/* * libjingle * Copyright 2004--2005, Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TALK_P2P_BASE_PORT_H_ #define TALK_P2P_BASE_PORT_H_ #include <string> #include <vector> #include <map> #include "talk/base/asyncpacketsocket.h" #include "talk/base/network.h" #include "talk/base/proxyinfo.h" #include "talk/base/ratetracker.h" #include "talk/base/sigslot.h" #include "talk/base/socketaddress.h" #include "talk/base/thread.h" #include "talk/p2p/base/candidate.h" #include "talk/p2p/base/packetsocketfactory.h" #include "talk/p2p/base/portinterface.h" #include "talk/p2p/base/stun.h" #include "talk/p2p/base/stunrequest.h" #include "talk/p2p/base/transport.h" namespace cricket { class Connection; class ConnectionRequest; extern const char LOCAL_PORT_TYPE[]; extern const char STUN_PORT_TYPE[]; extern const char PRFLX_PORT_TYPE[]; extern const char RELAY_PORT_TYPE[]; extern const char UDP_PROTOCOL_NAME[]; extern const char TCP_PROTOCOL_NAME[]; extern const char SSLTCP_PROTOCOL_NAME[]; // The length of time we wait before timing out readability on a connection. const uint32 CONNECTION_READ_TIMEOUT = 30 * 1000; // 30 seconds // The length of time we wait before timing out writability on a connection. const uint32 CONNECTION_WRITE_TIMEOUT = 15 * 1000; // 15 seconds // The length of time we wait before we become unwritable. const uint32 CONNECTION_WRITE_CONNECT_TIMEOUT = 5 * 1000; // 5 seconds // The number of pings that must fail to respond before we become unwritable. const uint32 CONNECTION_WRITE_CONNECT_FAILURES = 5; // This is the length of time that we wait for a ping response to come back. const int CONNECTION_RESPONSE_TIMEOUT = 5 * 1000; // 5 seconds enum RelayType { RELAY_GTURN, // Legacy google relay service. RELAY_TURN // Standard (TURN) relay service. }; enum IcePriorityValue { // The reason we are choosing Relay preference 2 is because, we can run // Relay from client to server on UDP/TCP/TLS. To distinguish the transport // protocol, we prefer UDP over TCP over TLS. // For UDP ICE_TYPE_PREFERENCE_RELAY will be 2. // For TCP ICE_TYPE_PREFERENCE_RELAY will be 1. // For TLS ICE_TYPE_PREFERENCE_RELAY will be 0. // Check turnport.cc for setting these values. ICE_TYPE_PREFERENCE_RELAY = 2, ICE_TYPE_PREFERENCE_HOST_TCP = 90, ICE_TYPE_PREFERENCE_SRFLX = 100, ICE_TYPE_PREFERENCE_PRFLX = 110, ICE_TYPE_PREFERENCE_HOST = 126 }; const char* ProtoToString(ProtocolType proto); bool StringToProto(const char* value, ProtocolType* proto); struct ProtocolAddress { talk_base::SocketAddress address; ProtocolType proto; bool secure; ProtocolAddress(const talk_base::SocketAddress& a, ProtocolType p) : address(a), proto(p), secure(false) { } ProtocolAddress(const talk_base::SocketAddress& a, ProtocolType p, bool sec) : address(a), proto(p), secure(sec) { } }; // Represents a local communication mechanism that can be used to create // connections to similar mechanisms of the other client. Subclasses of this // one add support for specific mechanisms like local UDP ports. class Port : public PortInterface, public talk_base::MessageHandler, public sigslot::has_slots<> { public: Port(talk_base::Thread* thread, talk_base::PacketSocketFactory* factory, talk_base::Network* network, const talk_base::IPAddress& ip, const std::string& username_fragment, const std::string& password); Port(talk_base::Thread* thread, const std::string& type, talk_base::PacketSocketFactory* factory, talk_base::Network* network, const talk_base::IPAddress& ip, int min_port, int max_port, const std::string& username_fragment, const std::string& password); virtual ~Port(); virtual const std::string& Type() const { return type_; } virtual talk_base::Network* Network() const { return network_; } // This method will set the flag which enables standard ICE/STUN procedures // in STUN connectivity checks. Currently this method does // 1. Add / Verify MI attribute in STUN binding requests. // 2. Username attribute in STUN binding request will be RFRAF:LFRAG, // as opposed to RFRAGLFRAG. virtual void SetIceProtocolType(IceProtocolType protocol) { ice_protocol_ = protocol; } virtual IceProtocolType IceProtocol() const { return ice_protocol_; } // Methods to set/get ICE role and tiebreaker values. IceRole GetIceRole() const { return ice_role_; } void SetIceRole(IceRole role) { ice_role_ = role; } void SetIceTiebreaker(uint64 tiebreaker) { tiebreaker_ = tiebreaker; } uint64 IceTiebreaker() const { return tiebreaker_; } virtual bool SharedSocket() const { return shared_socket_; } // The thread on which this port performs its I/O. talk_base::Thread* thread() { return thread_; } // The factory used to create the sockets of this port. talk_base::PacketSocketFactory* socket_factory() const { return factory_; } void set_socket_factory(talk_base::PacketSocketFactory* factory) { factory_ = factory; } // For debugging purposes. const std::string& content_name() const { return content_name_; } void set_content_name(const std::string& content_name) { content_name_ = content_name; } int component() const { return component_; } void set_component(int