Formalized Real 16-bit FFT for APM.

It also prepares for introducing Real 16-bit FFT Neon code from Openmax to SPL. CL https://webrtc-codereview.appspot.com/1819004/ takes care of that, but this CL is a prerequisite of that one.
Tested audioproc with an offline file. Bit exact.

R=andrew@webrtc.org, rtoy@google.com

Review URL: https://webrtc-codereview.appspot.com/1830004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@4390 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
kma@webrtc.org 2013-07-24 17:38:23 +00:00
parent b63c29f48c
commit fc8aaf02e1
10 changed files with 285 additions and 473 deletions

View File

@ -13,70 +13,112 @@
#include "webrtc/typedefs.h" #include "webrtc/typedefs.h"
// For ComplexFFT(), the maximum fft order is 10;
// for OpenMax FFT in ARM, it is 12;
// WebRTC APM uses orders of only 7 and 8.
enum {kMaxFFTOrder = 10};
struct RealFFT; struct RealFFT;
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
typedef struct RealFFT* (*CreateRealFFT)(int order);
typedef void (*FreeRealFFT)(struct RealFFT* self);
typedef int (*RealForwardFFT)(struct RealFFT* self, typedef int (*RealForwardFFT)(struct RealFFT* self,
const int16_t* data_in, const int16_t* real_data_in,
int16_t* data_out); int16_t* complex_data_out);
typedef int (*RealInverseFFT)(struct RealFFT* self, typedef int (*RealInverseFFT)(struct RealFFT* self,
const int16_t* data_in, const int16_t* complex_data_in,
int16_t* data_out); int16_t* real_data_out);
extern CreateRealFFT WebRtcSpl_CreateRealFFT;
extern FreeRealFFT WebRtcSpl_FreeRealFFT;
extern RealForwardFFT WebRtcSpl_RealForwardFFT; extern RealForwardFFT WebRtcSpl_RealForwardFFT;
extern RealInverseFFT WebRtcSpl_RealInverseFFT; extern RealInverseFFT WebRtcSpl_RealInverseFFT;
struct RealFFT* WebRtcSpl_CreateRealFFT(int order); struct RealFFT* WebRtcSpl_CreateRealFFTC(int order);
void WebRtcSpl_FreeRealFFT(struct RealFFT* self); void WebRtcSpl_FreeRealFFTC(struct RealFFT* self);
// TODO(kma): Implement FFT functions for real signals. #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
struct RealFFT* WebRtcSpl_CreateRealFFTNeon(int order);
void WebRtcSpl_FreeRealFFTNeon(struct RealFFT* self);
#endif
// Compute the forward FFT for a complex signal of length 2^order. // Compute an FFT for a real-valued signal of length of 2^order,
// where 1 < order <= MAX_FFT_ORDER. Transform length is determined by the
// specification structure, which must be initialized prior to calling the FFT
// function with WebRtcSpl_CreateRealFFT().
// The relationship between the input and output sequences can
// be expressed in terms of the DFT, i.e.:
// x[n] = (2^(-scalefactor)/N) . SUM[k=0,...,N-1] X[k].e^(jnk.2.pi/N)
// n=0,1,2,...N-1
// N=2^order.
// The conjugate-symmetric output sequence is represented using a CCS vector,
// which is of length N+2, and is organized as follows:
// Index: 0 1 2 3 4 5 . . . N-2 N-1 N N+1
// Component: R0 0 R1 I1 R2 I2 . . . R[N/2-1] I[N/2-1] R[N/2] 0
// where R[n] and I[n], respectively, denote the real and imaginary components
// for FFT bin 'n'. Bins are numbered from 0 to N/2, where N is the FFT length.
// Bin index 0 corresponds to the DC component, and bin index N/2 corresponds to
// the foldover frequency.
//
// Input Arguments: // Input Arguments:
// self - pointer to preallocated and initialized FFT specification structure. // self - pointer to preallocated and initialized FFT specification structure.
// data_in - the input signal. // real_data_in - the input signal. For an ARM Neon platform, it must be
// aligned on a 32-byte boundary.
// //
// Output Arguments: // Output Arguments:
// data_out - the output signal; must be different to data_in. // complex_data_out - the output complex signal with (2^order + 2) 16-bit
// elements. For an ARM Neon platform, it must be different
// from real_data_in, and aligned on a 32-byte boundary.
// //
// Return Value: // Return Value:
// 0 - FFT calculation is successful. // 0 - FFT calculation is successful.
// -1 - Error // -1 - Error with bad arguments (NULL pointers).
//
int WebRtcSpl_RealForwardFFTC(struct RealFFT* self, int WebRtcSpl_RealForwardFFTC(struct RealFFT* self,
const int16_t* data_in, const int16_t* real_data_in,
int16_t* data_out); int16_t* complex_data_out);
#if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self, int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self,
const int16_t* data_in, const int16_t* real_data_in,
int16_t* data_out); int16_t* complex_data_out);
#endif #endif
// Compute the inverse FFT for a complex signal of length 2^order. // Compute the inverse FFT for a conjugate-symmetric input sequence of length of
// 2^order, where 1 < order <= MAX_FFT_ORDER. Transform length is determined by
// the specification structure, which must be initialized prior to calling the
// FFT function with WebRtcSpl_CreateRealFFT().
// For a transform of length M, the input sequence is represented using a packed
// CCS vector of length M+2, which is explained in the comments for
// WebRtcSpl_RealForwardFFTC above.
//
// Input Arguments: // Input Arguments:
// self - pointer to preallocated and initialized FFT specification structure. // self - pointer to preallocated and initialized FFT specification structure.
// data_in - the input signal. // complex_data_in - the input complex signal with (2^order + 2) 16-bit
// elements. For an ARM Neon platform, it must be aligned on
// a 32-byte boundary.
// //
// Output Arguments: // Output Arguments:
// data_out - the output signal; must be different to data_in. // real_data_out - the output real signal. For an ARM Neon platform, it must
// be different to complex_data_in, and aligned on a 32-byte
// boundary.
// //
// Return Value: // Return Value:
// 0 or a positive number - a value that the elements in the |data_out| should // 0 or a positive number - a value that the elements in the |real_data_out|
// be shifted left with in order to get correct // should be shifted left with in order to get
// physical values. // correct physical values.
// -1 - Error // -1 - Error with bad arguments (NULL pointers).
int WebRtcSpl_RealInverseFFTC(struct RealFFT* self, int WebRtcSpl_RealInverseFFTC(struct RealFFT* self,
const int16_t* data_in, const int16_t* complex_data_in,
int16_t* data_out); int16_t* real_data_out);
#if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self, int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self,
const int16_t* data_in, const int16_t* complex_data_in,
int16_t* data_out); int16_t* real_data_out);
#endif #endif
#ifdef __cplusplus #ifdef __cplusplus

