/* * libjingle * Copyright 2004, Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "talk/p2p/base/transport.h" #include "talk/p2p/base/candidate.h" #include "talk/p2p/base/constants.h" #include "talk/p2p/base/parsing.h" #include "talk/p2p/base/port.h" #include "talk/p2p/base/sessionmanager.h" #include "talk/p2p/base/transportchannelimpl.h" #include "talk/xmllite/xmlelement.h" #include "talk/xmpp/constants.h" #include "webrtc/base/bind.h" #include "webrtc/base/common.h" #include "webrtc/base/logging.h" namespace cricket { using rtc::Bind; enum { MSG_ONSIGNALINGREADY = 1, MSG_ONREMOTECANDIDATE, MSG_READSTATE, MSG_WRITESTATE, MSG_REQUESTSIGNALING, MSG_CANDIDATEREADY, MSG_ROUTECHANGE, MSG_CONNECTING, MSG_CANDIDATEALLOCATIONCOMPLETE, MSG_ROLECONFLICT, MSG_COMPLETED, MSG_FAILED, }; struct ChannelParams : public rtc::MessageData { ChannelParams() : channel(NULL), candidate(NULL) {} explicit ChannelParams(int component) : component(component), channel(NULL), candidate(NULL) {} explicit ChannelParams(Candidate* candidate) : channel(NULL), candidate(candidate) { } ~ChannelParams() { delete candidate; } std::string name; int component; TransportChannelImpl* channel; Candidate* candidate; }; static std::string IceProtoToString(TransportProtocol proto) { std::string proto_str; switch (proto) { case ICEPROTO_GOOGLE: proto_str = "gice"; break; case ICEPROTO_HYBRID: proto_str = "hybrid"; break; case ICEPROTO_RFC5245: proto_str = "ice"; break; default: ASSERT(false); break; } return proto_str; } static bool VerifyIceParams(const TransportDescription& desc) { // For legacy protocols. if (desc.ice_ufrag.empty() && desc.ice_pwd.empty()) return true; if (desc.ice_ufrag.length() < ICE_UFRAG_MIN_LENGTH || desc.ice_ufrag.length() > ICE_UFRAG_MAX_LENGTH) { return false; } if (desc.ice_pwd.length() < ICE_PWD_MIN_LENGTH || desc.ice_pwd.length() > ICE_PWD_MAX_LENGTH) { return false; } return true; } bool BadTransportDescription(const std::string& desc, std::string* err_desc) { if (err_desc) { *err_desc = desc; } LOG(LS_ERROR) << desc; return false; } bool IceCredentialsChanged(const std::string& old_ufrag, const std::string& old_pwd, const std::string& new_ufrag, const std::string& new_pwd) { // TODO(jiayl): The standard (RFC 5245 Section 9.1.1.1) says that ICE should // restart when both the ufrag and password are changed, but we do restart // when either ufrag or passwrod is changed to keep compatible with GICE. We // should clean this up when GICE is no longer used. return (old_ufrag != new_ufrag) || (old_pwd != new_pwd); } static bool IceCredentialsChanged(const TransportDescription& old_desc, const TransportDescription& new_desc) { return IceCredentialsChanged(old_desc.ice_ufrag, old_desc.ice_pwd, new_desc.ice_ufrag, new_desc.ice_pwd); } Transport::Transport(rtc::Thread* signaling_thread, rtc::Thread* worker_thread, const std::string& content_name, const std::string& type, PortAllocator* allocator) : signaling_thread_(signaling_thread), worker_thread_(worker_thread), content_name_(content_name), type_(type), allocator_(allocator), destroyed_(false), readable_(TRANSPORT_STATE_NONE), writable_(TRANSPORT_STATE_NONE), was_writable_(false), connect_requested_(false), ice_role_(ICEROLE_UNKNOWN), tiebreaker_(0), protocol_(ICEPROTO_HYBRID), remote_ice_mode_(ICEMODE_FULL) { } Transport::~Transport() { ASSERT(signaling_thread_->IsCurrent()); ASSERT(destroyed_); } void Transport::SetIceRole(IceRole role) { worker_thread_->Invoke(Bind(&Transport::SetIceRole_w, this, role)); } void Transport::SetIdentity(rtc::SSLIdentity* identity) { worker_thread_->Invoke(Bind(&Transport::SetIdentity_w, this, identity)); } bool Transport::GetIdentity(rtc::SSLIdentity** identity) { // The identity is set on the worker thread, so for safety it must also be // acquired on the worker thread. return worker_thread_->Invoke( Bind(&Transport::GetIdentity_w, this, identity)); } bool