/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_ #define WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_ #include "typedefs.h" #include "module.h" namespace webrtc { class AudioFrame; class EchoCancellation; class EchoControlMobile; class GainControl; class HighPassFilter; class LevelEstimator; class NoiseSuppression; class VoiceDetection; // The Audio Processing Module (APM) provides a collection of voice processing // components designed for real-time communications software. // // APM operates on two audio streams on a frame-by-frame basis. Frames of the // primary stream, on which all processing is applied, are passed to // |ProcessStream()|. Frames of the reverse direction stream, which are used for // analysis by some components, are passed to |AnalyzeReverseStream()|. On the // client-side, this will typically be the near-end (capture) and far-end // (render) streams, respectively. APM should be placed in the signal chain as // close to the audio hardware abstraction layer (HAL) as possible. // // On the server-side, the reverse stream will normally not be used, with // processing occurring on each incoming stream. // // Component interfaces follow a similar pattern and are accessed through // corresponding getters in APM. All components are disabled at create-time, // with default settings that are recommended for most situations. New settings // can be applied without enabling a component. Enabling a component triggers // memory allocation and initialization to allow it to start processing the // streams. // // Thread safety is provided with the following assumptions to reduce locking // overhead: // 1. The stream getters and setters are called from the same thread as // ProcessStream(). More precisely, stream functions are never called // concurrently with ProcessStream(). // 2. Parameter getters are never called concurrently with the corresponding // setter. // // APM accepts only 16-bit linear PCM audio data in frames of 10 ms. Multiple // channels should be interleaved. // // Usage example, omitting error checking: // AudioProcessing* apm = AudioProcessing::Create(0); // apm->set_sample_rate_hz(32000); // Super-wideband processing. // // // Mono capture and stereo render. // apm->set_num_channels(1, 1); // apm->set_num_reverse_channels(2); // // apm->high_pass_filter()->Enable(true); // // apm->echo_cancellation()->enable_drift_compensation(false); // apm->echo_cancellation()->Enable(true); // // apm->noise_reduction()->set_level(kHighSuppression); // apm->noise_reduction()->Enable(true); // // apm->gain_control()->set_analog_level_limits(0, 255); // apm->gain_control()->set_mode(kAdaptiveAnalog); // apm->gain_control()->Enable(true); // // apm->voice_detection()->Enable(true); // // // Start a voice call... // // // ... Render frame arrives bound for the audio HAL ... // apm->AnalyzeReverseStream(render_frame); // // // ... Capture frame arrives from the audio HAL ... // // Call required set_stream_ functions. // apm->set_stream_delay_ms(delay_ms); // apm->gain_control()->set_stream_analog_level(analog_level); // // apm->ProcessStream(capture_frame); // // // Call required stream_ functions. // analog_level = apm->gain_control()->stream_analog_level(); // has_voice = apm->stream_has_voice(); // // // Repeate render and capture processing for the duration of the call... // // Start a new call... // apm->Initialize(); // // // Close the application... // AudioProcessing::Destroy(apm); // apm = NULL; // class AudioProcessing : public Module { public: // Creates a APM instance, with identifier |id|. Use one instance for every // primary audio stream requiring processing. On the client-side, this would // typically be one instance for the near-end stream, and additional instances // for each far-end stream which requires processing. On the server-side, // this would typically be one instance for every incoming stream. static AudioProcessing* Create(int id); // Destroys a |apm| instance. static void Destroy(AudioProcessing* apm); // Initializes internal states, while retaining all user settings. This // should be called before beginning to process a new audio stream. However, // it is not necessary to call before processing the first stream after // creation. virtual int Initialize() = 0; // Sets the sample |rate| in Hz for both the primary and reverse audio // streams. 8000, 16000 or 32000 Hz are permitted. virtual int set_sample_rate_hz(int rate) = 0; virtual int sample_rate_hz() const = 0; // Sets the number of channels for the primary audio stream. Input frames must // contain a number of channels given by |input_channels|, while output frames // will be returned with number of channels given by |output_channels|. virtual int set_num_channels(int input_channels, int output_channels) = 0; virtual int num_input_channels() const = 0; virtual int num_output_channels() const = 0; // Sets the number of channels for the reverse audio stream. Input frames must // contain a number of channels given by |channels|. virtual int set_num_reverse_channels(int channels) = 0; virtual int num_reverse_channels() const = 0; // Processes a 10 ms |frame| of the