View File

@ -18,55 +18,109 @@ struct RealFFT {
int order; int order;
}; };
struct RealFFT* WebRtcSpl_CreateRealFFT(int order) { struct RealFFT* WebRtcSpl_CreateRealFFTC(int order) {
struct RealFFT* self = NULL; struct RealFFT* self = NULL;
// This constraint comes from ComplexFFT(). if (order > kMaxFFTOrder || order < 0) {
if (order > 10 || order < 0) {
return NULL; return NULL;
} }
self = malloc(sizeof(struct RealFFT)); self = malloc(sizeof(struct RealFFT));
if (self == NULL) {
return NULL;
}
self->order = order; self->order = order;
return self; return self;
} }
void WebRtcSpl_FreeRealFFT(struct RealFFT* self) { void WebRtcSpl_FreeRealFFTC(struct RealFFT* self) {
free(self); if (self != NULL) {
free(self);
}
} }
// WebRtcSpl_ComplexFFT and WebRtcSpl_ComplexIFFT use in-place algorithm, // The C version FFT functions (i.e. WebRtcSpl_RealForwardFFTC and
// so copy data from data_in to data_out in the next two functions. // WebRtcSpl_RealInverseFFTC) are real-valued FFT wrappers for complex-valued
// FFT implementation in SPL.
int WebRtcSpl_RealForwardFFTC(struct RealFFT* self, int WebRtcSpl_RealForwardFFTC(struct RealFFT* self,
const int16_t* data_in, const int16_t* real_data_in,
int16_t* data_out) { int16_t* complex_data_out) {
memcpy(data_out, data_in, sizeof(int16_t) * (1 << (self->order + 1))); int i = 0;
WebRtcSpl_ComplexBitReverse(data_out, self->order); int j = 0;
return WebRtcSpl_ComplexFFT(data_out, self->order, 1); int result = 0;
int n = 1 << self->order;
// The complex-value FFT implementation needs a buffer to hold 2^order
// 16-bit COMPLEX numbers, for both time and frequency data.
int16_t complex_buffer[2 << kMaxFFTOrder];
// Insert zeros to the imaginary parts for complex forward FFT input.
for (i = 0, j = 0; i < n; i += 1, j += 2) {
complex_buffer[j] = real_data_in[i];
complex_buffer[j + 1] = 0;
};
WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
result = WebRtcSpl_ComplexFFT(complex_buffer, self->order, 1);
// For real FFT output, use only the first N + 2 elements from
// complex forward FFT.
memcpy(complex_data_out, complex_buffer, sizeof(int16_t) * (n + 2));
return result;
} }
int WebRtcSpl_RealInverseFFTC(struct RealFFT* self, int WebRtcSpl_RealInverseFFTC(struct RealFFT* self,
const int16_t* data_in, const int16_t* complex_data_in,
int16_t* data_out) { int16_t* real_data_out) {
memcpy(data_out, data_in, sizeof(int16_t) * (1 << (self->order + 1))); int i = 0;
WebRtcSpl_ComplexBitReverse(data_out, self->order); int j = 0;
return WebRtcSpl_ComplexIFFT(data_out, self->order, 1); int result = 0;
int n = 1 << self->order;
// Create the buffer specific to complex-valued FFT implementation.
int16_t complex_buffer[2 << kMaxFFTOrder];
// For n-point FFT, first copy the first n + 2 elements into complex
// FFT, then construct the remaining n - 2 elements by real FFT's
// conjugate-symmetric properties.
memcpy(complex_buffer, complex_data_in, sizeof(int16_t) * (n + 2));
for (i = n + 2; i < 2 * n; i += 2) {
complex_buffer[i] = complex_data_in[2 * n - i];
complex_buffer[i + 1] = -complex_data_in[2 * n - i + 1];
}
WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
result = WebRtcSpl_ComplexIFFT(complex_buffer, self->order, 1);
// Strip out the imaginary parts of the complex inverse FFT output.
for (i = 0, j = 0; i < n; i += 1, j += 2) {
real_data_out[i] = complex_buffer[j];
}
return result;
} }
#if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON) #if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON)
// TODO(kma): Replace the following function bodies into optimized functions // TODO(kma): Replace the following function bodies into optimized functions
// for ARM Neon. // for ARM Neon.
struct RealFFT* WebRtcSpl_CreateRealFFTNeon(int order) {
return WebRtcSpl_CreateRealFFTC(order);
}
void WebRtcSpl_FreeRealFFTNeon(struct RealFFT* self) {
WebRtcSpl_FreeRealFFTC(self);
}
int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self, int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self,
const int16_t* data_in, const int16_t* real_data_in,
int16_t* data_out) { int16_t* complex_data_out) {
return WebRtcSpl_RealForwardFFTC(self, data_in, data_out); return WebRtcSpl_RealForwardFFTC(self, real_data_in, complex_data_out);
} }
int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self, int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self,
const int16_t* data_in, const int16_t* complex_data_in,
int16_t* data_out) { int16_t* real_data_out) {
return WebRtcSpl_RealInverseFFTC(self, data_in, data_out); return WebRtcSpl_RealInverseFFTC(self, complex_data_in, real_data_out);
} }
#endif #endif // WEBRTC_DETECT_ARM_NEON || WEBRTC_ARCH_ARM_NEON