Transport::GetRemoteCertificate(rtc::SSLCertificate** cert) { // Channels can be deleted on the worker thread, so for safety the remote // certificate is acquired on the worker thread. return worker_thread_->Invoke( Bind(&Transport::GetRemoteCertificate_w, this, cert)); } bool Transport::GetRemoteCertificate_w(rtc::SSLCertificate** cert) { ASSERT(worker_thread()->IsCurrent()); if (channels_.empty()) return false; ChannelMap::iterator iter = channels_.begin(); return iter->second->GetRemoteCertificate(cert); } bool Transport::SetLocalTransportDescription( const TransportDescription& description, ContentAction action, std::string* error_desc) { return worker_thread_->Invoke(Bind( &Transport::SetLocalTransportDescription_w, this, description, action, error_desc)); } bool Transport::SetRemoteTransportDescription( const TransportDescription& description, ContentAction action, std::string* error_desc) { return worker_thread_->Invoke(Bind( &Transport::SetRemoteTransportDescription_w, this, description, action, error_desc)); } TransportChannelImpl* Transport::CreateChannel(int component) { return worker_thread_->Invoke(Bind( &Transport::CreateChannel_w, this, component)); } TransportChannelImpl* Transport::CreateChannel_w(int component) { ASSERT(worker_thread()->IsCurrent()); TransportChannelImpl *impl; rtc::CritScope cs(&crit_); // Create the entry if it does not exist. bool impl_exists = false; if (channels_.find(component) == channels_.end()) { impl = CreateTransportChannel(component); channels_[component] = ChannelMapEntry(impl); } else { impl = channels_[component].get(); impl_exists = true; } // Increase the ref count. channels_[component].AddRef(); destroyed_ = false; if (impl_exists) { // If this is an existing channel, we should just return it without // connecting to all the signal again. return impl; } // Push down our transport state to the new channel. impl->SetIceRole(ice_role_); impl->SetIceTiebreaker(tiebreaker_); // TODO(ronghuawu): Change CreateChannel_w to be able to return error since // below Apply**Description_w calls can fail. if (local_description_) ApplyLocalTransportDescription_w(impl, NULL); if (remote_description_) ApplyRemoteTransportDescription_w(impl, NULL); if (local_description_ && remote_description_) ApplyNegotiatedTransportDescription_w(impl, NULL); impl->SignalReadableState.connect(this, &Transport::OnChannelReadableState); impl->SignalWritableState.connect(this, &Transport::OnChannelWritableState); impl->SignalRequestSignaling.connect( this, &Transport::OnChannelRequestSignaling); impl->SignalCandidateReady.connect(this, &Transport::OnChannelCandidateReady); impl->SignalRouteChange.connect(this, &Transport::OnChannelRouteChange); impl->SignalCandidatesAllocationDone.connect( this, &Transport::OnChannelCandidatesAllocationDone); impl->SignalRoleConflict.connect(this, &Transport::OnRoleConflict); impl->SignalConnectionRemoved.connect( this, &Transport::OnChannelConnectionRemoved); if (connect_requested_) { impl->Connect(); if (channels_.size() == 1) { // If this is the first channel, then indicate that we have started // connecting. signaling_thread()->Post(this, MSG_CONNECTING, NULL); } } return impl; } TransportChannelImpl* Transport::GetChannel(int component) { rtc::CritScope cs(&crit_); ChannelMap::iterator iter = channels_.find(component); return (iter != channels_.end()) ? iter->second.get() : NULL; } bool Transport::HasChannels() { rtc::CritScope cs(&crit_); return !channels_.empty(); } void Transport::DestroyChannel(int component) { worker_thread_->Invoke(Bind( &Transport::DestroyChannel_w, this, component)); } void Transport::DestroyChannel_w(int component) { ASSERT(worker_thread()->IsCurrent()); TransportChannelImpl* impl = NULL; { rtc::CritScope cs(&crit_); ChannelMap::iterator iter = channels_.find(component); if (iter == channels_.end()) return; iter->second.DecRef(); if (!iter->second.ref()) { impl = iter->second.get(); channels_.erase(iter); } } if (connect_requested_ && channels_.empty()) { // We're no longer attempting to connect. signaling_thread()->Post(this, MSG_CONNECTING, NULL); } if (impl) { // Check in case the deleted channel was the only non-writable channel. OnChannelWritableState(impl); DestroyTransportChannel(impl); } } void Transport::ConnectChannels() { ASSERT(signaling_thread()->IsCurrent()); worker_thread_->Invoke(Bind(&Transport::ConnectChannels_w, this)); } void Transport::ConnectChannels_w() { ASSERT(worker_thread()->IsCurrent()); if (connect_requested_ || channels_.empty()) return; connect_requested_ = true; signaling_thread()->Post( this, MSG_CANDIDATEREADY, NULL); if (!local_description_) { // TOOD(mallinath) : TransportDescription(TD) shouldn't be generated here. // As Transport must know TD is offer or answer and cricket::Transport // doesn't have the capability to decide it. This should be set by the // Session. // Session must generate local TD before remote candidates pushed when // initiate request initiated by the remote. LOG(LS_INFO) << "Transport::ConnectChannels_w: No local description has " << "been set. Will generate one."; TransportDescription desc(NS_GINGLE_P2P, std::vector(), rtc::CreateRandomString(ICE_UFRAG_LENGTH), rtc::CreateRandomString(ICE_PWD_LENGTH), ICEMODE_FULL, CONNECTIONROLE_NONE, NULL, Candidates()); SetLocalTransportDescription_w(desc, CA_OFFER, NULL); } CallChannels_w(&TransportChannelImpl::Connect); if (!channels_.empty()) { signaling_thread()->Post(this, MSG_CONNECTING, NULL); } } void Transport::OnConnecting_s() { ASSERT(signaling_thread()->IsCurrent()); SignalConnecting(this); } void Transport::DestroyAllChannels() { ASSERT(signaling_thread()->IsCurrent()); worker_thread_->Invoke( Bind(&Transport::DestroyAllChannels_w, this)); worker_thread()->Clear(this); signaling_thread()->Clear(this); destroyed_ = true; } void Transport::DestroyAllChannels_w() { ASSERT(worker_thread()->IsCurrent()); std::vector impls; { rtc::CritScope cs(&crit_); for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { iter->second.DecRef(); if (!iter->second.ref()) impls.push_back(iter->second.get()); } } channels_.clear(); for (size_t i = 0; i < impls.size(); ++i) DestroyTransportChannel(impls[i]); } void Transport::ResetChannels() { ASSERT(signaling_thread()->IsCurrent()); worker_thread_->Invoke(Bind(&Transport::ResetChannels_w, this)); } void Transport::ResetChannels_w() { ASSERT(worker_thread()->IsCurrent()); // We are no longer attempting to connect connect_requested_ = false; // Clear out the old messages, they aren't relevant rtc::CritScope cs(&crit_); ready_candidates_.clear(); // Reset all of the channels CallChannels_w(&TransportChannelImpl::Reset); } void Transport::OnSignalingReady() { ASSERT(signaling_thread()->IsCurrent()); if (destroyed_) return; worker_thread()->Post(this, MSG_ONSIGNALINGREADY, NULL); // Notify the subclass. OnTransportSignalingReady(); } void Transport::CallChannels_w(TransportChannelFunc func) { ASSERT(worker_thread()->IsCurrent()); rtc::CritScope cs(&crit_); for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { ((iter->second.get())->*func)(); } } bool Transport::VerifyCandidate(const Candidate& cand, std::string* error) { // No address zero. if (cand.address().IsNil() || cand.address().IsAny()) { *error = "candidate has address of zero"; return false; } // Disallow all ports below 1024, except for 80 and 443 on public addresses. int port = cand.address().port(); if (cand.protocol() == TCP_PROTOCOL_NAME && (cand.tcptype() == TCPTYPE_ACTIVE_STR || port == 0)) { // Expected for active-only candidates per // http://tools.ietf.org/html/rfc6544#section-4.5 so no error. // Libjingle clients emit port 0, in "active" mode. return true; } if (port < 1024) { if ((port != 80) && (port != 