component) { component_ = component; } bool send_retransmit_count_attribute() const { return send_retransmit_count_attribute_; } void set_send_retransmit_count_attribute(bool enable) { send_retransmit_count_attribute_ = enable; } const talk_base::SocketAddress& related_address() const { return related_address_; } void set_related_address(const talk_base::SocketAddress& address) { related_address_ = address; } // Identifies the generation that this port was created in. uint32 generation() { return generation_; } void set_generation(uint32 generation) { generation_ = generation; } // ICE requires a single username/password per content/media line. So the // |ice_username_fragment_| of the ports that belongs to the same content will // be the same. However this causes a small complication with our relay // server, which expects different username for RTP and RTCP. // // To resolve this problem, we implemented the username_fragment(), // which returns a different username (calculated from // |ice_username_fragment_|) for RTCP in the case of ICEPROTO_GOOGLE. And the // username_fragment() simply returns |ice_username_fragment_| when running // in ICEPROTO_RFC5245. // // As a result the ICEPROTO_GOOGLE will use different usernames for RTP and // RTCP. And the ICEPROTO_RFC5245 will use same username for both RTP and // RTCP. const std::string username_fragment() const; const std::string& password() const { return password_; } // Fired when candidates are discovered by the port. When all candidates // are discovered that belong to port SignalAddressReady is fired. sigslot::signal2<Port*, const Candidate&> SignalCandidateReady; // Provides all of the above information in one handy object. virtual const std::vector<Candidate>& Candidates() const { return candidates_; } // SignalPortComplete is sent when port completes the task of candidates // allocation. sigslot::signal1<Port*> SignalPortComplete; // This signal sent when port fails to allocate candidates and this port // can't be used in establishing the connections. When port is in shared mode // and port fails to allocate one of the candidates, port shouldn't send // this signal as other candidates might be usefull in establishing the // connection. sigslot::signal1<Port*> SignalPortError; // Returns a map containing all of the connections of this port, keyed by the // remote address. typedef std::map<talk_base::SocketAddress, Connection*> AddressMap; const AddressMap& connections() { return connections_; } // Returns the connection to the given address or NULL if none exists. virtual Connection* GetConnection( const talk_base::SocketAddress& remote_addr); // Called each time a connection is created. sigslot::signal2<Port*, Connection*> SignalConnectionCreated; // In a shared socket mode each port which shares the socket will decide // to accept the packet based on the |remote_addr|. Currently only UDP // port implemented this method. // TODO(mallinath) - Make it pure virtual. virtual bool HandleIncomingPacket( talk_base::AsyncPacketSocket* socket, const char* data, size_t size, const talk_base::SocketAddress& remote_addr, const talk_base::PacketTime& packet_time) { ASSERT(false); return false; } // Sends a response message (normal or error) to the given request. One of // these methods should be called as a response to SignalUnknownAddress. // NOTE: You MUST call CreateConnection BEFORE SendBindingResponse. virtual void SendBindingResponse(StunMessage* request, const talk_base::SocketAddress& addr); virtual void SendBindingErrorResponse( StunMessage* request, const talk_base::SocketAddress& addr, int error_code, const std::string& reason); void set_proxy(const std::string& user_agent, const talk_base::ProxyInfo& proxy) { user_agent_ = user_agent; proxy_ = proxy; } const std::string& user_agent() { return user_agent_; } const talk_base::ProxyInfo& proxy() { return proxy_; } virtual void EnablePortPackets(); // Called if the port has no connections and is no longer useful. void Destroy(); virtual void OnMessage(talk_base::Message *pmsg); // Debugging description of this port virtual std::string ToString() const; talk_base::IPAddress& ip() { return ip_; } int min_port() { return min_port_; } int max_port() { return max_port_; } // Timeout shortening function to speed up unit tests. void set_timeout_delay(int delay) { timeout_delay_ = delay; } // This method will return local and remote username fragements from the // stun username attribute if present. bool ParseStunUsername(const StunMessage* stun_msg, std::string* local_username, std::string* remote_username, IceProtocolType* remote_protocol_type) const; void CreateStunUsername(const std::string& remote_username, std::string* stun_username_attr_str) const; bool MaybeIceRoleConflict(const talk_base::SocketAddress& addr, IceMessage* stun_msg, const std::string& remote_ufrag); // Called when the socket is currently able to send. void OnReadyToSend(); // Called when the Connection discovers a local peer reflexive candidate. // Returns the index of the new local candidate. size_t