/* * libjingle * Copyright 2011, Google Inc. * Copyright 2011, RTFM, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "talk/p2p/base/dtlstransportchannel.h" #include "talk/p2p/base/common.h" #include "webrtc/base/buffer.h" #include "webrtc/base/dscp.h" #include "webrtc/base/messagequeue.h" #include "webrtc/base/sslstreamadapter.h" #include "webrtc/base/stream.h" #include "webrtc/base/thread.h" namespace cricket { // We don't pull the RTP constants from rtputils.h, to avoid a layer violation. static const size_t kDtlsRecordHeaderLen = 13; static const size_t kMaxDtlsPacketLen = 2048; static const size_t kMinRtpPacketLen = 12; static bool IsDtlsPacket(const char* data, size_t len) { const uint8* u = reinterpret_cast(data); return (len >= kDtlsRecordHeaderLen && (u[0] > 19 && u[0] < 64)); } static bool IsRtpPacket(const char* data, size_t len) { const uint8* u = reinterpret_cast(data); return (len >= kMinRtpPacketLen && (u[0] & 0xC0) == 0x80); } rtc::StreamResult StreamInterfaceChannel::Read(void* buffer, size_t buffer_len, size_t* read, int* error) { if (state_ == rtc::SS_CLOSED) return rtc::SR_EOS; if (state_ == rtc::SS_OPENING) return rtc::SR_BLOCK; return fifo_.Read(buffer, buffer_len, read, error); } rtc::StreamResult StreamInterfaceChannel::Write(const void* data, size_t data_len, size_t* written, int* error) { // Always succeeds, since this is an unreliable transport anyway. // TODO: Should this block if channel_'s temporarily unwritable? rtc::PacketOptions packet_options; channel_->SendPacket(static_cast(data), data_len, packet_options); if (written) { *written = data_len; } return rtc::SR_SUCCESS; } bool StreamInterfaceChannel::OnPacketReceived(const char* data, size_t size) { // We force a read event here to ensure that we don't overflow our FIFO. // Under high packet rate this can occur if we wait for the FIFO to post its // own SE_READ. bool ret = (fifo_.WriteAll(data, size, NULL, NULL) == rtc::SR_SUCCESS); if (ret) { SignalEvent(this, rtc::SE_READ, 0); } return ret; } void StreamInterfaceChannel::OnEvent(rtc::StreamInterface* stream, int sig, int err) { SignalEvent(this, sig, err); } DtlsTransportChannelWrapper::DtlsTransportChannelWrapper( Transport* transport, TransportChannelImpl* channel) : TransportChannelImpl(channel->content_name(), channel->component()), transport_(transport), worker_thread_(rtc::Thread::Current()), channel_(channel), downward_(NULL), dtls_state_(STATE_NONE), local_identity_(NULL), ssl_role_(rtc::SSL_CLIENT) { channel_->SignalReadableState.connect(this, &DtlsTransportChannelWrapper::OnReadableState); channel_->SignalWritableState.connect(this, &DtlsTransportChannelWrapper::OnWritableState); channel_->SignalReadPacket.connect(this, &DtlsTransportChannelWrapper::OnReadPacket); channel_->SignalReadyToSend.connect(this, &DtlsTransportChannelWrapper::OnReadyToSend); channel_->SignalRequestSignaling.connect(this, &DtlsTransportChannelWrapper::OnRequestSignaling); channel_->SignalCandidateReady.connect(this, &DtlsTransportChannelWrapper::OnCandidateReady); channel_->SignalCandidatesAllocationDone.connect(this, &DtlsTransportChannelWrapper::OnCandidatesAllocationDone); channel_->SignalRoleConflict.connect(this, &DtlsTransportChannelWrapper::OnRoleConflict); channel_->SignalRouteChange.connect(this, &DtlsTransportChannelWrapper::OnRouteChange); channel_->SignalConnectionRemoved.connect(this, &DtlsTransportChannelWrapper::OnConnectionRemoved); } DtlsTransportChannelWrapper::~DtlsTransportChannelWrapper() { } void DtlsTransportChannelWrapper::Connect() { // We should only get a single call to Connect. ASSERT(dtls_state_ == STATE_NONE || dtls_state_ == STATE_OFFERED || dtls_state_ == STATE_ACCEPTED); channel_->Connect(); } void DtlsTransportChannelWrapper::Reset() { channel_->Reset(); set_writable(false); set_readable(false); // Re-call SetupDtls() if (!SetupDtls()) { LOG_J(LS_ERROR, this) << "Error re-initializing DTLS"; dtls_state_ = STATE_CLOSED; return; } dtls_state_ = STATE_ACCEPTED; } bool DtlsTransportChannelWrapper::SetLocalIdentity( rtc::SSLIdentity* identity) { if (dtls_state_ != STATE_NONE) { if (identity == local_identity_) { // This may happen during