/* * libjingle * Copyright 2004--2005, Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "talk/p2p/base/stun.h" #include #include "webrtc/base/byteorder.h" #include "webrtc/base/common.h" #include "webrtc/base/crc32.h" #include "webrtc/base/logging.h" #include "webrtc/base/messagedigest.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/base/stringencode.h" using rtc::ByteBuffer; namespace cricket { const char STUN_ERROR_REASON_BAD_REQUEST[] = "Bad Request"; const char STUN_ERROR_REASON_UNAUTHORIZED[] = "Unauthorized"; const char STUN_ERROR_REASON_FORBIDDEN[] = "Forbidden"; const char STUN_ERROR_REASON_STALE_CREDENTIALS[] = "Stale Credentials"; const char STUN_ERROR_REASON_ALLOCATION_MISMATCH[] = "Allocation Mismatch"; const char STUN_ERROR_REASON_STALE_NONCE[] = "Stale Nonce"; const char STUN_ERROR_REASON_WRONG_CREDENTIALS[] = "Wrong Credentials"; const char STUN_ERROR_REASON_UNSUPPORTED_PROTOCOL[] = "Unsupported Protocol"; const char STUN_ERROR_REASON_ROLE_CONFLICT[] = "Role Conflict"; const char STUN_ERROR_REASON_SERVER_ERROR[] = "Server Error"; const char TURN_MAGIC_COOKIE_VALUE[] = { '\x72', '\xC6', '\x4B', '\xC6' }; const char EMPTY_TRANSACTION_ID[] = "0000000000000000"; const uint32 STUN_FINGERPRINT_XOR_VALUE = 0x5354554E; // StunMessage StunMessage::StunMessage() : type_(0), length_(0), transaction_id_(EMPTY_TRANSACTION_ID) { ASSERT(IsValidTransactionId(transaction_id_)); attrs_ = new std::vector(); } StunMessage::~StunMessage() { for (size_t i = 0; i < attrs_->size(); i++) delete (*attrs_)[i]; delete attrs_; } bool StunMessage::IsLegacy() const { if (transaction_id_.size() == kStunLegacyTransactionIdLength) return true; ASSERT(transaction_id_.size() == kStunTransactionIdLength); return false; } bool StunMessage::SetTransactionID(const std::string& str) { if (!IsValidTransactionId(str)) { return false; } transaction_id_ = str; return true; } bool StunMessage::AddAttribute(StunAttribute* attr) { // Fail any attributes that aren't valid for this type of message. if (attr->value_type() != GetAttributeValueType(attr->type())) { return false; } attrs_->push_back(attr); attr->SetOwner(this); size_t attr_length = attr->length(); if (attr_length % 4 != 0) { attr_length += (4 - (attr_length % 4)); } length_ += static_cast(attr_length + 4); return true; } const StunAddressAttribute* StunMessage::GetAddress(int type) const { switch (type) { case STUN_ATTR_MAPPED_ADDRESS: { // Return XOR-MAPPED-ADDRESS when MAPPED-ADDRESS attribute is // missing. const StunAttribute* mapped_address = GetAttribute(STUN_ATTR_MAPPED_ADDRESS); if (!mapped_address) mapped_address = GetAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS); return reinterpret_cast(mapped_address); } default: return static_cast(GetAttribute(type)); } } const StunUInt32Attribute* StunMessage::GetUInt32(int type) const { return static_cast(GetAttribute(type)); } const StunUInt64Attribute* StunMessage::GetUInt64(int type) const { return static_cast(GetAttribute(type)); } const StunByteStringAttribute* StunMessage::GetByteString(int type) const { return static_cast(GetAttribute(type)); } const StunErrorCodeAttribute* StunMessage::GetErrorCode() const { return static_cast( GetAttribute(STUN_ATTR_ERROR_CODE)); } const StunUInt16ListAttribute* StunMessage::GetUnknownAttributes() const { return static_cast( GetAttribute(STUN_ATTR_UNKNOWN_ATTRIBUTES)); } // Verifies a STUN message has a valid MESSAGE-INTEGRITY attribute, using the // procedure outlined in RFC 5389, section 15.4. bool StunMessage::ValidateMessageIntegrity(const