MIPS optimizations for AECM audio processing module

R=andrew@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/2279005

Patch from Ljubomir Papuga <lpapuga@mips.com>.

git-svn-id: http://webrtc.googlecode.com/svn/trunk@5110 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
andrew@webrtc.org 2013-11-11 20:10:01 +00:00
parent b0730108a2
commit e03cafaebc
5 changed files with 2555 additions and 785 deletions

View File

@ -27,65 +27,7 @@ FILE *dfile;
FILE *testfile;
#endif
// Square root of Hanning window in Q14.
#if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON)
// Table is defined in an ARM assembly file.
extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END;
#else
static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
};
#endif
#ifdef AECM_WITH_ABS_APPROX
//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
static const uint16_t kAlpha1 = 32584;
//Q15 beta = 0.12967166976970 const Factor for magnitude approximation
static const uint16_t kBeta1 = 4249;
//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
static const uint16_t kAlpha2 = 30879;
//Q15 beta = 0.33787806009150 const Factor for magnitude approximation
static const uint16_t kBeta2 = 11072;
//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
static const uint16_t kAlpha3 = 26951;
//Q15 beta = 0.57762063060713 const Factor for magnitude approximation
static const uint16_t kBeta3 = 18927;
#endif
// Initialization table for echo channel in 8 kHz
static const int16_t kChannelStored8kHz[PART_LEN1] = {
2040, 1815, 1590, 1498, 1405, 1395, 1385, 1418,
1451, 1506, 1562, 1644, 1726, 1804, 1882, 1918,
1953, 1982, 2010, 2025, 2040, 2034, 2027, 2021,
2014, 1997, 1980, 1925, 1869, 1800, 1732, 1683,
1635, 1604, 1572, 1545, 1517, 1481, 1444, 1405,
1367, 1331, 1294, 1270, 1245, 1239, 1233, 1247,
1260, 1282, 1303, 1338, 1373, 1407, 1441, 1470,
1499, 1524, 1549, 1565, 1582, 1601, 1621, 1649,
1676
};
// Initialization table for echo channel in 16 kHz
static const int16_t kChannelStored16kHz[PART_LEN1] = {
2040, 1590, 1405, 1385, 1451, 1562, 1726, 1882,
1953, 2010, 2040, 2027, 2014, 1980, 1869, 1732,
1635, 1572, 1517, 1444, 1367, 1294, 1245, 1233,
1260, 1303, 1373, 1441, 1499, 1549, 1582, 1621,
1676, 1741, 1802, 1861, 1921, 1983, 2040, 2102,
2170, 2265, 2375, 2515, 2651, 2781, 2922, 3075,
3253, 3471, 3738, 3976, 4151, 4258, 4308, 4288,
4270, 4253, 4237, 4179, 4086, 3947, 3757, 3484,
3153
};
static const int16_t kCosTable[] = {
const int16_t WebRtcAecm_kCosTable[] = {
8192, 8190, 8187, 8180, 8172, 8160, 8147, 8130, 8112,
8091, 8067, 8041, 8012, 7982, 7948, 7912, 7874, 7834,
7791, 7745, 7697, 7647, 7595, 7540, 7483, 7424, 7362,
@ -128,7 +70,7 @@ static const int16_t kCosTable[] = {
8091, 8112, 8130, 8147, 8160, 8172, 8180, 8187, 8190
};
static const int16_t kSinTable[] = {
const int16_t WebRtcAecm_kSinTable[] = {
0, 142, 285, 428, 571, 713, 856, 998,
1140, 1281, 1422, 1563, 1703, 1842, 1981, 2120,
2258, 2395, 2531, 2667, 2801, 2935, 3068, 3200,
@ -176,15 +118,31 @@ static const int16_t kSinTable[] = {
-1140, -998, -856, -713, -571, -428, -285, -142
};
static const int16_t kNoiseEstQDomain = 15;
static const int16_t kNoiseEstIncCount = 5;
// Initialization table for echo channel in 8 kHz
static const int16_t kChannelStored8kHz[PART_LEN1] = {
2040, 1815, 1590, 1498, 1405, 1395, 1385, 1418,
1451, 1506, 1562, 1644, 1726, 1804, 1882, 1918,
1953, 1982, 2010, 2025, 2040, 2034, 2027, 2021,
2014, 1997, 1980, 1925, 1869, 1800, 1732, 1683,
1635, 1604, 1572, 1545, 1517, 1481, 1444, 1405,
1367, 1331, 1294, 1270, 1245, 1239, 1233, 1247,
1260, 1282, 1303, 1338, 1373, 1407, 1441, 1470,
1499, 1524, 1549, 1565, 1582, 1601, 1621, 1649,
1676
};
static void ComfortNoise(AecmCore_t* aecm,
const uint16_t* dfa,
complex16_t* out,
const int16_t* lambda);
static int16_t CalcSuppressionGain(AecmCore_t * const aecm);
// Initialization table for echo channel in 16 kHz
static const int16_t kChannelStored16kHz[PART_LEN1] = {
2040, 1590, 1405, 1385, 1451, 1562, 1726, 1882,
1953, 2010, 2040, 2027, 2014, 1980, 1869, 1732,
1635, 1572, 1517, 1444, 1367, 1294, 1245, 1233,
1260, 1303, 1373, 1441, 1499, 1549, 1582, 1621,
1676, 1741, 1802, 1861, 1921, 1983, 2040, 2102,
