot(frame_time_data_, frame_time_stats); *last_captured_frame_format = last_captured_frame_format_; adapt_frame_drops_data_.Reset(); effect_frame_drops_data_.Reset(); frame_time_data_.Reset(); } void VideoCapturer::OnFrameCaptured(VideoCapturer*, const CapturedFrame* captured_frame) { if (muted_) { if (black_frame_count_down_ == 0) { thread_->Post(this, MSG_DO_PAUSE, NULL); } else { --black_frame_count_down_; } } if (SignalVideoFrame.is_empty()) { return; } #if !defined(DISABLE_YUV) if (IsScreencast()) { int scaled_width, scaled_height; if (screencast_max_pixels_ > 0) { ComputeScaleMaxPixels(captured_frame->width, captured_frame->height, screencast_max_pixels_, &scaled_width, &scaled_height); } else { int desired_screencast_fps = capture_format_.get() ? VideoFormat::IntervalToFps(capture_format_->interval) : kDefaultScreencastFps; ComputeScale(captured_frame->width, captured_frame->height, desired_screencast_fps, &scaled_width, &scaled_height); } if (FOURCC_ARGB == captured_frame->fourcc && (scaled_width != captured_frame->width || scaled_height != captured_frame->height)) { if (scaled_width != scaled_width_ || scaled_height != scaled_height_) { LOG(LS_INFO) << "Scaling Screencast from " << captured_frame->width << "x" << captured_frame->height << " to " << scaled_width << "x" << scaled_height; scaled_width_ = scaled_width; scaled_height_ = scaled_height; } CapturedFrame* modified_frame = const_cast(captured_frame); // Compute new width such that width * height is less than maximum but // maintains original captured frame aspect ratio. // Round down width to multiple of 4 so odd width won't round up beyond // maximum, and so chroma channel is even width to simplify spatial // resampling. libyuv::ARGBScale(reinterpret_cast(captured_frame->data), captured_frame->width * 4, captured_frame->width, captured_frame->height, reinterpret_cast(modified_frame->data), scaled_width * 4, scaled_width, scaled_height, libyuv::kFilterBilinear); modified_frame->width = scaled_width; modified_frame->height = scaled_height; modified_frame->data_size = scaled_width * 4 * scaled_height; } } const int kYuy2Bpp = 2; const int kArgbBpp = 4; // TODO(fbarchard): Make a helper function to adjust pixels to square. // TODO(fbarchard): Hook up experiment to scaling. // TODO(fbarchard): Avoid scale and convert if muted. // Temporary buffer is scoped here so it will persist until i420_frame.Init() // makes a copy of the frame, converting to I420. rtc::scoped_ptr temp_buffer; // YUY2 can be scaled vertically using an ARGB scaler. Aspect ratio is only // a problem on OSX. OSX always converts webcams to YUY2 or UYVY. bool can_scale = FOURCC_YUY2 == CanonicalFourCC(captured_frame->fourcc) || FOURCC_UYVY == CanonicalFourCC(captured_frame->fourcc); // If pixels are not square, optionally use vertical scaling to make them // square. Square pixels simplify the rest of the pipeline, including // effects and rendering. if (can_scale && square_pixel_aspect_ratio_ && captured_frame->pixel_width != captured_frame->pixel_height) { int scaled_width, scaled_height; // modified_frame points to the captured_frame but with const casted away // so it can be modified. CapturedFrame* modified_frame = const_cast(captured_frame); // Compute the frame size that makes pixels square pixel aspect ratio. ComputeScaleToSquarePixels(captured_frame->width, captured_frame->height, captured_frame->pixel_width, captured_frame->pixel_height, &scaled_width, &scaled_height); if (scaled_width != scaled_width_ || scaled_height != scaled_height_) { LOG(LS_INFO) << "Scaling WebCam from " << captured_frame->width << "x" << captured_frame->height << " to " << scaled_width << "x" << scaled_height << " for PAR " << captured_frame->pixel_width << "x" << captured_frame->pixel_height; scaled_width_ = scaled_width; scaled_height_ = scaled_height; } const int modified_frame_size = scaled_width * scaled_height * kYuy2Bpp; uint8* temp_buffer_data; // Pixels are wide and short; Increasing height. Requires temporary buffer. if (scaled_height > captured_frame->height) { temp_buffer.reset(new uint8[modified_frame_size]); temp_buffer_data = temp_buffer.get(); } else { // Pixels are narrow and tall; Decreasing height. Scale will be done // in place. temp_buffer_data = reinterpret_cast(captured_frame->data); } // Use ARGBScaler to vertically scale the YUY2 image, adjusting for 16 bpp. libyuv::ARGBScale(reinterpret_cast(captured_frame->data), captured_frame->width * kYuy2Bpp, // Stride for YUY2. captured_frame->width * kYuy2Bpp / kArgbBpp, // Width. abs(captured_frame->height), // Height. temp_buffer_data, scaled_width * kYuy2Bpp, // Stride for YUY2. scaled_width * kYuy2Bpp / kArgbBpp, // Width. abs(scaled_height), // New height. libyuv::kFilterBilinear); modified_frame->width = scaled_width; modified_frame->height = scaled_height; modified_frame->pixel_width = 1; modified_frame->pixel_height = 1; modified_frame->data_size = modified_frame_size; modified_frame->data = temp_buffer_data; } #endif // !DISABLE_YUV // Size to crop captured frame to. This adjusts the captured frames // aspect ratio to match the final view aspect ratio, considering pixel // aspect ratio and rotation. The final size may be scaled down by video // adapter to better match ratio_w_ x ratio_h_. // Note that abs() of frame height is passed in, because source may be // inverted, but output will be positive. int desired_width = captured_frame->width; int desired_height = captured_frame->height; // TODO(fbarchard): Improve logic to pad or crop. // MJPG can crop vertically, but not horizontally. This logic disables crop. // Alternatively we could pad the image with black, or implement a 2 step // crop. bool can_crop = true; if (captured_frame->fourcc == FOURCC_MJPG) { float cam_aspect = static_cast(captured_frame->width) / static_cast(captured_frame->height); float view_aspect = static_cast(ratio_w_) / static_cast(ratio_h_); can_crop = cam_aspect <= view_aspect; } if (can_crop && !IsScreencast()) { // TODO(ronghuawu): The capturer should always produce the native // resolution and the cropping should be done in downstream code. ComputeCrop(ratio_w_, ratio_h_, captured_frame->width, abs(captured_frame->height), captured_frame->pixel_width, captured_frame->pixel_height, captured_frame->rotation, &desired_width, &desired_height); } if (!frame_factory_) { LOG(LS_ERROR) << "No video frame factory."; return; } rtc::scoped_ptr i420_frame( frame_factory_->CreateAliasedFrame( captured_frame, desired_width, desired_height)); if (!i420_frame) { // TODO(fbarchard): LOG more information about captured frame attributes. LOG(LS_ERROR) << "Couldn't convert to I420! " << "From " << ToString(captured_frame) << " To " << desired_width << " x " << desired_height; return; } VideoFrame* adapted_frame = i420_frame.get(); if (enable_video_adapter_ && !IsScreencast()) { VideoFrame* out_frame = NULL; video_adapter_.AdaptFrame(adapted_frame, &out_frame); if (!out_frame) { // VideoAdapter dropped the frame. ++adapt_frame_drops_; return; } adapted_frame = out_frame; } if (!muted_ && !ApplyProcessors(adapted_frame)) { // Processor dropped the frame. ++effect_frame_drops_; return; } if (muted_) { // TODO(pthatcher): Use frame_factory_->CreateBlackFrame() instead. adapted_frame->SetToBlack(); } SignalVideoFrame(this, adapted_frame); UpdateStats(captured_frame); } void VideoCapturer::SetCaptureState(CaptureState state) { if (state == capture_state_) { // Don't trigger a state changed callback if the state hasn't changed. return; } StateChangeParams* state_params = new StateChangeParams(state); capture_state_ = state; thread_->Post(this, MSG_STATE_CHANGE, state_params); } void VideoCapturer::OnMessage(rtc::Message* message) { switch (message->message_id) { case MSG_STATE_CHANGE: { rtc::scoped_ptr p( static_cast(message->pdata)); SignalStateChange(this, p->data()); break; } case MSG_DO_PAUSE: { Pause(true); break; } case MSG_DO_UNPAUSE: { Pause(false); break; } default: { ASSERT(false); } } } // Get the distance between the supported and desired formats. // Prioritization is done according to this algorithm: // 1) Width closeness. If not same, we prefer wider. // 2) Height closeness. If not same, we prefer higher. // 3) Framerate closeness. If not same, we prefer faster. // 4) Compression. If desired format has a specific fourcc, we need exact match; // otherwise, we use preference. int64 VideoCapturer::GetFormatDistance(const VideoFormat& desired, const VideoFormat& supported) { int64 distance = kMaxDistance; // Check fourcc. uint32 supported_fourcc = CanonicalFourCC(supported.fourcc); int64 delta_fourcc = kMaxDistance; if (FOURCC_ANY == desired.fourcc) { // Any fourcc is OK for the desired. Use preference to find best fourcc. std::vector preferred_fourccs; if (!GetPreferredFourccs(&preferred_fourccs)) { return distance; } for (size_t i = 0; i < preferred_fourccs.size(); ++i) { if (supported_fourcc == CanonicalFourCC(preferred_fourccs[i])) { delta_fourcc = i; #ifdef LINUX // For HD avoid YU12 which is a software conversion and has 2 bugs // b/7326348 b/6960899. Reenable when fixed. if (supported.height >= 720 && (supported_fourcc == FOURCC_YU12 || supported_fourcc == FOURCC_YV12)) { delta_fourcc += kYU12Penalty; } #endif break; } } } else if (supported_fourcc == CanonicalFourCC(desired.fourcc)) { delta_fourcc = 0; // Need exact match. } if (kMaxDistance == delta_fourcc) { // Failed to match fourcc. return distance; } // Check resolution and fps. int desired_width = desired.width; int desired_height = desired.height; int64 delta_w = supported.width - desired_width; float supported_fps = VideoFormat::IntervalToFpsFloat(supported.interval); float delta_fps = supported_fps - VideoFormat::IntervalToFpsFloat(desired.interval); // Check height of supported height compared to height we would like it to be. int64 aspect_h = desired_width ? supported.width * desired_height / desired_width : desired_height; int64 delta_h = supported.height - aspect_h; distance = 0; // Set high penalty if the supported format is lower than the desired format. // 3x means we would prefer down to down to 3/4, than up to double. // But we'd prefer up to double than down to 1/2. This is conservative, // strongly avoiding going down in resolution, similar to // the old method, but not completely ruling it out in extreme situations. // It also ignores framerate, which is often very low at high resolutions. // TODO(fbarchard): Improve logic to use weighted factors. static const int kDownPenalty = -3; if (delta_w < 0) { delta_w = delta_w * kDownPenalty; } if (delta_h < 0) { delta_h = delta_h * kDownPenalty; } // Require camera fps to be at least 80% of what is requested if resolution // matches. // Require camera fps to be at least 96% of what is requested, or higher, // if resolution differs. 96% allows for slight variations in fps. e.g. 29.97 if (delta_fps < 0) { float min_desirable_fps = delta_w ? VideoFormat::IntervalToFpsFloat(desired.interval) * 28.f / 30.f : VideoFormat::IntervalToFpsFloat(desired.interval) * 23.f / 30.f; delta_fps = -delta_fps; if (supported_fps < min_desirable_fps) { distance |= static_cast(1) << 62; } else { distance |= static_cast(1) << 15; } } int64 idelta_fps = static_cast(delta_fps); // 12 bits for width and height and 8 bits for fps and fourcc. distance |= (delta_w << 28) | (delta_h << 16) | (idelta_fps << 8) | delta_fourcc; return distance; } bool VideoCapturer::ApplyProcessors(VideoFrame* video_frame) { bool drop_frame = false; rtc::CritScope cs(&crit_); for (VideoProcessors::iterator iter = video_processors_.begin(); iter != video_processors_.end(); ++iter) { (*iter)->OnFrame(kDummyVideoSsrc, video_frame, &drop_frame); if (drop_frame) { return false; } } return true; } void VideoCapturer::UpdateFilteredSupportedFormats() { filtered_supported_formats_.clear(); filtered_supported_formats_ = supported_formats_; if (!max_format_) { return; } std::vector::iterator iter = filtered_supported_formats_.begin(); while (iter != filtered_supported_formats_.end()) { if (ShouldFilterFormat(*iter)) { iter = filtered_supported_formats_.erase(iter); } else { ++iter; } } if (filtered_supported_formats_.empty()) { // The device only captures at resolutions higher than |max_format_| this // indicates that |max_format_| should be ignored as it is better to capture // at too high a resolution than to not capture at all. filtered_supported_formats_ = supported_formats_; } } bool VideoCapturer::ShouldFilterFormat(const VideoFormat& format) const { if (!enable_camera_list_) { return false; } return format.width > max_format_->width || format.height > max_format_->height; } void VideoCapturer::UpdateStats(const CapturedFrame* captured_frame) { // Update stats protected from fetches from different thread. rtc::CritScope cs(&frame_stats_crit_); last_captured_frame_format_.width = captured_frame->width; last_captured_frame_format_.height = captured_frame->height; // TODO(ronghuawu): Useful to report interval as well? last_captured_frame_format_.interval = 0; last_captured_frame_format_.fourcc = captured_frame->fourcc; double time_now = frame_length_time_reporter_.TimerNow(); if (previous_frame_time_ != 0.0) { adapt_frame_drops_data_.AddSample(adapt_frame_drops_); effect_frame_drops_data_.AddSample(effect_frame_drops_); frame_time_data_.AddSample(time_now - previous_frame_time_); } previous_frame_time_ = time_now; effect_frame_drops_ = 0; adapt_frame_drops_ = 0; } template void VideoCapturer::GetVariableSnapshot( const rtc::RollingAccumulator& data, VariableInfo* stats) { stats->max_val = data.ComputeMax(); stats->mean = data.ComputeMean(); stats->min_val = data.ComputeMin(); stats->variance = data.ComputeVariance(); } } // namespace cricket