char* data, size_t size, const std::string& password) { // Verifying the size of the message. if ((size % 4) != 0) { return false; } // Getting the message length from the STUN header. uint16 msg_length = rtc::GetBE16(&data[2]); if (size != (msg_length + kStunHeaderSize)) { return false; } // Finding Message Integrity attribute in stun message. size_t current_pos = kStunHeaderSize; bool has_message_integrity_attr = false; while (current_pos < size) { uint16 attr_type, attr_length; // Getting attribute type and length. attr_type = rtc::GetBE16(&data[current_pos]); attr_length = rtc::GetBE16(&data[current_pos + sizeof(attr_type)]); // If M-I, sanity check it, and break out. if (attr_type == STUN_ATTR_MESSAGE_INTEGRITY) { if (attr_length != kStunMessageIntegritySize || current_pos + attr_length > size) { return false; } has_message_integrity_attr = true; break; } // Otherwise, skip to the next attribute. current_pos += sizeof(attr_type) + sizeof(attr_length) + attr_length; if ((attr_length % 4) != 0) { current_pos += (4 - (attr_length % 4)); } } if (!has_message_integrity_attr) { return false; } // Getting length of the message to calculate Message Integrity. size_t mi_pos = current_pos; rtc::scoped_ptr temp_data(new char[current_pos]); memcpy(temp_data.get(), data, current_pos); if (size > mi_pos + kStunAttributeHeaderSize + kStunMessageIntegritySize) { // Stun message has other attributes after message integrity. // Adjust the length parameter in stun message to calculate HMAC. size_t extra_offset = size - (mi_pos + kStunAttributeHeaderSize + kStunMessageIntegritySize); size_t new_adjusted_len = size - extra_offset - kStunHeaderSize; // Writing new length of the STUN message @ Message Length in temp buffer. // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // |0 0| STUN Message Type | Message Length | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ rtc::SetBE16(temp_data.get() + 2, static_cast(new_adjusted_len)); } char hmac[kStunMessageIntegritySize]; size_t ret = rtc::ComputeHmac(rtc::DIGEST_SHA_1, password.c_str(), password.size(), temp_data.get(), mi_pos, hmac, sizeof(hmac)); ASSERT(ret == sizeof(hmac)); if (ret != sizeof(hmac)) return false; // Comparing the calculated HMAC with the one present in the message. return memcmp(data + current_pos + kStunAttributeHeaderSize, hmac, sizeof(hmac)) == 0; } bool StunMessage::AddMessageIntegrity(const std::string& password) { return AddMessageIntegrity(password.c_str(), password.size()); } bool StunMessage::AddMessageIntegrity(const char* key, size_t keylen) { // Add the attribute with a dummy value. Since this is a known attribute, it // can't fail. StunByteStringAttribute* msg_integrity_attr = new StunByteStringAttribute(STUN_ATTR_MESSAGE_INTEGRITY, std::string(kStunMessageIntegritySize, '0')); VERIFY(AddAttribute(msg_integrity_attr)); // Calculate the HMAC for the message. rtc::ByteBuffer buf; if (!Write(&buf)) return false; int msg_len_for_hmac = static_cast( buf.Length() - kStunAttributeHeaderSize - msg_integrity_attr->length()); char hmac[kStunMessageIntegritySize]; size_t ret = rtc::ComputeHmac(rtc::DIGEST_SHA_1, key, keylen, buf.Data(), msg_len_for_hmac, hmac, sizeof(hmac)); ASSERT(ret == sizeof(hmac)); if (ret != sizeof(hmac)) { LOG(LS_ERROR) << "HMAC computation failed. Message-Integrity " << "has dummy value."; return false; } // Insert correct HMAC into the attribute. msg_integrity_attr->CopyBytes(hmac, sizeof(hmac)); return true; } // Verifies a message is in fact a STUN message, by performing the checks // outlined in RFC 5389, section 