443)) { *error = "candidate has port below 1024, but not 80 or 443"; return false; } if (cand.address().IsPrivateIP()) { *error = "candidate has port of 80 or 443 with private IP address"; return false; } } return true; } bool Transport::GetStats(TransportStats* stats) { ASSERT(signaling_thread()->IsCurrent()); return worker_thread_->Invoke(Bind( &Transport::GetStats_w, this, stats)); } bool Transport::GetStats_w(TransportStats* stats) { ASSERT(worker_thread()->IsCurrent()); stats->content_name = content_name(); stats->channel_stats.clear(); for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { TransportChannelStats substats; substats.component = iter->second->component(); if (!iter->second->GetStats(&substats.connection_infos)) { return false; } stats->channel_stats.push_back(substats); } return true; } bool Transport::GetSslRole(rtc::SSLRole* ssl_role) const { return worker_thread_->Invoke(Bind( &Transport::GetSslRole_w, this, ssl_role)); } void Transport::OnRemoteCandidates(const std::vector& candidates) { for (std::vector::const_iterator iter = candidates.begin(); iter != candidates.end(); ++iter) { OnRemoteCandidate(*iter); } } void Transport::OnRemoteCandidate(const Candidate& candidate) { ASSERT(signaling_thread()->IsCurrent()); if (destroyed_) return; if (!HasChannel(candidate.component())) { LOG(LS_WARNING) << "Ignoring candidate for unknown component " << candidate.component(); return; } ChannelParams* params = new ChannelParams(new Candidate(candidate)); worker_thread()->Post(this, MSG_ONREMOTECANDIDATE, params); } void Transport::OnRemoteCandidate_w(const Candidate& candidate) { ASSERT(worker_thread()->IsCurrent()); ChannelMap::iterator iter = channels_.find(candidate.component()); // It's ok for a channel to go away while this message is in transit. if (iter != channels_.end()) { iter->second->OnCandidate(candidate); } } void Transport::OnChannelReadableState(TransportChannel* channel) { ASSERT(worker_thread()->IsCurrent()); signaling_thread()->Post(this, MSG_READSTATE, NULL); } void Transport::OnChannelReadableState_s() { ASSERT(signaling_thread()->IsCurrent()); TransportState readable = GetTransportState_s(true); if (readable_ != readable) { readable_ = readable; SignalReadableState(this); } } void Transport::OnChannelWritableState(TransportChannel* channel) { ASSERT(worker_thread()->IsCurrent()); signaling_thread()->Post(this, MSG_WRITESTATE, NULL); MaybeCompleted_w(); } void Transport::OnChannelWritableState_s() { ASSERT(signaling_thread()->IsCurrent()); TransportState writable = GetTransportState_s(false); if (writable_ != writable) { was_writable_ = (writable_ == TRANSPORT_STATE_ALL); writable_ = writable; SignalWritableState(this); } } TransportState Transport::GetTransportState_s(bool read) { ASSERT(signaling_thread()->IsCurrent()); rtc::CritScope cs(&crit_); bool any = false; bool all = !channels_.empty(); for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { bool b = (read ? iter->second->readable() : iter->second->writable()); any = any || b; all = all && b; } if (all) { return TRANSPORT_STATE_ALL; } else if (any) { return TRANSPORT_STATE_SOME; } else { return TRANSPORT_STATE_NONE; } } void Transport::OnChannelRequestSignaling(TransportChannelImpl* channel) { ASSERT(worker_thread()->IsCurrent()); ChannelParams* params = new ChannelParams(channel->component()); signaling_thread()->Post(this, MSG_REQUESTSIGNALING, params); } void Transport::OnChannelRequestSignaling_s(int component) { ASSERT(signaling_thread()->IsCurrent()); LOG(LS_INFO) << "Transport: " << content_name_ << ", allocating candidates"; // Resetting ICE state for the channel. { rtc::CritScope cs(&crit_); ChannelMap::iterator iter = channels_.find(component); if (iter != channels_.end()) iter->second.set_candidates_allocated(false); } SignalRequestSignaling(this); } void Transport::OnChannelCandidateReady(TransportChannelImpl* channel, const