View File

@ -17,9 +17,17 @@
namespace webrtc { namespace webrtc {
namespace { namespace {
const int kOrder = 4; // FFT order.
const int kLength = 1 << (kOrder + 1); // +1 to hold complex data. const int kOrder = 5;
const int16_t kRefData[kLength] = { // Lengths for real FFT's time and frequency bufffers.
// For N-point FFT, the length requirements from API are N and N+2 respectively.
const int kTimeDataLength = 1 << kOrder;
const int kFreqDataLength = (1 << kOrder) + 2;
// For complex FFT's time and freq buffer. The implementation requires
// 2*N 16-bit words.
const int kComplexFftDataLength = 2 << kOrder;
// Reference data for time signal.
const int16_t kRefData[kTimeDataLength] = {
11739, 6848, -8688, 31980, -30295, 25242, 27085, 19410, 11739, 6848, -8688, 31980, -30295, 25242, 27085, 19410,
-26299, 15607, -10791, 11778, -23819, 14498, -25772, 10076, -26299, 15607, -10791, 11778, -23819, 14498, -25772, 10076,
1173, 6848, -8688, 31980, -30295, 2522, 27085, 19410, 1173, 6848, -8688, 31980, -30295, 2522, 27085, 19410,
@ -40,36 +48,58 @@ TEST_F(RealFFTTest, CreateFailsOnBadInput) {
EXPECT_TRUE(fft == NULL); EXPECT_TRUE(fft == NULL);
} }
// TODO(andrew): This won't always be the case, but verifies the current code TEST_F(RealFFTTest, RealAndComplexMatch) {
// at least. int i = 0;
TEST_F(RealFFTTest, RealAndComplexAreIdentical) { int j = 0;
int16_t real_data[kLength] = {0}; int16_t real_fft_time[kTimeDataLength] = {0};
int16_t real_data_out[kLength] = {0}; int16_t real_fft_freq[kFreqDataLength] = {0};
int16_t complex_data[kLength] = {0}; // One common buffer for complex FFT's time and frequency data.
memcpy(real_data, kRefData, sizeof(kRefData)); int16_t complex_fft_buff[kComplexFftDataLength] = {0};
memcpy(complex_data, kRefData, sizeof(kRefData));
// Prepare the inputs to forward FFT's.
memcpy(real_fft_time, kRefData, sizeof(kRefData));
for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
complex_fft_buff[j] = kRefData[i];
complex_fft_buff[j + 1] = 0; // Insert zero's to imaginary parts.
};
// Create and run real forward FFT.
RealFFT* fft = WebRtcSpl_CreateRealFFT(kOrder); RealFFT* fft = WebRtcSpl_CreateRealFFT(kOrder);
EXPECT_TRUE(fft != NULL); EXPECT_TRUE(fft != NULL);
EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_fft_time, real_fft_freq));
EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_data, real_data_out)); // Run complex forward FFT.
WebRtcSpl_ComplexBitReverse(complex_data, kOrder); WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_data, kOrder, 1)); EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_fft_buff, kOrder, 1));
for (int i = 0; i < kLength; i++) { // Verify the results between complex and real forward FFT.
EXPECT_EQ(real_data_out[i], complex_data[i]); for (i = 0; i < kFreqDataLength; i++) {
EXPECT_EQ(real_fft_freq[i], complex_fft_buff[i]);
} }
memcpy(complex_data, kRefData, sizeof(kRefData)); // Prepare the inputs to inverse real FFT.
// We use whatever data in complex_fft_buff[] since we don't care
// about data contents. Only kFreqDataLength 16-bit words are copied
// from complex_fft_buff to real_fft_freq since remaining words (2nd half)
// are conjugate-symmetric to the first half in theory.
memcpy(real_fft_freq, complex_fft_buff, sizeof(real_fft_freq));
int real_scale = WebRtcSpl_RealInverseFFT(fft, real_data, real_data_out); // Run real inverse FFT.
int real_scale = WebRtcSpl_RealInverseFFT(fft, real_fft_freq, real_fft_time);
EXPECT_GE(real_scale, 0); EXPECT_GE(real_scale, 0);
WebRtcSpl_ComplexBitReverse(complex_data, kOrder);
int complex_scale = WebRtcSpl_ComplexIFFT(complex_data, kOrder, 1); // Run complex inverse FFT.
WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
int complex_scale = WebRtcSpl_ComplexIFFT(complex_fft_buff, kOrder, 1);
// Verify the results between complex and real inverse FFT.
// They are not bit-exact, since complex IFFT doesn't produce
// exactly conjugate-symmetric data (between first and second half).
EXPECT_EQ(real_scale, complex_scale); EXPECT_EQ(real_scale, complex_scale);
for (int i = 0; i < kLength; i++) { for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
EXPECT_EQ(real_data_out[i], complex_data[i]); EXPECT_LE(abs(real_fft_time[i] - complex_fft_buff[j]), 1);
} }
WebRtcSpl_FreeRealFFT(fft); WebRtcSpl_FreeRealFFT(fft);
} }

View File

@ -28,6 +28,8 @@ MinValueW32 WebRtcSpl_MinValueW32;
CrossCorrelation WebRtcSpl_CrossCorrelation; CrossCorrelation WebRtcSpl_CrossCorrelation;
DownsampleFast WebRtcSpl_DownsampleFast; DownsampleFast WebRtcSpl_DownsampleFast;
ScaleAndAddVectorsWithRound WebRtcSpl_ScaleAndAddVectorsWithRound; ScaleAndAddVectorsWithRound WebRtcSpl_ScaleAndAddVectorsWithRound;
CreateRealFFT WebRtcSpl_CreateRealFFT;
FreeRealFFT WebRtcSpl_FreeRealFFT;
RealForwardFFT WebRtcSpl_RealForwardFFT; RealForwardFFT WebRtcSpl_RealForwardFFT;
RealInverseFFT WebRtcSpl_RealInverseFFT; RealInverseFFT WebRtcSpl_RealInverseFFT;
@ -45,6 +47,8 @@ static void InitPointersToC() {
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFastC; WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFastC;
WebRtcSpl_ScaleAndAddVectorsWithRound = WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundC; WebRtcSpl_ScaleAndAddVectorsWithRoundC;
WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTC;
WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTC;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTC; WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTC;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTC; WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTC;
} }
@ -63,6 +67,8 @@ static void InitPointersToNeon() {
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFastNeon; WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFastNeon;
WebRtcSpl_ScaleAndAddVectorsWithRound = WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundNeon; WebRtcSpl_ScaleAndAddVectorsWithRoundNeon;
WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTNeon;
WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTNeon;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTNeon; WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTNeon;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTNeon; WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTNeon;
} }
@ -80,6 +86,8 @@ static void InitPointersToMIPS() {
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFast_mips; WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFast_mips;
WebRtcSpl_ScaleAndAddVectorsWithRound = WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundC; WebRtcSpl_ScaleAndAddVectorsWithRoundC;
WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTC;
WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTC;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTC; WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTC;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTC; WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTC;
#if defined(MIPS_DSP_R1_LE) #if defined(MIPS_DSP_R1_LE)