7.3, including the FINGERPRINT check detailed // in section 15.5. bool StunMessage::ValidateFingerprint(const char* data, size_t size) { // Check the message length. size_t fingerprint_attr_size = kStunAttributeHeaderSize + StunUInt32Attribute::SIZE; if (size % 4 != 0 || size < kStunHeaderSize + fingerprint_attr_size) return false; // Skip the rest if the magic cookie isn't present. const char* magic_cookie = data + kStunTransactionIdOffset - kStunMagicCookieLength; if (rtc::GetBE32(magic_cookie) != kStunMagicCookie) return false; // Check the fingerprint type and length. const char* fingerprint_attr_data = data + size - fingerprint_attr_size; if (rtc::GetBE16(fingerprint_attr_data) != STUN_ATTR_FINGERPRINT || rtc::GetBE16(fingerprint_attr_data + sizeof(uint16)) != StunUInt32Attribute::SIZE) return false; // Check the fingerprint value. uint32 fingerprint = rtc::GetBE32(fingerprint_attr_data + kStunAttributeHeaderSize); return ((fingerprint ^ STUN_FINGERPRINT_XOR_VALUE) == rtc::ComputeCrc32(data, size - fingerprint_attr_size)); } bool StunMessage::AddFingerprint() { // Add the attribute with a dummy value. Since this is a known attribute, // it can't fail. StunUInt32Attribute* fingerprint_attr = new StunUInt32Attribute(STUN_ATTR_FINGERPRINT, 0); VERIFY(AddAttribute(fingerprint_attr)); // Calculate the CRC-32 for the message and insert it. rtc::ByteBuffer buf; if (!Write(&buf)) return false; int msg_len_for_crc32 = static_cast( buf.Length() - kStunAttributeHeaderSize - fingerprint_attr->length()); uint32 c = rtc::ComputeCrc32(buf.Data(), msg_len_for_crc32); // Insert the correct CRC-32, XORed with a constant, into the attribute. fingerprint_attr->SetValue(c ^ STUN_FINGERPRINT_XOR_VALUE); return true; } bool StunMessage::Read(ByteBuffer* buf) { if (!buf->ReadUInt16(&type_)) return false; if (type_ & 0x8000) { // RTP and RTCP set the MSB of first byte, since first two bits are version, // and version is always 2 (10). If set, this is not a STUN packet. return false; } if (!buf->ReadUInt16(&length_)) return false; std::string magic_cookie; if (!buf->ReadString(&magic_cookie, kStunMagicCookieLength)) return false; std::string transaction_id; if (!buf->ReadString(&transaction_id, kStunTransactionIdLength)) return false; uint32 magic_cookie_int = *reinterpret_cast(magic_cookie.data()); if (rtc::NetworkToHost32(magic_cookie_int) != kStunMagicCookie) { // If magic cookie is invalid it means that the peer implements // RFC3489 instead of RFC5389. transaction_id.insert(0, magic_cookie); } ASSERT(IsValidTransactionId(transaction_id)); transaction_id_ = transaction_id; if (length_ != buf->Length()) return false; attrs_->resize(0); size_t rest = buf->Length() - length_; while (buf->Length() > rest) { uint16 attr_type, attr_length; if (!buf->ReadUInt16(&attr_type)) return false; if (!buf->ReadUInt16(&attr_length)) return false; StunAttribute* attr = CreateAttribute(attr_type, attr_length); if (!attr) { // Skip any unknown or malformed attributes. if ((attr_length % 4) != 0) { attr_length += (4 - (attr_length % 4)); } if (!buf->Consume(attr_length)) return false; } else { if (!attr->Read(buf)) return false; attrs_->push_back(attr); } } ASSERT(buf->Length() == rest); return true; } bool StunMessage::Write(ByteBuffer* buf) const { buf->WriteUInt16(type_); buf->WriteUInt16(length_); if (!IsLegacy()) buf->WriteUInt32(kStunMagicCookie); buf->WriteString(transaction_id_); for (size_t i = 0; i < attrs_->size(); ++i) { buf->WriteUInt16((*attrs_)[i]->type()); buf->WriteUInt16(static_cast((*attrs_)[i]->length())); if (!