renegotiation. LOG_J(LS_INFO, this) << "Ignoring identical DTLS identity"; return true; } else { LOG_J(LS_ERROR, this) << "Can't change DTLS local identity in this state"; return false; } } if (identity) { local_identity_ = identity; dtls_state_ = STATE_OFFERED; } else { LOG_J(LS_INFO, this) << "NULL DTLS identity supplied. Not doing DTLS"; } return true; } bool DtlsTransportChannelWrapper::GetLocalIdentity( rtc::SSLIdentity** identity) const { if (!local_identity_) return false; *identity = local_identity_->GetReference(); return true; } bool DtlsTransportChannelWrapper::SetSslRole(rtc::SSLRole role) { if (dtls_state_ == STATE_OPEN) { if (ssl_role_ != role) { LOG(LS_ERROR) << "SSL Role can't be reversed after the session is setup."; return false; } return true; } ssl_role_ = role; return true; } bool DtlsTransportChannelWrapper::GetSslRole(rtc::SSLRole* role) const { *role = ssl_role_; return true; } bool DtlsTransportChannelWrapper::SetRemoteFingerprint( const std::string& digest_alg, const uint8* digest, size_t digest_len) { rtc::Buffer remote_fingerprint_value(digest, digest_len); if (dtls_state_ != STATE_NONE && remote_fingerprint_value_ == remote_fingerprint_value && !digest_alg.empty()) { // This may happen during renegotiation. LOG_J(LS_INFO, this) << "Ignoring identical remote DTLS fingerprint"; return true; } // Allow SetRemoteFingerprint with a NULL digest even if SetLocalIdentity // hasn't been called. if (dtls_state_ > STATE_OFFERED || (dtls_state_ == STATE_NONE && !digest_alg.empty())) { LOG_J(LS_ERROR, this) << "Can't set DTLS remote settings in this state."; return false; } if (digest_alg.empty()) { LOG_J(LS_INFO, this) << "Other side didn't support DTLS."; dtls_state_ = STATE_NONE; return true; } // At this point we know we are doing DTLS remote_fingerprint_value.TransferTo(&remote_fingerprint_value_); remote_fingerprint_algorithm_ = digest_alg; if (!SetupDtls()) { dtls_state_ = STATE_CLOSED; return false; } dtls_state_ = STATE_ACCEPTED; return true; } bool DtlsTransportChannelWrapper::GetRemoteCertificate( rtc::SSLCertificate** cert) const { if (!dtls_) return false; return dtls_->GetPeerCertificate(cert); } bool DtlsTransportChannelWrapper::SetupDtls() { StreamInterfaceChannel* downward = new StreamInterfaceChannel(worker_thread_, channel_); dtls_.reset(rtc::SSLStreamAdapter::Create(downward)); if (!dtls_) { LOG_J(LS_ERROR, this) << "Failed to create DTLS adapter."; delete downward; return false; } downward_ = downward; dtls_->SetIdentity(local_identity_->GetReference()); dtls_->SetMode(rtc::SSL_MODE_DTLS); dtls_->SetServerRole(ssl_role_); dtls_->SignalEvent.connect(this, &DtlsTransportChannelWrapper::OnDtlsEvent); if (!dtls_->SetPeerCertificateDigest( remote_fingerprint_algorithm_, reinterpret_cast(remote_fingerprint_value_.data()), remote_fingerprint_value_.length())) { LOG_J(LS_ERROR, this) << "Couldn't set DTLS certificate digest."; return false; } // Set up DTLS-SRTP, if it's been enabled. if (!srtp_ciphers_.empty()) { if (!dtls_->SetDtlsSrtpCiphers(srtp_ciphers_)) { LOG_J(LS_ERROR, this) << "Couldn't set DTLS-SRTP ciphers."; return false; } } else { LOG_J(LS_INFO, this) << "Not using DTLS."; } LOG_J(LS_INFO, this) << "DTLS setup complete."; return true; } bool DtlsTransportChannelWrapper::SetSrtpCiphers( const std::vector& ciphers) { if (srtp_ciphers_ == ciphers) return true; if (dtls_state_ == STATE_STARTED) { LOG(LS_WARNING) << "Ignoring new SRTP ciphers while DTLS is negotiating"; return true; } if (dtls_state_ == STATE_OPEN) { // We don't support DTLS renegotiation currently. If new set of srtp ciphers // are different than what's being used currently, we will not use it. // So for now, let's be happy (or sad) with a warning message. std::string current_srtp_cipher; if (!dtls_->GetDtlsSrtpCipher(¤t_srtp_cipher)) { LOG(LS_ERROR) << "Failed to get the current SRTP cipher for DTLS channel"; return false; } const std::vector::const_iterator iter = std::find(ciphers.begin(), ciphers.end(), current_srtp_cipher); if (iter == ciphers.end()) { std::string requested_str; for (size_t i = 0; i < ciphers.size(); ++i) { requested_str.append(" "); requested_str.append(ciphers[i]); requested_str.append(" "); } LOG(LS_WARNING) << "Ignoring