View File

@ -244,8 +244,6 @@ static const uint16_t* AlignedFarend(AecmCore_t* self, int* far_q, int delay) {
CalcLinearEnergies WebRtcAecm_CalcLinearEnergies; CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel; StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel; ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
WindowAndFFT WebRtcAecm_WindowAndFFT;
InverseFFTAndWindow WebRtcAecm_InverseFFTAndWindow;
int WebRtcAecm_CreateCore(AecmCore_t **aecmInst) int WebRtcAecm_CreateCore(AecmCore_t **aecmInst)
{ {
@ -351,41 +349,36 @@ void WebRtcAecm_InitEchoPathCore(AecmCore_t* aecm, const int16_t* echo_path)
aecm->mseChannelCount = 0; aecm->mseChannelCount = 0;
} }
static void WindowAndFFTC(AecmCore_t* aecm, static void WindowAndFFT(AecmCore_t* aecm,
int16_t* fft, int16_t* fft,
const int16_t* time_signal, const int16_t* time_signal,
complex16_t* freq_signal, complex16_t* freq_signal,
int time_signal_scaling) int time_signal_scaling) {
{ int i = 0;
int i, j;
memset(fft, 0, sizeof(int16_t) * PART_LEN4); // FFT of signal
// FFT of signal for (i = 0; i < PART_LEN; i++) {
for (i = 0, j = 0; i < PART_LEN; i++, j += 2) // Window time domain signal and insert into real part of
{ // transformation array |fft|
// Window time domain signal and insert into real part of fft[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
// transformation array |fft| (time_signal[i] << time_signal_scaling),
fft[j] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT( WebRtcAecm_kSqrtHanning[i],
(time_signal[i] << time_signal_scaling), 14);
WebRtcAecm_kSqrtHanning[i], fft[PART_LEN + i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
14); (time_signal[i + PART_LEN] << time_signal_scaling),
fft[PART_LEN2 + j] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT( WebRtcAecm_kSqrtHanning[PART_LEN - i],
(time_signal[i + PART_LEN] << time_signal_scaling), 14);
WebRtcAecm_kSqrtHanning[PART_LEN - i], }
14);
// Inserting zeros in imaginary parts not necessary since we
// initialized the array with all zeros
}
// Do forward FFT, then take only the first PART_LEN complex samples, // Do forward FFT, then take only the first PART_LEN complex samples,
// and change signs of the imaginary parts. // and change signs of the imaginary parts.
WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal); WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
for (i = 0; i < PART_LEN; i++) { for (i = 0; i < PART_LEN; i++) {
freq_signal[i].imag = -freq_signal[i].imag; freq_signal[i].imag = -freq_signal[i].imag;
} }
} }
static void InverseFFTAndWindowC(AecmCore_t* aecm, static void InverseFFTAndWindow(AecmCore_t* aecm,
int16_t* fft, int16_t* fft,
complex16_t* efw, complex16_t* efw,
int16_t* output, int16_t* output,
@ -395,17 +388,9 @@ static void InverseFFTAndWindowC(AecmCore_t* aecm,
int32_t tmp32no1; int32_t tmp32no1;
// Synthesis // Synthesis
for (i = 1; i < PART_LEN; i++) for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
{ fft[j] = efw[i].real;
j = WEBRTC_SPL_LSHIFT_W32(i, 1); fft[j + 1] = -efw[i].imag;
fft[j] = efw[i].real;
// mirrored data, even
fft[PART_LEN4 - j] = efw[i].real;
fft[j + 1] = -efw[i].imag;
//mirrored data, odd
fft[PART_LEN4 - (j - 1)] = efw[i].imag;
} }
fft[0] = efw[0].real; fft[0] = efw[0].real;
fft[1] = -efw[0].imag; fft[1] = -efw[0].imag;
@ -413,31 +398,23 @@ static void InverseFFTAndWindowC(AecmCore_t* aecm,
fft[PART_LEN2] = efw[PART_LEN].real; fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag; fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
// Inverse FFT. Then take only the real values, and keep outCFFT // Inverse FFT. Keep outCFFT to scale the samples in the next block.
// to scale the samples in the next block. outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, output);
outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, (int16_t*)efw);
for (i = 0; i < PART_LEN; i++) {
efw[i].real = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
efw[i].real,
WebRtcAecm_kSqrtHanning[i],
14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)efw[i].real,
outCFFT - aecm->dfaCleanQDomain);
efw[i].real = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1 + aecm->outBuf[i],
WEBRTC_SPL_WORD16_MIN);
output[i] = efw[i].real;
tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT( for (i = 0; i < PART_LEN; i++) {
efw[PART_LEN + i].real, output[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
WebRtcAecm_kSqrtHanning[PART_LEN - i], output[i], WebRtcAecm_kSqrtHanning[i], 14);
14); tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)output[i],
outCFFT - aecm->dfaCleanQDomain);
output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1 + aecm->outBuf[i], WEBRTC_SPL_WORD16_MIN);
tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT(output[PART_LEN + i],
WebRtcAecm_kSqrtHanning[PART_LEN - i], 14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
outCFFT - aecm->dfaCleanQDomain); outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT( aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(
WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MAX, tmp32no1, WEBRTC_SPL_WORD16_MIN);
tmp32no1,
WEBRTC_SPL_WORD16_MIN);
} }
// Copy the current block to the old position (aecm->outBuf is shifted elsewhere) // Copy the current block to the old position (aecm->outBuf is shifted elsewhere)
@ -522,9 +499,6 @@ static void ResetAdaptiveChannelC(AecmCore_t* aecm)
#if (defined WEBRTC_DETECT_ARM_NEON || defined WEBRTC_ARCH_ARM_NEON) #if (defined WEBRTC_DETECT_ARM_NEON || defined WEBRTC_ARCH_ARM_NEON)
static void WebRtcAecm_InitNeon(void) static void WebRtcAecm_InitNeon(void)
{ {
// TODO(kma): Check why WebRtcAecm_InverseFFTAndWindowNeon() doesn't work.
WebRtcAecm_WindowAndFFT = WebRtcAecm_WindowAndFFTNeon;
WebRtcAecm_InverseFFTAndWindow = InverseFFTAndWindowC;
WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannelNeon; WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannelNeon;
WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannelNeon; WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannelNeon;
WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergiesNeon; WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergiesNeon;
@ -654,8 +628,6 @@ int WebRtcAecm_InitCore(AecmCore_t * const aecm, int samplingFreq)
COMPILE_ASSERT(PART_LEN % 16 == 0); COMPILE_ASSERT(PART_LEN % 16 == 0);
// Initialize function pointers. // Initialize function pointers.
WebRtcAecm_WindowAndFFT = WindowAndFFTC;
WebRtcAecm_InverseFFTAndWindow = InverseFFTAndWindowC;
WebRtcAecm_CalcLinearEnergies = CalcLinearEnergiesC; WebRtcAecm_CalcLinearEnergies = CalcLinearEnergiesC;
WebRtcAecm_StoreAdaptiveChannel = StoreAdaptiveChannelC; WebRtcAecm_StoreAdaptiveChannel = StoreAdaptiveChannelC;
WebRtcAecm_ResetAdaptiveChannel = ResetAdaptiveChannelC; WebRtcAecm_ResetAdaptiveChannel = ResetAdaptiveChannelC;
@ -1403,7 +1375,7 @@ static int TimeToFrequencyDomain(AecmCore_t* aecm,
time_signal_scaling = WebRtcSpl_NormW16(tmp16no1); time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
#endif #endif
WebRtcAecm_WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling); WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
// Extract imaginary and real part, calculate the magnitude for all frequency bins // Extract imaginary and real part, calculate the magnitude for all frequency bins
freq_signal[0].imag = 0; freq_signal[0].imag = 0;
@ -1843,7 +1815,7 @@ int WebRtcAecm_ProcessBlock(AecmCore_t * aecm,
ComfortNoise(aecm, ptrDfaClean, efw, hnl); ComfortNoise(aecm, ptrDfaClean, efw, hnl);
} }
WebRtcAecm_InverseFFTAndWindow(aecm, fft, efw, output, nearendClean); InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
return 0; return 0;
} }