(*attrs_)[i]->Write(buf)) return false; } return true; } StunAttributeValueType StunMessage::GetAttributeValueType(int type) const { switch (type) { case STUN_ATTR_MAPPED_ADDRESS: return STUN_VALUE_ADDRESS; case STUN_ATTR_USERNAME: return STUN_VALUE_BYTE_STRING; case STUN_ATTR_MESSAGE_INTEGRITY: return STUN_VALUE_BYTE_STRING; case STUN_ATTR_ERROR_CODE: return STUN_VALUE_ERROR_CODE; case STUN_ATTR_UNKNOWN_ATTRIBUTES: return STUN_VALUE_UINT16_LIST; case STUN_ATTR_REALM: return STUN_VALUE_BYTE_STRING; case STUN_ATTR_NONCE: return STUN_VALUE_BYTE_STRING; case STUN_ATTR_XOR_MAPPED_ADDRESS: return STUN_VALUE_XOR_ADDRESS; case STUN_ATTR_SOFTWARE: return STUN_VALUE_BYTE_STRING; case STUN_ATTR_ALTERNATE_SERVER: return STUN_VALUE_BYTE_STRING; case STUN_ATTR_FINGERPRINT: return STUN_VALUE_UINT32; case STUN_ATTR_RETRANSMIT_COUNT: return STUN_VALUE_UINT32; default: return STUN_VALUE_UNKNOWN; } } StunAttribute* StunMessage::CreateAttribute(int type, size_t length) /*const*/ { StunAttributeValueType value_type = GetAttributeValueType(type); return StunAttribute::Create(value_type, type, static_cast(length), this); } const StunAttribute* StunMessage::GetAttribute(int type) const { for (size_t i = 0; i < attrs_->size(); ++i) { if ((*attrs_)[i]->type() == type) return (*attrs_)[i]; } return NULL; } bool StunMessage::IsValidTransactionId(const std::string& transaction_id) { return transaction_id.size() == kStunTransactionIdLength || transaction_id.size() == kStunLegacyTransactionIdLength; } // StunAttribute StunAttribute::StunAttribute(uint16 type, uint16 length) : type_(type), length_(length) { } void StunAttribute::ConsumePadding(rtc::ByteBuffer* buf) const { int remainder = length_ % 4; if (remainder > 0) { buf->Consume(4 - remainder); } } void StunAttribute::WritePadding(rtc::ByteBuffer* buf) const { int remainder = length_ % 4; if (remainder > 0) { char zeroes[4] = {0}; buf->WriteBytes(zeroes, 4 - remainder); } } StunAttribute* StunAttribute::Create(StunAttributeValueType value_type, uint16 type, uint16 length, StunMessage* owner) { switch (value_type) { case STUN_VALUE_ADDRESS: return new StunAddressAttribute(type, length); case STUN_VALUE_XOR_ADDRESS: return new StunXorAddressAttribute(type, length, owner); case STUN_VALUE_UINT32: return new StunUInt32Attribute(type); case STUN_VALUE_UINT64: return new StunUInt64Attribute(type); case STUN_VALUE_BYTE_STRING: return new StunByteStringAttribute(type, length); case STUN_VALUE_ERROR_CODE: return new StunErrorCodeAttribute(type, length); case STUN_VALUE_UINT16_LIST: return new StunUInt16ListAttribute(type, length); default: return NULL; } } StunAddressAttribute* StunAttribute::CreateAddress(uint16 type) { return new StunAddressAttribute(type, 0); } StunXorAddressAttribute* StunAttribute::CreateXorAddress(uint16 type) { return new StunXorAddressAttribute(type, 0, NULL); } StunUInt64Attribute* StunAttribute::CreateUInt64(uint16 type) { return new StunUInt64Attribute(type); } StunUInt32Attribute* StunAttribute::CreateUInt32(uint16 type) { return new StunUInt32Attribute(type); } StunByteStringAttribute* StunAttribute::CreateByteString(uint16 type) { return new StunByteStringAttribute(type, 0); } StunErrorCodeAttribute* StunAttribute::CreateErrorCode() { return new StunErrorCodeAttribute( STUN_ATTR_ERROR_CODE, StunErrorCodeAttribute::MIN_SIZE); } StunUInt16ListAttribute* StunAttribute::CreateUnknownAttributes() { return new StunUInt16ListAttribute(STUN_ATTR_UNKNOWN_ATTRIBUTES, 0); } StunAddressAttribute::StunAddressAttribute(uint16 type, const