new set of SRTP ciphers, as DTLS " << "renegotiation is not supported currently " << "current cipher = " << current_srtp_cipher << " and " << "requested = " << "[" << requested_str << "]"; } return true; } if (dtls_state_ != STATE_NONE && dtls_state_ != STATE_OFFERED && dtls_state_ != STATE_ACCEPTED) { ASSERT(false); return false; } srtp_ciphers_ = ciphers; return true; } bool DtlsTransportChannelWrapper::GetSrtpCipher(std::string* cipher) { if (dtls_state_ != STATE_OPEN) { return false; } return dtls_->GetDtlsSrtpCipher(cipher); } // Called from upper layers to send a media packet. int DtlsTransportChannelWrapper::SendPacket( const char* data, size_t size, const rtc::PacketOptions& options, int flags) { int result = -1; switch (dtls_state_) { case STATE_OFFERED: // We don't know if we are doing DTLS yet, so we can't send a packet. // TODO(ekr@rtfm.com): assert here? result = -1; break; case STATE_STARTED: case STATE_ACCEPTED: // Can't send data until the connection is active result = -1; break; case STATE_OPEN: if (flags & PF_SRTP_BYPASS) { ASSERT(!srtp_ciphers_.empty()); if (!IsRtpPacket(data, size)) { result = -1; break; } result = channel_->SendPacket(data, size, options); } else { result = (dtls_->WriteAll(data, size, NULL, NULL) == rtc::SR_SUCCESS) ? static_cast(size) : -1; } break; // Not doing DTLS. case STATE_NONE: result = channel_->SendPacket(data, size, options); break; case STATE_CLOSED: // Can't send anything when we're closed. return -1; } return result; } // The state transition logic here is as follows: // (1) If we're not doing DTLS-SRTP, then the state is just the // state of the underlying impl() // (2) If we're doing DTLS-SRTP: // - Prior to the DTLS handshake, the state is neither readable or // writable // - When the impl goes writable for the first time we // start the DTLS handshake // - Once the DTLS handshake completes, the state is that of the // impl again void DtlsTransportChannelWrapper::OnReadableState(TransportChannel* channel) { ASSERT(rtc::Thread::Current() == worker_thread_); ASSERT(channel == channel_); LOG_J(LS_VERBOSE, this) << "DTLSTransportChannelWrapper: channel readable state changed."; if (dtls_state_ == STATE_NONE || dtls_state_ == STATE_OPEN) { set_readable(channel_->readable()); // Note: SignalReadableState fired by set_readable. } } void DtlsTransportChannelWrapper::OnWritableState(TransportChannel* channel) { ASSERT(rtc::Thread::Current() == worker_thread_); ASSERT(channel == channel_); LOG_J(LS_VERBOSE, this) << "DTLSTransportChannelWrapper: channel writable state changed."; switch (dtls_state_) { case STATE_NONE: case STATE_OPEN: set_writable(channel_->writable()); // Note: SignalWritableState fired by set_writable. break; case STATE_OFFERED: // Do nothing break; case STATE_ACCEPTED: if (!MaybeStartDtls()) { // This should never happen: // Because we are operating in a nonblocking mode and all // incoming packets come in via OnReadPacket(), which rejects // packets in this state, the incoming queue must be empty. We // ignore write errors, thus any errors must be because of // configuration and therefore are our fault. // Note that in non-debug configurations, failure in // MaybeStartDtls() changes the state to STATE_CLOSED. ASSERT(false); } break; case STATE_STARTED: // Do nothing break; case STATE_CLOSED: // Should not happen. Do nothing break; } } void DtlsTransportChannelWrapper::OnReadPacket( TransportChannel* channel, const char* data, size_t size, const rtc::PacketTime& packet_time, int flags) { ASSERT(rtc::Thread::Current() == worker_thread_); ASSERT(channel == channel_); ASSERT(flags == 0); switch (dtls_state_) { case STATE_NONE: // We are not doing DTLS SignalReadPacket(this, data, size, packet_time, 0); break; case STATE_OFFERED: // Currently drop the packet, but we might in future // decide to take this as evidence that the other // side is ready to do DTLS and start the handshake // on our end LOG_J(LS_WARNING, this) << "Received packet before we know if we are " << "doing DTLS or not; dropping."; break; case STATE_ACCEPTED: // Drop packets received before DTLS