View File

@ -294,37 +294,10 @@ extern StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
typedef void (*ResetAdaptiveChannel)(AecmCore_t* aecm); typedef void (*ResetAdaptiveChannel)(AecmCore_t* aecm);
extern ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel; extern ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
typedef void (*WindowAndFFT)(
AecmCore_t* aecm,
int16_t* fft,
const int16_t* time_signal,
complex16_t* freq_signal,
int time_signal_scaling);
extern WindowAndFFT WebRtcAecm_WindowAndFFT;
typedef void (*InverseFFTAndWindow)(
AecmCore_t* aecm,
int16_t* fft, complex16_t* efw,
int16_t* output,
const int16_t* nearendClean);
extern InverseFFTAndWindow WebRtcAecm_InverseFFTAndWindow;
// For the above function pointers, functions for generic platforms are declared // For the above function pointers, functions for generic platforms are declared
// and defined as static in file aecm_core.c, while those for ARM Neon platforms // and defined as static in file aecm_core.c, while those for ARM Neon platforms
// are declared below and defined in file aecm_core_neon.s. // are declared below and defined in file aecm_core_neon.s.
#if (defined WEBRTC_DETECT_ARM_NEON) || defined (WEBRTC_ARCH_ARM_NEON) #if (defined WEBRTC_DETECT_ARM_NEON) || defined (WEBRTC_ARCH_ARM_NEON)
void WebRtcAecm_WindowAndFFTNeon(AecmCore_t* aecm,
int16_t* fft,
const int16_t* time_signal,
complex16_t* freq_signal,
int time_signal_scaling);
void WebRtcAecm_InverseFFTAndWindowNeon(AecmCore_t* aecm,
int16_t* fft,
complex16_t* efw,
int16_t* output,
const int16_t* nearendClean);
void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore_t* aecm, void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore_t* aecm,
const uint16_t* far_spectrum, const uint16_t* far_spectrum,
int32_t* echo_est, int32_t* echo_est,

View File

@ -17,185 +17,10 @@
#include "webrtc/system_wrappers/interface/asm_defines.h" #include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_LABEL WebRtcAecm_kSqrtHanning GLOBAL_LABEL WebRtcAecm_kSqrtHanning
GLOBAL_FUNCTION WebRtcAecm_WindowAndFFTNeon
GLOBAL_FUNCTION WebRtcAecm_InverseFFTAndWindowNeon
GLOBAL_FUNCTION WebRtcAecm_CalcLinearEnergiesNeon GLOBAL_FUNCTION WebRtcAecm_CalcLinearEnergiesNeon
GLOBAL_FUNCTION WebRtcAecm_StoreAdaptiveChannelNeon GLOBAL_FUNCTION WebRtcAecm_StoreAdaptiveChannelNeon
GLOBAL_FUNCTION WebRtcAecm_ResetAdaptiveChannelNeon GLOBAL_FUNCTION WebRtcAecm_ResetAdaptiveChannelNeon
@ void WebRtcAecm_WindowAndFFTNeon(AecmCore_t* aecm,
@ int16_t* fft,
@ const int16_t* time_signal,
@ complex16_t* freq_signal,
@ int time_signal_scaling);
.align 2
DEFINE_FUNCTION WebRtcAecm_WindowAndFFTNeon
push {r4, r5, r6, lr}
ldr r12, [sp, #16] @ time_signal_scaling
vdup.16 d16, r12
vmov.i16 d21, #0 @ For imaginary parts of |fft|.
vmov.i16 d27, #0 @ For imaginary parts of |fft|.
adr r5, WebRtcAecm_kSqrtHanning
adr lr, kSqrtHanningReversed
add r4, r1, #(PART_LEN2 * 2) @ &fft[PART_LEN2]
add r12, r2, #(PART_LEN * 2) @ time_signal[PART_LEN]
mov r6, #(PART_LEN / 4) @ Loop counter, unrolled by 4
LOOP_PART_LEN:
vld1.16 d0, [r2, :64]! @ time_signal[i]
vld1.16 d22, [r12, :64]! @ time_signal[i + PART_LEN]
vld1.16 d17, [r5, :64]! @ WebRtcAecm_kSqrtHanning[i]
vld1.16 d23, [lr, :64]! @ kSqrtHanningReversed[i]
vshl.s16 d18, d0, d16
vshl.s16 d22, d22, d16
vmull.s16 q9, d18, d17
vmull.s16 q12, d22, d23
subs r6, #1
vshrn.i32 d20, q9, #14
vshrn.i32 d26, q12, #14
vst2.16 {d20, d21}, [r1, :128]! @ fft[j]
vst2.16 {d26, d27}, [r4, :128]! @ fft[PART_LEN2 + j]
bgt LOOP_PART_LEN
@ WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
movw r12, #offset_aecm_real_fft
sub r1, #(PART_LEN * 4) @ Get r1 back to &fft[0].
mov r2, r3 @ freq_signal
mov r4, r3
ldr r0, [r0, r12] @ aecm->real_fft