Candidate& candidate) { ASSERT(worker_thread()->IsCurrent()); rtc::CritScope cs(&crit_); ready_candidates_.push_back(candidate); // We hold any messages until the client lets us connect. if (connect_requested_) { signaling_thread()->Post( this, MSG_CANDIDATEREADY, NULL); } } void Transport::OnChannelCandidateReady_s() { ASSERT(signaling_thread()->IsCurrent()); ASSERT(connect_requested_); std::vector candidates; { rtc::CritScope cs(&crit_); candidates.swap(ready_candidates_); } // we do the deleting of Candidate* here to keep the new above and // delete below close to each other if (!candidates.empty()) { SignalCandidatesReady(this, candidates); } } void Transport::OnChannelRouteChange(TransportChannel* channel, const Candidate& remote_candidate) { ASSERT(worker_thread()->IsCurrent()); ChannelParams* params = new ChannelParams(new Candidate(remote_candidate)); params->channel = static_cast(channel); signaling_thread()->Post(this, MSG_ROUTECHANGE, params); } void Transport::OnChannelRouteChange_s(const TransportChannel* channel, const Candidate& remote_candidate) { ASSERT(signaling_thread()->IsCurrent()); SignalRouteChange(this, remote_candidate.component(), remote_candidate); } void Transport::OnChannelCandidatesAllocationDone( TransportChannelImpl* channel) { ASSERT(worker_thread()->IsCurrent()); rtc::CritScope cs(&crit_); ChannelMap::iterator iter = channels_.find(channel->component()); ASSERT(iter != channels_.end()); LOG(LS_INFO) << "Transport: " << content_name_ << ", component " << channel->component() << " allocation complete"; iter->second.set_candidates_allocated(true); // If all channels belonging to this Transport got signal, then // forward this signal to upper layer. // Can this signal arrive before all transport channels are created? for (iter = channels_.begin(); iter != channels_.end(); ++iter) { if (!iter->second.candidates_allocated()) return; } signaling_thread_->Post(this, MSG_CANDIDATEALLOCATIONCOMPLETE); MaybeCompleted_w(); } void Transport::OnChannelCandidatesAllocationDone_s() { ASSERT(signaling_thread()->IsCurrent()); LOG(LS_INFO) << "Transport: " << content_name_ << " allocation complete"; SignalCandidatesAllocationDone(this); } void Transport::OnRoleConflict(TransportChannelImpl* channel) { signaling_thread_->Post(this, MSG_ROLECONFLICT); } void Transport::OnChannelConnectionRemoved(TransportChannelImpl* channel) { ASSERT(worker_thread()->IsCurrent()); MaybeCompleted_w(); // Check if the state is now Failed. // Failed is only available in the Controlling ICE role. if (channel->GetIceRole() != ICEROLE_CONTROLLING) { return; } ChannelMap::iterator iter = channels_.find(channel->component()); ASSERT(iter != channels_.end()); // Failed can only occur after candidate allocation has stopped. if (!iter->second.candidates_allocated()) { return; } size_t connections = channel->GetConnectionCount(); if (connections == 0) { // A Transport has failed if any of its channels have no remaining // connections. signaling_thread_->Post(this, MSG_FAILED); } } void Transport::MaybeCompleted_w() { ASSERT(worker_thread()->IsCurrent()); // A Transport's ICE process is completed if all of its channels are writable, // have finished allocating candidates, and have pruned all but one of their // connections. ChannelMap::const_iterator iter; for (iter = channels_.begin(); iter != channels_.end(); ++iter) { const TransportChannelImpl* channel = iter->second.get(); if (!