primary audio stream. On the client-side, // this is the near-end (or captured) audio. // // If needed for enabled functionality, any function with the set_stream_ tag // must be called prior to processing the current frame. Any getter function // with the stream_ tag which is needed should be called after processing. // // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples| // members of |frame| must be valid, and correspond to settings supplied // to APM. virtual int ProcessStream(AudioFrame* frame) = 0; // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame // will not be modified. On the client-side, this is the far-end (or to be // rendered) audio. // // It is only necessary to provide this if echo processing is enabled, as the // reverse stream forms the echo reference signal. It is recommended, but not // necessary, to provide if gain control is enabled. On the server-side this // typically will not be used. If you're not sure what to pass in here, // chances are you don't need to use it. // // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples| // members of |frame| must be valid. // // TODO(ajm): add const to input; requires an implementation fix. virtual int AnalyzeReverseStream(AudioFrame* frame) = 0; // This must be called if and only if echo processing is enabled. // // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end // frame and ProcessStream() receiving a near-end frame containing the // corresponding echo. On the client-side this can be expressed as // delay = (t_render - t_analyze) + (t_process - t_capture) // where, // - t_analyze is the time a frame is passed to AnalyzeReverseStream() and // t_render is the time the first sample of the same frame is rendered by // the audio hardware. // - t_capture is the time the first sample of a frame is captured by the // audio hardware and t_pull is the time the same frame is passed to // ProcessStream(). virtual int set_stream_delay_ms(int delay) = 0; virtual int stream_delay_ms() const = 0; // Starts recording debugging information to a file specified by |filename|, // a NULL-terminated string. If there is an ongoing recording, the old file // will be closed, and recording will continue in the newly specified file. // An already existing file will be overwritten without warning. static const int kMaxFilenameSize = 1024; virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0; // Stops recording debugging information, and closes the file. Recording // cannot be resumed in the same file (without overwriting it). virtual int StopDebugRecording() = 0; // These provide access to the component interfaces and should never return // NULL. The pointers will be valid for the lifetime of the APM instance. // The memory for these objects is entirely managed internally. virtual EchoCancellation* echo_cancellation() const = 0; virtual EchoControlMobile* echo_control_mobile() const = 0; virtual GainControl* gain_control() const = 0; virtual HighPassFilter* high_pass_filter() const = 0; virtual LevelEstimator* level_estimator() const = 0; virtual NoiseSuppression* noise_suppression() const = 0; virtual VoiceDetection* voice_detection() const = 0; struct Statistic { int instant; // Instantaneous value. int average; // Long-term average. int maximum; // Long-term maximum. int minimum; // Long-term minimum. }; // Fatal errors. enum Errors { kNoError = 0, kUnspecifiedError = -1, kCreationFailedError = -2, kUnsupportedComponentError = -3, kUnsupportedFunctionError = -4, kNullPointerError = -5, kBadParameterError = -6, kBadSampleRateError = -7, kBadDataLengthError = -8, kBadNumberChannelsError = -9, kFileError = -10, kStreamParameterNotSetError = -11, kNotEnabledError = -12 }; // Warnings are non-fatal. enum Warnings { // This results when a set_stream_ parameter is out of range. Processing // will continue, but the parameter may have been truncated. kBadStreamParameterWarning = -13, }; // Inherited from Module. virtual WebRtc_Word32 TimeUntilNextProcess() { return -1; }; virtual WebRtc_Word32 Process() { return -1; }; protected: virtual ~AudioProcessing() {}; }; // The acoustic echo cancellation (AEC) component provides better performance // than AECM but also requires more processing power and is dependent on delay // stability and reporting accuracy. As such it is well-suited and recommended // for PC and IP phone applications. // // Not recommended to be enabled on the server-side. class EchoCancellation { public: // EchoCancellation and EchoControlMobile may not be enabled simultaneously. // Enabling one will disable the other. virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Differences in clock speed on the primary and reverse streams can impact // the AEC performance. On the client-side, this could be seen when different // render and capture devices are used, particularly with webcams. // // This enables a compensation mechanism, and requires that // |set_device_sample_rate_hz()| and |set_stream_drift_samples()| be called. virtual int enable_drift_compensation(bool enable) = 0; virtual bool is_drift_compensation_enabled() const = 0; // Provides the sampling rate of the audio devices. It is