CALL_FUNCTION WebRtcSpl_RealForwardFFTNeon
mov r12, #(PART_LEN * 2 / 16) @ Loop counter, unrolled by 16.
LOOP_PART_LEN2:
@ freq_signal[i].imag = - freq_signal[i].imag;
vld2.16 {d20, d21, d22, d23}, [r4, :256]
subs r12, #1
vneg.s16 d22, d22
vneg.s16 d23, d23
vst2.16 {d20, d21, d22, d23}, [r4, :256]!
bgt LOOP_PART_LEN2
pop {r4, r5, r6, pc}
@ void WebRtcAecm_InverseFFTAndWindowNeon(AecmCore_t* aecm,
@ int16_t* fft,
@ complex16_t* efw,
@ int16_t* output,
@ const int16_t* nearendClean);
.align 2
DEFINE_FUNCTION WebRtcAecm_InverseFFTAndWindowNeon
push {r4-r8, lr}
@ Values of r0, r1, and r3 will change in WebRtcSpl_ComplexIFFT
@ and WebRtcSpl_ComplexBitReverse.
mov r4, r1
mov r5, r0
mov r7, r3
add r3, r1, #((PART_LEN4 - 6) * 2) @ &fft[PART_LEN4 - 6]
mov r6, #(PART_LEN / 4) @ Loop counter, unrolled by 4
add r12, r2, #(PART_LEN * 4) @ &efw[PART_LEN]
mov r8, #-16
LOOP_PRE_IFFT:
vld2.16 {q10}, [r2, :128]!
vmov q11, q10
vneg.s16 d23, d23
vst2.16 {d22, d23}, [r1, :128]!
vrev64.16 q10, q10
subs r6, #1
vst2.16 {q10}, [r3], r8
bgt LOOP_PRE_IFFT
@ fft[PART_LEN2] = efw[PART_LEN].real;
@ fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
ldr r8, [r12]
ssub16 r12, r6, r8
mov r3, #(PART_LEN2 * 2)
pkhbt r8, r8, r12
str r8, [r4, r3]
@ outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, (int16_t*)efw);
movw r12, #offset_aecm_real_fft
sub r1, #(PART_LEN * 4) @ Get r1 back to &fft[0].
sub r2, #(PART_LEN * 4) @ Get r2 back to &efw[0].
mov r4, r2 @ Keep efw in r4.
ldr r0, [r0, r12] @ aecm->real_fft
CALL_FUNCTION WebRtcSpl_RealInverseFFTNeon
movw r6, #offset_aecm_outBuf
movw r12, #offset_aecm_dfaCleanQDomain
ldr r8, [r5, r6] @ &aecm->outBuf[0]
ldrsh r2, [r5, r12] @ &aecm->dfaCleanQDomain[0]
adr r12, kSqrtHanningReversed
adr r6, WebRtcAecm_kSqrtHanning
rsb r0, r2, r0 @ outCFFT - aecm->dfaCleanQDomain
vdup.32 q9, r0
add r0, r4, #(PART_LEN * 4) @ &efw[PART_LEN]
mov r3, #(PART_LEN / 4) @ Loop counter, unrolled by 4
LOOP_POST_IFFT:
vld2.16 {d4, d5}, [r4, :128] @ &efw[i];
vld1.16 d17, [r6, :64]! @ WebRtcAecm_kSqrtHanning[i]
vld1.16 d20, [r8, :64] @ aecm->outBuf[i]
vmull.s16 q8, d4, d17
vmovl.s16 q10, d20
vrshr.s32 q8, q8, #14
vld1.16 d0, [r0, :64]! @ &efw[PART_LEN + i]
vshl.s32 q8, q8, q9
vld1.16 d1, [r12, :64]! @ kSqrtHanningReversed[i]
vadd.i32 q8, q10
vmull.s16 q0, d0, d1
vqmovn.s32 d16, q8
vshr.s32 q0, q0, #14
vst2.16 {d4, d5}, [r4, :128]! @ &efw[i];
vshl.s32 q0, q0, q9
vst1.16 d16, [r7, :64]! @ output[i]
vqmovn.s32 d0, q0
subs r3, #1
vst1.16 d0, [r8, :64]! @ aecm->outBuf[i]
bgt LOOP_POST_IFFT
movw r3, #offset_aecm_xBuf
movw r12, #offset_aecm_dBufNoisy
ldr r3, [r5, r3] @ &aecm->xBuf[0]
ldr r1, [r5, r12] @ &aecm->dBufNoisy[0]
add r2, r3, #(PART_LEN * 2) @ &aecm->xBuf[PART_LEN]
add r0, r1, #(PART_LEN * 2) @ &aecm->dBufNoisy[PART_LEN]
mov r4, #(PART_LEN / 16) @ Loop counter, unrolled by 16.
LOOP_COPY:
vld1.16 {q10, q11}, [r2, :256]!
vld1.16 {q12, q13}, [r0, :256]!
subs r4, #1
vst1.16 {q10, q11}, [r3, :256]!
vst1.16 {q12, q13}, [r1, :256]!
bgt LOOP_COPY
ldr r2, [sp, #16]
cmp r2, #0 @ Check if (nearendClean != NULL).
beq END
movw r4, #offset_aecm_dBufClean
ldr r1, [r5, r4] @ &aecm->dBufClean[0]
add r0, r1, #(PART_LEN * 2) @ &aecm->dBufClean[PART_LEN]
vld1.16 {q10, q11}, [r0, :256]!
vld1.16 {q12, q13}, [r0, :256]!
vst1.16 {q10, q11}, [r1, :256]!
vst1.16 {q12, q13}, [r1, :256]!
vld1.16 {q10, q11}, [r0, :256]!
vld1.16 {q12, q13}, [r0, :256]!
vst1.16 {q10, q11}, [r1, :256]!
vst1.16 {q12, q13}, [r1, :256]!
END:
pop {r4-r8, pc}
@ void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore_t* aecm, @ void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore_t* aecm,
@ const uint16_t* far_spectrum, @ const uint16_t* far_spectrum,
@ int32_t* echo_est, @ int32_t* echo_est,