AddPrflxCandidate(const Candidate& local); // Returns if RFC 5245 ICE protocol is used. bool IsStandardIce() const; // Returns if Google ICE protocol is used. bool IsGoogleIce() const; // Returns if Hybrid ICE protocol is used. bool IsHybridIce() const; protected: enum { MSG_CHECKTIMEOUT = 0, MSG_FIRST_AVAILABLE }; void set_type(const std::string& type) { type_ = type; } // Fills in the local address of the port. void AddAddress(const talk_base::SocketAddress& address, const talk_base::SocketAddress& base_address, const std::string& protocol, const std::string& type, uint32 type_preference, bool final); // Adds the given connection to the list. (Deleting removes them.) void AddConnection(Connection* conn); // Called when a packet is received from an unknown address that is not // currently a connection. If this is an authenticated STUN binding request, // then we will signal the client. void OnReadPacket(const char* data, size_t size, const talk_base::SocketAddress& addr, ProtocolType proto); // If the given data comprises a complete and correct STUN message then the // return value is true, otherwise false. If the message username corresponds // with this port's username fragment, msg will contain the parsed STUN // message. Otherwise, the function may send a STUN response internally. // remote_username contains the remote fragment of the STUN username. bool GetStunMessage(const char* data, size_t size, const talk_base::SocketAddress& addr, IceMessage** out_msg, std::string* out_username); // Checks if the address in addr is compatible with the port's ip. bool IsCompatibleAddress(const talk_base::SocketAddress& addr); // Returns default DSCP value. talk_base::DiffServCodePoint DefaultDscpValue() const { // No change from what MediaChannel set. return talk_base::DSCP_NO_CHANGE; } private: void Construct(); // Called when one of our connections deletes itself. void OnConnectionDestroyed(Connection* conn); // Checks if this port is useless, and hence, should be destroyed. void CheckTimeout(); talk_base::Thread* thread_; talk_base::PacketSocketFactory* factory_; std::string type_; bool send_retransmit_count_attribute_; talk_base::Network* network_; talk_base::IPAddress ip_; int min_port_; int max_port_; std::string content_name_; int component_; uint32 generation_; talk_base::SocketAddress related_address_; // In order to establish a connection to this Port (so that real data can be // sent through), the other side must send us a STUN binding request that is // authenticated with this username_fragment and password. // PortAllocatorSession will provide these username_fragment and password. // // Note: we should always use username_fragment() instead of using // |ice_username_fragment_| directly. For the details see the comment on // username_fragment(). std::string ice_username_fragment_; std::string password_; std::vector<Candidate> candidates_; AddressMap connections_; int timeout_delay_; bool enable_port_packets_; IceProtocolType ice_protocol_; IceRole ice_role_; uint64 tiebreaker_; bool shared_socket_; // Information to use when going through a proxy. std::string user_agent_; talk_base::ProxyInfo proxy_; friend class Connection; }; // Represents a communication link between a port on the local client and a // port on the remote client. class Connection : public talk_base::MessageHandler, public sigslot::has_slots<> { public: // States are from RFC 5245. http://tools.ietf.org/html/rfc5245#section-5.7.4 enum State { STATE_WAITING = 0, // Check has not been performed, Waiting pair on CL. STATE_INPROGRESS, // Check has been sent, transaction is in progress. STATE_SUCCEEDED, // Check already done, produced a successful result. STATE_FAILED // Check for this connection failed. }; virtual ~Connection(); // The local port where this connection sends and receives packets. Port* port() { return port_; } const Port* port() const { return port_; } // Returns the description of the local port virtual const Candidate& local_candidate() const; // Returns the description of the remote port to which we communicate. const Candidate& remote_candidate() const { return remote_candidate_; } // Returns the pair priority. uint64 priority() const; enum ReadState { STATE_READ_INIT = 0, // we have yet to receive a ping STATE_READABLE = 1, // we have received pings recently STATE_READ_TIMEOUT = 2, // we haven't received pings in a while }; ReadState read_state() const { return read_state_; } bool readable() const { return read_state_ == STATE_READABLE; } enum WriteState { STATE_WRITABLE = 0, // we have received ping responses recently STATE_WRITE_UNRELIABLE = 1, // we have had a few ping failures STATE_WRITE_INIT = 2, // we have yet to receive a ping response STATE_WRITE_TIMEOUT = 3, // we have had a large number of ping failures }; WriteState write_state() const { return write_state_; } bool writable() const { return write_state_ == STATE_WRITABLE; } // Determines whether the connection has finished connecting. This can only // be false for TCP connections. bool connected() const { return connected_; } // Estimate