(channel->writable() && channel->GetConnectionCount() == 1 && channel->GetIceRole() == ICEROLE_CONTROLLING && iter->second.candidates_allocated())) { return; } } signaling_thread_->Post(this, MSG_COMPLETED); } void Transport::SetIceRole_w(IceRole role) { rtc::CritScope cs(&crit_); ice_role_ = role; for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { iter->second->SetIceRole(ice_role_); } } void Transport::SetRemoteIceMode_w(IceMode mode) { rtc::CritScope cs(&crit_); remote_ice_mode_ = mode; // Shouldn't channels be created after this method executed? for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { iter->second->SetRemoteIceMode(remote_ice_mode_); } } bool Transport::SetLocalTransportDescription_w( const TransportDescription& desc, ContentAction action, std::string* error_desc) { bool ret = true; rtc::CritScope cs(&crit_); if (!VerifyIceParams(desc)) { return BadTransportDescription("Invalid ice-ufrag or ice-pwd length", error_desc); } if (local_description_ && IceCredentialsChanged(*local_description_, desc)) { IceRole new_ice_role = (action == CA_OFFER) ? ICEROLE_CONTROLLING : ICEROLE_CONTROLLED; // It must be called before ApplyLocalTransportDescription_w, which may // trigger an ICE restart and depends on the new ICE role. SetIceRole_w(new_ice_role); } local_description_.reset(new TransportDescription(desc)); for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { ret &= ApplyLocalTransportDescription_w(iter->second.get(), error_desc); } if (!ret) return false; // If PRANSWER/ANSWER is set, we should decide transport protocol type. if (action == CA_PRANSWER || action == CA_ANSWER) { ret &= NegotiateTransportDescription_w(action, error_desc); } return ret; } bool Transport::SetRemoteTransportDescription_w( const TransportDescription& desc, ContentAction action, std::string* error_desc) { bool ret = true; rtc::CritScope cs(&crit_); if (!VerifyIceParams(desc)) { return BadTransportDescription("Invalid ice-ufrag or ice-pwd length", error_desc); } remote_description_.reset(new TransportDescription(desc)); for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { ret &= ApplyRemoteTransportDescription_w(iter->second.get(), error_desc); } // If PRANSWER/ANSWER is set, we should decide transport protocol type. if (action == CA_PRANSWER || action == CA_ANSWER) { ret = NegotiateTransportDescription_w(CA_OFFER, error_desc); } return ret; } bool Transport::ApplyLocalTransportDescription_w(TransportChannelImpl* ch, std::string* error_desc) { // If existing protocol_type is HYBRID, we may have not chosen the final // protocol type, so update the channel protocol type from the // local description. Otherwise, skip updating the protocol type. // We check for HYBRID to avoid accidental changes; in the case of a // session renegotiation, the new offer will have the google-ice ICE option, // so we need to make sure we don't switch back from ICE mode to HYBRID // when this happens. // There are some other ways we could have solved this, but this is the // simplest. The ultimate solution will be to get rid of GICE altogether. IceProtocolType protocol_type; if (ch->GetIceProtocolType(&protocol_type) && protocol_type == ICEPROTO_HYBRID) { ch->SetIceProtocolType( TransportProtocolFromDescription(local_description())); } ch->SetIceCredentials(local_description_->ice_ufrag, local_description_->ice_pwd); return true; } bool Transport::ApplyRemoteTransportDescription_w(TransportChannelImpl* ch, std::string* error_desc) { ch->SetRemoteIceCredentials(remote_description_->ice_ufrag, remote_description_->ice_pwd); return true; } bool Transport::ApplyNegotiatedTransportDescription_w( TransportChannelImpl* channel, std::string* error_desc) { channel->SetIceProtocolType(protocol_); channel->SetRemoteIceMode(remote_ice_mode_); return true; } bool Transport::NegotiateTransportDescription_w(ContentAction local_role, std::string* error_desc) { // TODO(ekr@rtfm.com): This is ICE-specific stuff. Refactor into // P2PTransport. const TransportDescription* offer; const TransportDescription* answer; if (local_role == CA_OFFER) { offer = local_description_.get(); answer = remote_description_.get(); } else { offer = remote_description_.get(); answer = local_description_.get(); } TransportProtocol offer_proto = TransportProtocolFromDescription(offer); TransportProtocol