View File

@ -12,7 +12,6 @@
#include <assert.h> #include <assert.h>
#include <math.h> #include <math.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
@ -436,26 +435,6 @@ static const int16_t kDeterminantEstMatrix[66] = {
355, 330 355, 330
}; };
// Declare function pointers.
NoiseEstimation WebRtcNsx_NoiseEstimation;
PrepareSpectrum WebRtcNsx_PrepareSpectrum;
SynthesisUpdate WebRtcNsx_SynthesisUpdate;
AnalysisUpdate WebRtcNsx_AnalysisUpdate;
Denormalize WebRtcNsx_Denormalize;
CreateComplexBuffer WebRtcNsx_CreateComplexBuffer;
#if (defined WEBRTC_DETECT_ARM_NEON || defined WEBRTC_ARCH_ARM_NEON)
// Initialize function pointers for ARM Neon platform.
static void WebRtcNsx_InitNeon(void) {
WebRtcNsx_NoiseEstimation = WebRtcNsx_NoiseEstimationNeon;
WebRtcNsx_PrepareSpectrum = WebRtcNsx_PrepareSpectrumNeon;
WebRtcNsx_SynthesisUpdate = WebRtcNsx_SynthesisUpdateNeon;
WebRtcNsx_AnalysisUpdate = WebRtcNsx_AnalysisUpdateNeon;
WebRtcNsx_Denormalize = WebRtcNsx_DenormalizeNeon;
WebRtcNsx_CreateComplexBuffer = WebRtcNsx_CreateComplexBufferNeon;
}
#endif
// Update the noise estimation information. // Update the noise estimation information.
static void UpdateNoiseEstimate(NsxInst_t* inst, int offset) { static void UpdateNoiseEstimate(NsxInst_t* inst, int offset) {
int32_t tmp32no1 = 0; int32_t tmp32no1 = 0;
@ -614,7 +593,6 @@ static void NoiseEstimationC(NsxInst_t* inst,
// Filter the data in the frequency domain, and create spectrum. // Filter the data in the frequency domain, and create spectrum.
static void PrepareSpectrumC(NsxInst_t* inst, int16_t* freq_buf) { static void PrepareSpectrumC(NsxInst_t* inst, int16_t* freq_buf) {
int i = 0, j = 0; int i = 0, j = 0;
int16_t tmp16 = 0;
for (i = 0; i < inst->magnLen; i++) { for (i = 0; i < inst->magnLen; i++) {
inst->real[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(inst->real[i], inst->real[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(inst->real[i],
@ -626,22 +604,19 @@ static void PrepareSpectrumC(NsxInst_t* inst, int16_t* freq_buf) {
freq_buf[0] = inst->real[0]; freq_buf[0] = inst->real[0];
freq_buf[1] = -inst->imag[0]; freq_buf[1] = -inst->imag[0];
for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) { for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) {
tmp16 = (inst->anaLen << 1) - j;
freq_buf[j] = inst->real[i]; freq_buf[j] = inst->real[i];
freq_buf[j + 1] = -inst->imag[i]; freq_buf[j + 1] = -inst->imag[i];
freq_buf[tmp16] = inst->real[i];
freq_buf[tmp16 + 1] = inst->imag[i];
} }
freq_buf[inst->anaLen] = inst->real[inst->anaLen2]; freq_buf[inst->anaLen] = inst->real[inst->anaLen2];
freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2]; freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2];
} }
// Denormalize the input buffer. // Denormalize the real-valued signal |in|, the output from inverse FFT.
static __inline void DenormalizeC(NsxInst_t* inst, int16_t* in, int factor) { static __inline void Denormalize(NsxInst_t* inst, int16_t* in, int factor) {
int i = 0, j = 0; int i = 0;
int32_t tmp32 = 0; int32_t tmp32 = 0;
for (i = 0, j = 0; i < inst->anaLen; i += 1, j += 2) { for (i = 0; i < inst->anaLen; i += 1) {
tmp32 = WEBRTC_SPL_SHIFT_W32((int32_t)in[j], tmp32 = WEBRTC_SPL_SHIFT_W32((int32_t)in[i],
factor - inst->normData); factor - inst->normData);
inst->real[i] = WebRtcSpl_SatW32ToW16(tmp32); // Q0 inst->real[i] = WebRtcSpl_SatW32ToW16(tmp32); // Q0
} }
@ -701,18 +676,32 @@ static void AnalysisUpdateC(NsxInst_t* inst,
} }
} }
// Create a complex number buffer (out[]) as the intput (in[]) interleaved with // Normalize the real-valued signal |in|, the input to forward FFT.
// zeros, and normalize it. static __inline void NormalizeRealBuffer(NsxInst_t* inst,
static __inline void CreateComplexBufferC(NsxInst_t* inst, const int16_t* in,
int16_t* in, int16_t* out) {
int16_t* out) { int i = 0;
int i = 0, j = 0; for (i = 0; i < inst->anaLen; ++i) {
for (i = 0, j = 0; i < inst->anaLen; i += 1, j += 2) { out[i] = WEBRTC_SPL_LSHIFT_W16(in[i], inst->normData); // Q(normData)
out[j] = WEBRTC_SPL_LSHIFT_W16(in[i], inst->normData); // Q(normData)
out[j + 1] = 0; // Insert zeros in imaginary part
} }
} }
// Declare function pointers.
NoiseEstimation WebRtcNsx_NoiseEstimation;
PrepareSpectrum WebRtcNsx_PrepareSpectrum;
SynthesisUpdate WebRtcNsx_SynthesisUpdate;
AnalysisUpdate WebRtcNsx_AnalysisUpdate;
#if (defined WEBRTC_DETECT_ARM_NEON || defined WEBRTC_ARCH_ARM_NEON)
// Initialize function pointers for ARM Neon platform.
static void WebRtcNsx_InitNeon(void) {
WebRtcNsx_NoiseEstimation = WebRtcNsx_NoiseEstimationNeon;
WebRtcNsx_PrepareSpectrum = WebRtcNsx_PrepareSpectrumNeon;
WebRtcNsx_SynthesisUpdate = WebRtcNsx_SynthesisUpdateNeon;
WebRtcNsx_AnalysisUpdate = WebRtcNsx_AnalysisUpdateNeon;
}
#endif
void WebRtcNsx_CalcParametricNoiseEstimate(NsxInst_t* inst, void WebRtcNsx_CalcParametricNoiseEstimate(NsxInst_t* inst,
int16_t pink_noise_exp_avg, int16_t pink_noise_exp_avg,
int32_t pink_noise_num_avg, int32_t pink_noise_num_avg,
@ -900,17 +889,14 @@ int32_t WebRtcNsx_InitCore(NsxInst_t* inst, uint32_t fs) {
WebRtcNsx_PrepareSpectrum = PrepareSpectrumC; WebRtcNsx_PrepareSpectrum = PrepareSpectrumC;
WebRtcNsx_SynthesisUpdate = SynthesisUpdateC; WebRtcNsx_SynthesisUpdate = SynthesisUpdateC;
WebRtcNsx_AnalysisUpdate = AnalysisUpdateC; WebRtcNsx_AnalysisUpdate = AnalysisUpdateC;
WebRtcNsx_Denormalize = DenormalizeC;
WebRtcNsx_CreateComplexBuffer = CreateComplexBufferC;
#ifdef WEBRTC_DETECT_ARM_NEON #ifdef WEBRTC_DETECT_ARM_NEON
uint64_t features = WebRtc_GetCPUFeaturesARM(); uint64_t features = WebRtc_GetCPUFeaturesARM();
if ((features & kCPUFeatureNEON) != 0) if ((features & kCPUFeatureNEON) != 0) {
{ WebRtcNsx_InitNeon();
WebRtcNsx_InitNeon(); }
}
#elif defined(WEBRTC_ARCH_ARM_NEON) #elif defined(WEBRTC_ARCH_ARM_NEON)
WebRtcNsx_InitNeon(); WebRtcNsx_InitNeon();
#endif #endif
inst->initFlag = 1; inst->initFlag = 1;
@ -1606,7 +1592,7 @@ void WebRtcNsx_DataAnalysis(NsxInst_t* inst, short* speechFrame, uint16_t* magnU
right_shifts_in_magnU16 = WEBRTC_SPL_MAX(right_shifts_in_magnU16, 0); right_shifts_in_magnU16 = WEBRTC_SPL_MAX(right_shifts_in_magnU16, 0);
// create realImag as winData interleaved with zeros (= imag. part), normalize it // create realImag as winData interleaved with zeros (= imag. part), normalize it
WebRtcNsx_CreateComplexBuffer(inst, winData, realImag); NormalizeRealBuffer(inst, winData, realImag);
// FFT output will be in winData[]. // FFT output will be in winData[].
WebRtcSpl_RealForwardFFT(inst->real_fft, realImag, winData); WebRtcSpl_RealForwardFFT(inst->real_fft, realImag, winData);
@ -1838,8 +1824,7 @@ void WebRtcNsx_DataSynthesis(NsxInst_t* inst, short* outFrame) {
// Inverse FFT output will be in rfft_out[]. // Inverse FFT output will be in rfft_out[].
outCIFFT = WebRtcSpl_RealInverseFFT(inst->real_fft, realImag, rfft_out); outCIFFT = WebRtcSpl_RealInverseFFT(inst->real_fft, realImag, rfft_out);
// Denormalize. Denormalize(inst, rfft_out, outCIFFT);
WebRtcNsx_Denormalize(inst, rfft_out, outCIFFT);
//scale factor: only do it after END_STARTUP_LONG time //scale factor: only do it after END_STARTUP_LONG time
gainFactor = 8192; // 8192 = Q13(1.0) gainFactor = 8192; // 8192 = Q13(1.0)