assumed the render // and capture devices use the same nominal sample rate. Required if and only // if drift compensation is enabled. virtual int set_device_sample_rate_hz(int rate) = 0; virtual int device_sample_rate_hz() const = 0; // Sets the difference between the number of samples rendered and captured by // the audio devices since the last call to |ProcessStream()|. Must be called // if and only if drift compensation is enabled, prior to |ProcessStream()|. virtual int set_stream_drift_samples(int drift) = 0; virtual int stream_drift_samples() const = 0; enum SuppressionLevel { kLowSuppression, kModerateSuppression, kHighSuppression }; // Sets the aggressiveness of the suppressor. A higher level trades off // double-talk performance for increased echo suppression. virtual int set_suppression_level(SuppressionLevel level) = 0; virtual SuppressionLevel suppression_level() const = 0; // Returns false if the current frame almost certainly contains no echo // and true if it _might_ contain echo. virtual bool stream_has_echo() const = 0; // Enables the computation of various echo metrics. These are obtained // through |GetMetrics()|. virtual int enable_metrics(bool enable) = 0; virtual bool are_metrics_enabled() const = 0; // Each statistic is reported in dB. // P_far: Far-end (render) signal power. // P_echo: Near-end (capture) echo signal power. // P_out: Signal power at the output of the AEC. // P_a: Internal signal power at the point before the AEC's non-linear // processor. struct Metrics { // RERL = ERL + ERLE AudioProcessing::Statistic residual_echo_return_loss; // ERL = 10log_10(P_far / P_echo) AudioProcessing::Statistic echo_return_loss; // ERLE = 10log_10(P_echo / P_out) AudioProcessing::Statistic echo_return_loss_enhancement; // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a) AudioProcessing::Statistic a_nlp; }; // TODO(ajm): discuss the metrics update period. virtual int GetMetrics(Metrics* metrics) = 0; protected: virtual ~EchoCancellation() {}; }; // The acoustic echo control for mobile (AECM) component is a low complexity // robust option intended for use on mobile devices. // // Not recommended to be enabled on the server-side. class EchoControlMobile { public: // EchoCancellation and EchoControlMobile may not be enabled simultaneously. // Enabling one will disable the other. virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Recommended settings for particular audio routes. In general, the louder // the echo is expected to be, the higher this value should be set. The // preferred setting may vary from device to device. enum RoutingMode { kQuietEarpieceOrHeadset, kEarpiece, kLoudEarpiece, kSpeakerphone, kLoudSpeakerphone }; // Sets echo control appropriate for the audio routing |mode| on the device. // It can and should be updated during a call if the audio routing changes. virtual int set_routing_mode(RoutingMode mode) = 0; virtual RoutingMode routing_mode() const = 0; // Comfort noise replaces suppressed background noise to maintain a // consistent signal level. virtual int enable_comfort_noise(bool enable) = 0; virtual bool is_comfort_noise_enabled() const = 0; protected: virtual ~EchoControlMobile() {}; }; // The automatic gain control (AGC) component brings the signal to an // appropriate range. This is done by applying a digital gain directly and, in // the analog mode, prescribing an analog gain to be applied at the audio HAL. // // Recommended to be enabled on the client-side. class GainControl { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // When an analog mode is set, this must be called prior to |ProcessStream()| // to pass the current analog level from the audio HAL. Must be within the // range provided to |set_analog_level_limits()|. virtual int set_stream_analog_level(int level) = 0; // When an analog mode is set, this should be called after |ProcessStream()| // to obtain the recommended new analog level for the audio HAL. It is the // users responsibility to apply this level. virtual int stream_analog_level() = 0; enum Mode { // Adaptive mode intended for use if an analog volume control is available // on the capture device. It will require the user to provide coupling // between the OS mixer controls and AGC through the |stream_analog_level()| // functions. // // It consists of an analog gain prescription for the audio device and a // digital compression stage. kAdaptiveAnalog, // Adaptive mode intended for situations in which an analog volume control // is unavailable. It operates in a similar fashion to the adaptive analog // mode, but with scaling instead applied in the digital domain. As with // the analog mode, it additionally uses a digital compression stage. kAdaptiveDigital, // Fixed mode which enables only the digital compression stage also used by // the two adaptive modes. // // It is distinguished from the adaptive modes by considering only a // short time-window of the input signal. It applies a fixed gain through // most of the input level range, and compresses (gradually reduces gain // with increasing level) the input signal at higher levels. This mode is // preferred on embedded devices where the capture