of the round-trip time over this connection. uint32 rtt() const { return rtt_; } size_t sent_total_bytes(); size_t sent_bytes_second(); size_t recv_total_bytes(); size_t recv_bytes_second(); sigslot::signal1<Connection*> SignalStateChange; // Sent when the connection has decided that it is no longer of value. It // will delete itself immediately after this call. sigslot::signal1<Connection*> SignalDestroyed; // The connection can send and receive packets asynchronously. This matches // the interface of AsyncPacketSocket, which may use UDP or TCP under the // covers. virtual int Send(const void* data, size_t size, const talk_base::PacketOptions& options) = 0; // Error if Send() returns < 0 virtual int GetError() = 0; sigslot::signal4<Connection*, const char*, size_t, const talk_base::PacketTime&> SignalReadPacket; sigslot::signal1<Connection*> SignalReadyToSend; // Called when a packet is received on this connection. void OnReadPacket(const char* data, size_t size, const talk_base::PacketTime& packet_time); // Called when the socket is currently able to send. void OnReadyToSend(); // Called when a connection is determined to be no longer useful to us. We // still keep it around in case the other side wants to use it. But we can // safely stop pinging on it and we can allow it to time out if the other // side stops using it as well. bool pruned() const { return pruned_; } void Prune(); bool use_candidate_attr() const { return use_candidate_attr_; } void set_use_candidate_attr(bool enable); void set_remote_ice_mode(IceMode mode) { remote_ice_mode_ = mode; } // Makes the connection go away. void Destroy(); // Checks that the state of this connection is up-to-date. The argument is // the current time, which is compared against various timeouts. void UpdateState(uint32 now); // Called when this connection should try checking writability again. uint32 last_ping_sent() const { return last_ping_sent_; } void Ping(uint32 now); // Called whenever a valid ping is received on this connection. This is // public because the connection intercepts the first ping for us. uint32 last_ping_received() const { return last_ping_received_; } void ReceivedPing(); // Debugging description of this connection std::string ToString() const; std::string ToSensitiveString() const; bool reported() const { return reported_; } void set_reported(bool reported) { reported_ = reported;} // This flag will be set if this connection is the chosen one for media // transmission. This connection will send STUN ping with USE-CANDIDATE // attribute. sigslot::signal1<Connection*> SignalUseCandidate; // Invoked when Connection receives STUN error response with 487 code. void HandleRoleConflictFromPeer(); State state() const { return state_; } IceMode remote_ice_mode() const { return remote_ice_mode_; } protected: // Constructs a new connection to the given remote port. Connection(Port* port, size_t index, const Candidate& candidate); // Called back when StunRequestManager has a stun packet to send void OnSendStunPacket(const void* data, size_t size, StunRequest* req); // Callbacks from ConnectionRequest void OnConnectionRequestResponse(ConnectionRequest* req, StunMessage* response); void OnConnectionRequestErrorResponse(ConnectionRequest* req, StunMessage* response); void OnConnectionRequestTimeout(ConnectionRequest* req); // Changes the state and signals if necessary. void set_read_state(ReadState value); void set_write_state(WriteState value); void set_state(State state); void set_connected(bool value); // Checks if this connection is useless, and hence, should be destroyed. void CheckTimeout(); void OnMessage(talk_base::Message *pmsg); Port* port_; size_t local_candidate_index_; Candidate remote_candidate_; ReadState read_state_; WriteState write_state_; bool connected_; bool pruned_; // By default |use_candidate_attr_| flag will be true, // as we will be using agrressive nomination. // But when peer is ice-lite, this flag "must" be initialized to false and // turn on when connection becomes "best connection". bool use_candidate_attr_; IceMode remote_ice_mode_; StunRequestManager requests_; uint32 rtt_; uint32 last_ping_sent_; // last time we sent a ping to the other side uint32 last_ping_received_; // last time we received a ping from the other // side uint32 last_data_received_; uint32 last_ping_response_received_; std::vector<uint32> pings_since_last_response_; talk_base::RateTracker recv_rate_tracker_; talk_base::RateTracker send_rate_tracker_; private: void MaybeAddPrflxCandidate(ConnectionRequest* request, StunMessage* response); bool reported_; State state_; friend class Port; friend class ConnectionRequest; }; // ProxyConnection defers all the interesting work to the port class ProxyConnection : public Connection { public: ProxyConnection(Port* port, size_t index, const Candidate& candidate); virtual int Send(const void* data, size_t size, const talk_base::PacketOptions& options); virtual int GetError() { return error_; } private: int error_; }; } // namespace cricket #endif // TALK_P2P_BASE_PORT_H_