View File

@ -201,19 +201,6 @@ typedef void (*AnalysisUpdate)(NsxInst_t* inst,
int16_t* new_speech); int16_t* new_speech);
extern AnalysisUpdate WebRtcNsx_AnalysisUpdate; extern AnalysisUpdate WebRtcNsx_AnalysisUpdate;
// Denormalize the input buffer.
typedef void (*Denormalize)(NsxInst_t* inst,
int16_t* in,
int factor);
extern Denormalize WebRtcNsx_Denormalize;
// Create a complex number buffer, as the intput interleaved with zeros,
// and normalize it.
typedef void (*CreateComplexBuffer)(NsxInst_t* inst,
int16_t* in,
int16_t* out);
extern CreateComplexBuffer WebRtcNsx_CreateComplexBuffer;
#if (defined WEBRTC_DETECT_ARM_NEON) || defined (WEBRTC_ARCH_ARM_NEON) #if (defined WEBRTC_DETECT_ARM_NEON) || defined (WEBRTC_ARCH_ARM_NEON)
// For the above function pointers, functions for generic platforms are declared // For the above function pointers, functions for generic platforms are declared
// and defined as static in file nsx_core.c, while those for ARM Neon platforms // and defined as static in file nsx_core.c, while those for ARM Neon platforms
@ -222,16 +209,12 @@ void WebRtcNsx_NoiseEstimationNeon(NsxInst_t* inst,
uint16_t* magn, uint16_t* magn,
uint32_t* noise, uint32_t* noise,
int16_t* q_noise); int16_t* q_noise);
void WebRtcNsx_CreateComplexBufferNeon(NsxInst_t* inst,
int16_t* in,
int16_t* out);
void WebRtcNsx_SynthesisUpdateNeon(NsxInst_t* inst, void WebRtcNsx_SynthesisUpdateNeon(NsxInst_t* inst,
int16_t* out_frame, int16_t* out_frame,
int16_t gain_factor); int16_t gain_factor);
void WebRtcNsx_AnalysisUpdateNeon(NsxInst_t* inst, void WebRtcNsx_AnalysisUpdateNeon(NsxInst_t* inst,
int16_t* out, int16_t* out,
int16_t* new_speech); int16_t* new_speech);
void WebRtcNsx_DenormalizeNeon(NsxInst_t* inst, int16_t* in, int factor);
void WebRtcNsx_PrepareSpectrumNeon(NsxInst_t* inst, int16_t* freq_buff); void WebRtcNsx_PrepareSpectrumNeon(NsxInst_t* inst, int16_t* freq_buff);
#endif #endif

View File

@ -20,8 +20,6 @@ GLOBAL_FUNCTION WebRtcNsx_NoiseEstimationNeon
GLOBAL_FUNCTION WebRtcNsx_PrepareSpectrumNeon GLOBAL_FUNCTION WebRtcNsx_PrepareSpectrumNeon
GLOBAL_FUNCTION WebRtcNsx_SynthesisUpdateNeon GLOBAL_FUNCTION WebRtcNsx_SynthesisUpdateNeon
GLOBAL_FUNCTION WebRtcNsx_AnalysisUpdateNeon GLOBAL_FUNCTION WebRtcNsx_AnalysisUpdateNeon
GLOBAL_FUNCTION WebRtcNsx_DenormalizeNeon
GLOBAL_FUNCTION WebRtcNsx_CreateComplexBufferNeon
GLOBAL_LABEL WebRtcNsx_kLogTable GLOBAL_LABEL WebRtcNsx_kLogTable
GLOBAL_LABEL WebRtcNsx_kCounterDiv GLOBAL_LABEL WebRtcNsx_kCounterDiv
GLOBAL_LABEL WebRtcNsx_kLogTableFrac GLOBAL_LABEL WebRtcNsx_kLogTableFrac
@ -426,6 +424,7 @@ POST_LOOP_MAGNLEN:
pop {r4, r5, r6, pc} pop {r4, r5, r6, pc}
@ TODO(kma): Remove copying to 2nd half of freq_buf, for real FFT interface.
@ void PrepareSpectrumNeon(NsxInst_t* inst, int16_t* freq_buf); @ void PrepareSpectrumNeon(NsxInst_t* inst, int16_t* freq_buf);
.align 2 .align 2
DEFINE_FUNCTION WebRtcNsx_PrepareSpectrumNeon DEFINE_FUNCTION WebRtcNsx_PrepareSpectrumNeon
@ -542,35 +541,6 @@ LOOP_ANALEN2:
pop {r4-r9} pop {r4-r9}
bx r14 bx r14
@ void WebRtcNsx_DenormalizeNeon(NsxInst_t* inst, int16_t* in, int factor);
.align 2
DEFINE_FUNCTION WebRtcNsx_DenormalizeNeon
movw r12, #offset_nsx_normData
movw r3, #offset_nsx_real
ldr r12, [r0, r12] @ inst->normData
add r3, r0 @ &inst->real[0]
sub r2, r12
vdup.32 q10, r2
movw r2, #offset_nsx_anaLen
ldrsh r2, [r0, r2] @ inst->anaLen
add r0, r3, r2, lsl #1 @ &inst->real[inst->anaLen]
LOOP_ANALEN:
vld2.16 {d0, d1}, [r1]! @ &in[]
vld2.16 {d2, d3}, [r1]! @ &in[]
vmovl.s16 q2, d0
vmovl.s16 q3, d2
vshl.s32 q2, q10
vshl.s32 q3, q10
vqmovn.s32 d0, q2
vqmovn.s32 d1, q3
vst1.16 {d0, d1}, [r3]! @ inst->real[]
cmp r3, r0
blt LOOP_ANALEN
bx r14
@ void SynthesisUpdateNeon(NsxInst_t* inst, @ void SynthesisUpdateNeon(NsxInst_t* inst,
@ int16_t* out_frame, @ int16_t* out_frame,
@ int16_t gain_factor); @ int16_t gain_factor);
@ -704,33 +674,3 @@ LOOP_WINDOW_DATA:
POST_LOOP_WINDOW_DATA: POST_LOOP_WINDOW_DATA:
pop {r4-r6} pop {r4-r6}
bx r14 bx r14
@ void CreateComplexBufferNeon(NsxInst_t* inst, int16_t* in, int16_t* out);
.align 2
DEFINE_FUNCTION WebRtcNsx_CreateComplexBufferNeon
movw r3, #offset_nsx_anaLen
movw r12, #offset_nsx_normData
ldrsh r3, [r0, r3] @ inst->anaLen
ldr r12, [r0, r12] @ inst->normData
add r3, r1, r3, lsl #1 @ &in[inst->anaLen]
vmov.i16 d7, #0 @ For writing to imaginary parts.
vmov.i16 d5, #0 @ For writing to imaginary parts.
vdup.i16 q10, r12
LOOP_CREATE_COMPLEX_BUFFER: @ Unrolled by 16.
vld1.16 {d0, d1, d2, d3}, [r1]! @ in[]
cmp r1, r3
vshl.s16 q0, q10
vshl.s16 q1, q10
vmov d4, d1
vmov d1, d5
vmov d6, d3
vmov d3, d7
vst2.16 {d0, d1}, [r2]!
vst2.16 {d4, d5}, [r2]!
vst2.16 {d2, d3}, [r2]!
vst2.16 {d6, d7}, [r2]!
blt LOOP_CREATE_COMPLEX_BUFFER
bx r14