rtc::SocketAddress& addr) : StunAttribute(type, 0) { SetAddress(addr); } StunAddressAttribute::StunAddressAttribute(uint16 type, uint16 length) : StunAttribute(type, length) { } bool StunAddressAttribute::Read(ByteBuffer* buf) { uint8 dummy; if (!buf->ReadUInt8(&dummy)) return false; uint8 stun_family; if (!buf->ReadUInt8(&stun_family)) { return false; } uint16 port; if (!buf->ReadUInt16(&port)) return false; if (stun_family == STUN_ADDRESS_IPV4) { in_addr v4addr; if (length() != SIZE_IP4) { return false; } if (!buf->ReadBytes(reinterpret_cast(&v4addr), sizeof(v4addr))) { return false; } rtc::IPAddress ipaddr(v4addr); SetAddress(rtc::SocketAddress(ipaddr, port)); } else if (stun_family == STUN_ADDRESS_IPV6) { in6_addr v6addr; if (length() != SIZE_IP6) { return false; } if (!buf->ReadBytes(reinterpret_cast(&v6addr), sizeof(v6addr))) { return false; } rtc::IPAddress ipaddr(v6addr); SetAddress(rtc::SocketAddress(ipaddr, port)); } else { return false; } return true; } bool StunAddressAttribute::Write(ByteBuffer* buf) const { StunAddressFamily address_family = family(); if (address_family == STUN_ADDRESS_UNDEF) { LOG(LS_ERROR) << "Error writing address attribute: unknown family."; return false; } buf->WriteUInt8(0); buf->WriteUInt8(address_family); buf->WriteUInt16(address_.port()); switch (address_.family()) { case AF_INET: { in_addr v4addr = address_.ipaddr().ipv4_address(); buf->WriteBytes(reinterpret_cast(&v4addr), sizeof(v4addr)); break; } case AF_INET6: { in6_addr v6addr = address_.ipaddr().ipv6_address(); buf->WriteBytes(reinterpret_cast(&v6addr), sizeof(v6addr)); break; } } return true; } StunXorAddressAttribute::StunXorAddressAttribute(uint16 type, const rtc::SocketAddress& addr) : StunAddressAttribute(type, addr), owner_(NULL) { } StunXorAddressAttribute::StunXorAddressAttribute(uint16 type, uint16 length, StunMessage* owner) : StunAddressAttribute(type, length), owner_(owner) {} rtc::IPAddress StunXorAddressAttribute::GetXoredIP() const { if (owner_) { rtc::IPAddress ip = ipaddr(); switch (ip.family()) { case AF_INET: { in_addr v4addr = ip.ipv4_address(); v4addr.s_addr = (v4addr.s_addr ^ rtc::HostToNetwork32(kStunMagicCookie)); return rtc::IPAddress(v4addr); } case AF_INET6: { in6_addr v6addr = ip.ipv6_address(); const std::string& transaction_id = owner_->transaction_id(); if (transaction_id.length() == kStunTransactionIdLength) { uint32 transactionid_as_ints[3]; memcpy(&transactionid_as_ints[0], transaction_id.c_str(), transaction_id.length()); uint32* ip_as_ints = reinterpret_cast(&v6addr.s6_addr); // Transaction ID is in network byte order, but magic cookie // is stored in host byte order. ip_as_ints[0] = (ip_as_ints[0] ^ rtc::HostToNetwork32(kStunMagicCookie)); ip_as_ints[1] = (ip_as_ints[1] ^ transactionid_as_ints[0]); ip_as_ints[2] = (ip_as_ints[2] ^ transactionid_as_ints[1]); ip_as_ints[3] = (ip_as_ints[3] ^ transactionid_as_ints[2]); return rtc::IPAddress(v6addr); } break; } } } // Invalid ip family or transaction ID, or missing owner. // Return an AF_UNSPEC address. return rtc::IPAddress(); } bool StunXorAddressAttribute::Read(ByteBuffer* buf) { if (!StunAddressAttribute::Read(buf)) return false; uint16 xoredport = port() ^ (kStunMagicCookie >> 16); rtc::IPAddress xored_ip = GetXoredIP(); SetAddress(rtc::SocketAddress(xored_ip, xoredport)); return true; } bool StunXorAddressAttribute::Write(ByteBuffer* buf) const { StunAddressFamily address_family = family(); if (address_family == STUN_ADDRESS_UNDEF) { LOG(LS_ERROR) << "Error writing xor-address attribute: unknown family."; return