has actually started LOG_J(LS_INFO, this) << "Dropping packet received before DTLS started."; break; case STATE_STARTED: case STATE_OPEN: // We should only get DTLS or SRTP packets; STUN's already been demuxed. // Is this potentially a DTLS packet? if (IsDtlsPacket(data, size)) { if (!HandleDtlsPacket(data, size)) { LOG_J(LS_ERROR, this) << "Failed to handle DTLS packet."; return; } } else { // Not a DTLS packet; our handshake should be complete by now. if (dtls_state_ != STATE_OPEN) { LOG_J(LS_ERROR, this) << "Received non-DTLS packet before DTLS " << "complete."; return; } // And it had better be a SRTP packet. if (!IsRtpPacket(data, size)) { LOG_J(LS_ERROR, this) << "Received unexpected non-DTLS packet."; return; } // Sanity check. ASSERT(!srtp_ciphers_.empty()); // Signal this upwards as a bypass packet. SignalReadPacket(this, data, size, packet_time, PF_SRTP_BYPASS); } break; case STATE_CLOSED: // This shouldn't be happening. Drop the packet break; } } void DtlsTransportChannelWrapper::OnReadyToSend(TransportChannel* channel) { if (writable()) { SignalReadyToSend(this); } } void DtlsTransportChannelWrapper::OnDtlsEvent(rtc::StreamInterface* dtls, int sig, int err) { ASSERT(rtc::Thread::Current() == worker_thread_); ASSERT(dtls == dtls_.get()); if (sig & rtc::SE_OPEN) { // This is the first time. LOG_J(LS_INFO, this) << "DTLS handshake complete."; if (dtls_->GetState() == rtc::SS_OPEN) { // The check for OPEN shouldn't be necessary but let's make // sure we don't accidentally frob the state if it's closed. dtls_state_ = STATE_OPEN; set_readable(true); set_writable(true); } } if (sig & rtc::SE_READ) { char buf[kMaxDtlsPacketLen]; size_t read; if (dtls_->Read(buf, sizeof(buf), &read, NULL) == rtc::SR_SUCCESS) { SignalReadPacket(this, buf, read, rtc::CreatePacketTime(0), 0); } } if (sig & rtc::SE_CLOSE) { ASSERT(sig == rtc::SE_CLOSE); // SE_CLOSE should be by itself. if (!err) { LOG_J(LS_INFO, this) << "DTLS channel closed"; } else { LOG_J(LS_INFO, this) << "DTLS channel error, code=" << err; } set_readable(false); set_writable(false); dtls_state_ = STATE_CLOSED; } } bool DtlsTransportChannelWrapper::MaybeStartDtls() { if (channel_->writable()) { if (dtls_->StartSSLWithPeer()) { LOG_J(LS_ERROR, this) << "Couldn't start DTLS handshake"; dtls_state_ = STATE_CLOSED; return false; } LOG_J(LS_INFO, this) << "DtlsTransportChannelWrapper: Started DTLS handshake"; dtls_state_ = STATE_STARTED; } return true; } // Called from OnReadPacket when a DTLS packet is received. bool DtlsTransportChannelWrapper::HandleDtlsPacket(const char* data, size_t size) { // Sanity check we're not passing junk that // just looks like DTLS. const uint8* tmp_data = reinterpret_cast(data); size_t tmp_size = size; while (tmp_size > 0) { if (tmp_size < kDtlsRecordHeaderLen) return false; // Too short for the header size_t record_len = (tmp_data[11] << 8) | (tmp_data[12]); if ((record_len + kDtlsRecordHeaderLen) > tmp_size) return false; // Body too short tmp_data += record_len + kDtlsRecordHeaderLen; tmp_size -= record_len + kDtlsRecordHeaderLen; } // Looks good. Pass to the SIC which ends up being passed to // the DTLS stack. return downward_->OnPacketReceived(data, size); } void DtlsTransportChannelWrapper::OnRequestSignaling( TransportChannelImpl* channel) { ASSERT(channel == channel_); SignalRequestSignaling(this); } void DtlsTransportChannelWrapper::OnCandidateReady( TransportChannelImpl* channel, const Candidate& c) { ASSERT(channel == channel_); SignalCandidateReady(this, c); } void DtlsTransportChannelWrapper::OnCandidatesAllocationDone( TransportChannelImpl* channel) { ASSERT(channel == channel_); SignalCandidatesAllocationDone(this); } void DtlsTransportChannelWrapper::OnRoleConflict( TransportChannelImpl* channel) { ASSERT(channel == channel_); SignalRoleConflict(this); } void DtlsTransportChannelWrapper::OnRouteChange( TransportChannel* channel, const Candidate& candidate) { ASSERT(channel == channel_); SignalRouteChange(this, candidate); } void DtlsTransportChannelWrapper::OnConnectionRemoved( TransportChannelImpl* channel) { ASSERT(channel == channel_); SignalConnectionRemoved(this); } } // namespace cricket