signal level is // predictable, so that a known gain can be applied. kFixedDigital }; virtual int set_mode(Mode mode) = 0; virtual Mode mode() const = 0; // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels // from digital full-scale). The convention is to use positive values. For // instance, passing in a value of 3 corresponds to -3 dBFs, or a target // level 3 dB below full-scale. Limited to [0, 31]. // // TODO(ajm): use a negative value here instead, if/when VoE will similarly // update its interface. virtual int set_target_level_dbfs(int level) = 0; virtual int target_level_dbfs() const = 0; // Sets the maximum |gain| the digital compression stage may apply, in dB. A // higher number corresponds to greater compression, while a value of 0 will // leave the signal uncompressed. Limited to [0, 90]. virtual int set_compression_gain_db(int gain) = 0; virtual int compression_gain_db() const = 0; // When enabled, the compression stage will hard limit the signal to the // target level. Otherwise, the signal will be compressed but not limited // above the target level. virtual int enable_limiter(bool enable) = 0; virtual bool is_limiter_enabled() const = 0; // Sets the |minimum| and |maximum| analog levels of the audio capture device. // Must be set if and only if an analog mode is used. Limited to [0, 65535]. virtual int set_analog_level_limits(int minimum, int maximum) = 0; virtual int analog_level_minimum() const = 0; virtual int analog_level_maximum() const = 0; // Returns true if the AGC has detected a saturation event (period where the // signal reaches digital full-scale) in the current frame and the analog // level cannot be reduced. // // This could be used as an indicator to reduce or disable analog mic gain at // the audio HAL. virtual bool stream_is_saturated() const = 0; protected: virtual ~GainControl() {}; }; // A filtering component which removes DC offset and low-frequency noise. // Recommended to be enabled on the client-side. class HighPassFilter { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; protected: virtual ~HighPassFilter() {}; }; // An estimation component used to retrieve level metrics. class LevelEstimator { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // The metrics are reported in dBFs calculated as: // Level = 10log_10(P_s / P_max) [dBFs], where // P_s is the signal power and P_max is the maximum possible (or peak) // power. With 16-bit signals, P_max = (2^15)^2. struct Metrics { AudioProcessing::Statistic signal; // Overall signal level. AudioProcessing::Statistic speech; // Speech level. AudioProcessing::Statistic noise; // Noise level. }; virtual int GetMetrics(Metrics* metrics, Metrics* reverse_metrics) = 0; //virtual int enable_noise_warning(bool enable) = 0; //bool is_noise_warning_enabled() const = 0; //virtual bool stream_has_high_noise() const = 0; protected: virtual ~LevelEstimator() {}; }; // The noise suppression (NS) component attempts to remove noise while // retaining speech. Recommended to be enabled on the client-side. // // Recommended to be enabled on the client-side. class NoiseSuppression { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Determines the aggressiveness of the suppression. Increasing the level // will reduce the noise level at the expense of a higher speech distortion. enum Level { kLow, kModerate, kHigh, kVeryHigh }; virtual int set_level(Level level) = 0; virtual Level level() const = 0; protected: virtual ~NoiseSuppression() {}; }; // The voice activity detection (VAD) component analyzes the stream to // determine if voice is present. A facility is also provided to pass in an // external VAD decision. class VoiceDetection { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Returns true if voice is detected in the current frame. Should be called // after |ProcessStream()|. virtual bool stream_has_voice() const = 0; // Some of the APM functionality requires a VAD decision. In the case that // a decision is externally available for the current frame, it can be passed // in here, before |ProcessStream()| is called. // // VoiceDetection does _not_ need to be enabled to use this. If it happens to // be enabled, detection will be skipped for any frame in which an external // VAD decision is provided. virtual int set_stream_has_voice(bool has_voice) = 0; // Specifies the likelihood that a frame will be declared to contain voice. // A higher value makes it more likely that speech will not be clipped, at // the expense of more noise being detected as voice. enum Likelihood { kVeryLowLikelihood, kLowLikelihood, kModerateLikelihood, kHighLikelihood }; virtual int set_likelihood(Likelihood likelihood) = 0; virtual Likelihood likelihood() const = 0; // Sets the |size| of the frames in ms on which the VAD will operate. Larger // frames will improve detection accuracy, but reduce the frequency of // updates. // // This does not impact the size of frames passed to |ProcessStream()|. virtual int set_frame_size_ms(int size) = 0; virtual int frame_size_ms() const = 0; protected: virtual ~VoiceDetection() {}; }; } // namespace webrtc #endif // WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_