false; } rtc::IPAddress xored_ip = GetXoredIP(); if (xored_ip.family() == AF_UNSPEC) { return false; } buf->WriteUInt8(0); buf->WriteUInt8(family()); buf->WriteUInt16(port() ^ (kStunMagicCookie >> 16)); switch (xored_ip.family()) { case AF_INET: { in_addr v4addr = xored_ip.ipv4_address(); buf->WriteBytes(reinterpret_cast(&v4addr), sizeof(v4addr)); break; } case AF_INET6: { in6_addr v6addr = xored_ip.ipv6_address(); buf->WriteBytes(reinterpret_cast(&v6addr), sizeof(v6addr)); break; } } return true; } StunUInt32Attribute::StunUInt32Attribute(uint16 type, uint32 value) : StunAttribute(type, SIZE), bits_(value) { } StunUInt32Attribute::StunUInt32Attribute(uint16 type) : StunAttribute(type, SIZE), bits_(0) { } bool StunUInt32Attribute::GetBit(size_t index) const { ASSERT(index < 32); return static_cast((bits_ >> index) & 0x1); } void StunUInt32Attribute::SetBit(size_t index, bool value) { ASSERT(index < 32); bits_ &= ~(1 << index); bits_ |= value ? (1 << index) : 0; } bool StunUInt32Attribute::Read(ByteBuffer* buf) { if (length() != SIZE || !buf->ReadUInt32(&bits_)) return false; return true; } bool StunUInt32Attribute::Write(ByteBuffer* buf) const { buf->WriteUInt32(bits_); return true; } StunUInt64Attribute::StunUInt64Attribute(uint16 type, uint64 value) : StunAttribute(type, SIZE), bits_(value) { } StunUInt64Attribute::StunUInt64Attribute(uint16 type) : StunAttribute(type, SIZE), bits_(0) { } bool StunUInt64Attribute::Read(ByteBuffer* buf) { if (length() != SIZE || !buf->ReadUInt64(&bits_)) return false; return true; } bool StunUInt64Attribute::Write(ByteBuffer* buf) const { buf->WriteUInt64(bits_); return true; } StunByteStringAttribute::StunByteStringAttribute(uint16 type) : StunAttribute(type, 0), bytes_(NULL) { } StunByteStringAttribute::StunByteStringAttribute(uint16 type, const std::string& str) : StunAttribute(type, 0), bytes_(NULL) { CopyBytes(str.c_str(), str.size()); } StunByteStringAttribute::StunByteStringAttribute(uint16 type, const void* bytes, size_t length) : StunAttribute(type, 0), bytes_(NULL) { CopyBytes(bytes, length); } StunByteStringAttribute::StunByteStringAttribute(uint16 type, uint16 length) : StunAttribute(type, length), bytes_(NULL) { } StunByteStringAttribute::~StunByteStringAttribute() { delete [] bytes_; } void StunByteStringAttribute::CopyBytes(const char* bytes) { CopyBytes(bytes, strlen(bytes)); } void StunByteStringAttribute::CopyBytes(const void* bytes, size_t length) { char* new_bytes = new char[length]; memcpy(new_bytes, bytes, length); SetBytes(new_bytes, length); } uint8 StunByteStringAttribute::GetByte(size_t index) const { ASSERT(bytes_ != NULL); ASSERT(index < length()); return static_cast(bytes_[index]); } void StunByteStringAttribute::SetByte(size_t index, uint8 value) { ASSERT(bytes_ != NULL); ASSERT(index < length()); bytes_[index] = value; } bool StunByteStringAttribute::Read(ByteBuffer* buf) { bytes_ = new char[length()]; if (!buf->ReadBytes(bytes_, length())) { return false; } ConsumePadding(buf); return true; } bool StunByteStringAttribute::Write(ByteBuffer* buf) const { buf->WriteBytes(bytes_, length()); WritePadding(buf); return true; } void StunByteStringAttribute::SetBytes(char* bytes, size_t length) { delete [] bytes_; bytes_ = bytes; SetLength(static_cast(length)); } StunErrorCodeAttribute::StunErrorCodeAttribute(uint16 type, int code, const std::string& reason) : StunAttribute(type, 0) { SetCode(code); SetReason(reason); } StunErrorCodeAttribute::StunErrorCodeAttribute(uint16 type, uint16 