answer_proto = TransportProtocolFromDescription(answer); // If offered protocol is gice/ice, then we expect to receive matching // protocol in answer, anything else is treated as an error. // HYBRID is not an option when offered specific protocol. // If offered protocol is HYBRID and answered protocol is HYBRID then // gice is preferred protocol. // TODO(mallinath) - Answer from local or remote should't have both ice // and gice support. It should always pick which protocol it wants to use. // Once WebRTC stops supporting gice (for backward compatibility), HYBRID in // answer must be treated as error. if ((offer_proto == ICEPROTO_GOOGLE || offer_proto == ICEPROTO_RFC5245) && (offer_proto != answer_proto)) { std::ostringstream desc; desc << "Offer and answer protocol mismatch: " << IceProtoToString(offer_proto) << " vs " << IceProtoToString(answer_proto); return BadTransportDescription(desc.str(), error_desc); } protocol_ = answer_proto == ICEPROTO_HYBRID ? ICEPROTO_GOOGLE : answer_proto; // If transport is in ICEROLE_CONTROLLED and remote end point supports only // ice_lite, this local end point should take CONTROLLING role. if (ice_role_ == ICEROLE_CONTROLLED && remote_description_->ice_mode == ICEMODE_LITE) { SetIceRole_w(ICEROLE_CONTROLLING); } // Update remote ice_mode to all existing channels. remote_ice_mode_ = remote_description_->ice_mode; // Now that we have negotiated everything, push it downward. // Note that we cache the result so that if we have race conditions // between future SetRemote/SetLocal invocations and new channel // creation, we have the negotiation state saved until a new // negotiation happens. for (ChannelMap::iterator iter = channels_.begin(); iter != channels_.end(); ++iter) { if (!ApplyNegotiatedTransportDescription_w(iter->second.get(), error_desc)) return false; } return true; } void Transport::OnMessage(rtc::Message* msg) { switch (msg->message_id) { case MSG_ONSIGNALINGREADY: CallChannels_w(&TransportChannelImpl::OnSignalingReady); break; case MSG_ONREMOTECANDIDATE: { ChannelParams* params = static_cast(msg->pdata); OnRemoteCandidate_w(*params->candidate); delete params; } break; case MSG_CONNECTING: OnConnecting_s(); break; case MSG_READSTATE: OnChannelReadableState_s(); break; case MSG_WRITESTATE: OnChannelWritableState_s(); break; case MSG_REQUESTSIGNALING: { ChannelParams* params = static_cast(msg->pdata); OnChannelRequestSignaling_s(params->component); delete params; } break; case MSG_CANDIDATEREADY: OnChannelCandidateReady_s(); break; case MSG_ROUTECHANGE: { ChannelParams* params = static_cast(msg->pdata); OnChannelRouteChange_s(params->channel, *params->candidate); delete params; } break; case MSG_CANDIDATEALLOCATIONCOMPLETE: OnChannelCandidatesAllocationDone_s(); break; case MSG_ROLECONFLICT: SignalRoleConflict(); break; case MSG_COMPLETED: SignalCompleted(this); break; case MSG_FAILED: SignalFailed(this); break; } } bool TransportParser::ParseAddress(const buzz::XmlElement* elem, const buzz::QName& address_name, const buzz::QName& port_name, rtc::SocketAddress* address, ParseError* error) { if (!elem->HasAttr(address_name)) return BadParse("address does not have " + address_name.LocalPart(), error); if (!elem->HasAttr(port_name)) return BadParse("address does not have " + port_name.LocalPart(), error); address->SetIP(elem->Attr(address_name)); std::istringstream ist(elem->Attr(port_name)); int port = 0; ist >> port; address->SetPort(port); return true; } // We're GICE if the namespace is NS_GOOGLE_P2P, or if NS_JINGLE_ICE_UDP is // used and the GICE ice-option is set. TransportProtocol TransportProtocolFromDescription( const TransportDescription* desc) { ASSERT(desc != NULL); if (desc->transport_type == NS_JINGLE_ICE_UDP) { return (desc->HasOption(ICE_OPTION_GICE)) ? ICEPROTO_HYBRID : ICEPROTO_RFC5245; } return ICEPROTO_GOOGLE; } } // namespace cricket