length) : StunAttribute(type, length), class_(0), number_(0) { } StunErrorCodeAttribute::~StunErrorCodeAttribute() { } int StunErrorCodeAttribute::code() const { return class_ * 100 + number_; } void StunErrorCodeAttribute::SetCode(int code) { class_ = static_cast(code / 100); number_ = static_cast(code % 100); } void StunErrorCodeAttribute::SetReason(const std::string& reason) { SetLength(MIN_SIZE + static_cast(reason.size())); reason_ = reason; } bool StunErrorCodeAttribute::Read(ByteBuffer* buf) { uint32 val; if (length() < MIN_SIZE || !buf->ReadUInt32(&val)) return false; if ((val >> 11) != 0) LOG(LS_ERROR) << "error-code bits not zero"; class_ = ((val >> 8) & 0x7); number_ = (val & 0xff); if (!buf->ReadString(&reason_, length() - 4)) return false; ConsumePadding(buf); return true; } bool StunErrorCodeAttribute::Write(ByteBuffer* buf) const { buf->WriteUInt32(class_ << 8 | number_); buf->WriteString(reason_); WritePadding(buf); return true; } StunUInt16ListAttribute::StunUInt16ListAttribute(uint16 type, uint16 length) : StunAttribute(type, length) { attr_types_ = new std::vector(); } StunUInt16ListAttribute::~StunUInt16ListAttribute() { delete attr_types_; } size_t StunUInt16ListAttribute::Size() const { return attr_types_->size(); } uint16 StunUInt16ListAttribute::GetType(int index) const { return (*attr_types_)[index]; } void StunUInt16ListAttribute::SetType(int index, uint16 value) { (*attr_types_)[index] = value; } void StunUInt16ListAttribute::AddType(uint16 value) { attr_types_->push_back(value); SetLength(static_cast(attr_types_->size() * 2)); } bool StunUInt16ListAttribute::Read(ByteBuffer* buf) { if (length() % 2) return false; for (size_t i = 0; i < length() / 2; i++) { uint16 attr; if (!buf->ReadUInt16(&attr)) return false; attr_types_->push_back(attr); } // Padding of these attributes is done in RFC 5389 style. This is // slightly different from RFC3489, but it shouldn't be important. // RFC3489 pads out to a 32 bit boundary by duplicating one of the // entries in the list (not necessarily the last one - it's unspecified). // RFC5389 pads on the end, and the bytes are always ignored. ConsumePadding(buf); return true; } bool StunUInt16ListAttribute::Write(ByteBuffer* buf) const { for (size_t i = 0; i < attr_types_->size(); ++i) { buf->WriteUInt16((*attr_types_)[i]); } WritePadding(buf); return true; } int GetStunSuccessResponseType(int req_type) { return IsStunRequestType(req_type) ? (req_type | 0x100) : -1; } int GetStunErrorResponseType(int req_type) { return IsStunRequestType(req_type) ? (req_type | 0x110) : -1; } bool IsStunRequestType(int msg_type) { return ((msg_type & kStunTypeMask) == 0x000); } bool IsStunIndicationType(int msg_type) { return ((msg_type & kStunTypeMask) == 0x010); } bool IsStunSuccessResponseType(int msg_type) { return ((msg_type & kStunTypeMask) == 0x100); } bool IsStunErrorResponseType(int msg_type) { return ((msg_type & kStunTypeMask) == 0x110); } bool ComputeStunCredentialHash(const std::string& username, const std::string& realm, const std::string& password, std::string* hash) { // http://tools.ietf.org/html/rfc5389#section-15.4 // long-term credentials will be calculated using the key and key is // key = MD5(username ":" realm ":" SASLprep(password)) std::string input = username; input += ':'; input += realm; input += ':'; input += password; char digest[rtc::MessageDigest::kMaxSize]; size_t size = rtc::ComputeDigest( rtc::DIGEST_MD5, input.c_str(), input.size(), digest, sizeof(digest)); if (size == 0) { return false; } *hash = std::string(digest, size); return true; } } // namespace cricket