2170, 2265, 2375, 2515, 2651, 2781, 2922, 3075,
3253, 3471, 3738, 3976, 4151, 4258, 4308, 4288,
4270, 4253, 4237, 4179, 4086, 3947, 3757, 3484,
3153
};
// Moves the pointer to the next entry and inserts |far_spectrum| and
// corresponding Q-domain in its buffer.
@ -194,7 +152,7 @@ static int16_t CalcSuppressionGain(AecmCore_t * const aecm);
// - far_spectrum : Pointer to the far end spectrum
// - far_q : Q-domain of far end spectrum
//
static void UpdateFarHistory(AecmCore_t* self,
void WebRtcAecm_UpdateFarHistory(AecmCore_t* self,
uint16_t* far_spectrum,
int far_q) {
// Get new buffer position
@ -227,7 +185,9 @@ static void UpdateFarHistory(AecmCore_t* self,
// - far_spectrum : Pointer to the aligned far end spectrum
// NULL - Error
//
static const uint16_t* AlignedFarend(AecmCore_t* self, int* far_q, int delay) {
const uint16_t* WebRtcAecm_AlignedFarend(AecmCore_t* self,
int* far_q,
int delay) {
int buffer_position = 0;
assert(self != NULL);
buffer_position = self->far_history_pos - delay;
@ -351,85 +311,6 @@ void WebRtcAecm_InitEchoPathCore(AecmCore_t* aecm, const int16_t* echo_path)
aecm->mseChannelCount = 0;
}
static void WindowAndFFT(AecmCore_t* aecm,
int16_t* fft,
const int16_t* time_signal,
complex16_t* freq_signal,
int time_signal_scaling) {
int i = 0;
// FFT of signal
for (i = 0; i < PART_LEN; i++) {
// Window time domain signal and insert into real part of
// transformation array |fft|
fft[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
(time_signal[i] << time_signal_scaling),
WebRtcAecm_kSqrtHanning[i],
14);
fft[PART_LEN + i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
(time_signal[i + PART_LEN] << time_signal_scaling),
WebRtcAecm_kSqrtHanning[PART_LEN - i],
14);
}
// Do forward FFT, then take only the first PART_LEN complex samples,
// and change signs of the imaginary parts.
WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
for (i = 0; i < PART_LEN; i++) {
freq_signal[i].imag = -freq_signal[i].imag;
}
}
static void InverseFFTAndWindow(AecmCore_t* aecm,
int16_t* fft,
complex16_t* efw,
int16_t* output,
const int16_t* nearendClean)
{
int i, j, outCFFT;
int32_t tmp32no1;
// Reuse |efw| for the inverse FFT output after transferring
// the contents to |fft|.
int16_t* ifft_out = (int16_t*)efw;
// Synthesis
for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
fft[j] = efw[i].real;
fft[j + 1] = -efw[i].imag;
}
fft[0] = efw[0].real;
fft[1] = -efw[0].imag;
fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
// Inverse FFT. Keep outCFFT to scale the samples in the next block.
outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
for (i = 0; i < PART_LEN; i++) {
ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
outCFFT - aecm->dfaCleanQDomain);
output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1 + aecm->outBuf[i], WEBRTC_SPL_WORD16_MIN);
tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT(ifft_out[PART_LEN + i],
WebRtcAecm_kSqrtHanning[PART_LEN - i], 14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(
WEBRTC_SPL_WORD16_MAX, tmp32no1, WEBRTC_SPL_WORD16_MIN);
}
// Copy the current block to the old position (aecm->outBuf is shifted elsewhere)
memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy, aecm->dBufNoisy + PART_LEN, sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean, aecm->dBufClean + PART_LEN, sizeof(int16_t) * PART_LEN);
}
}
static void CalcLinearEnergiesC(AecmCore_t* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
@ -509,6 +390,18 @@ static void WebRtcAecm_InitNeon(void)
}
#endif
// Initialize function pointers for MIPS platform.
#if defined(MIPS32_LE)
static void WebRtcAecm_InitMips(void)
{
#if defined(MIPS_DSP_R1_LE)
WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannel_mips;
WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannel_mips;
#endif
WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergies_mips;
}
#endif
// WebRtcAecm_InitCore(...)
//
// This function initializes the AECM instant created with WebRtcAecm_CreateCore(...)
@ -646,6 +539,9 @@ int WebRtcAecm_InitCore(AecmCore_t * const aecm, int samplingFreq)
WebRtcAecm_InitNeon();
#endif
#if defined(MIPS32_LE)
WebRtcAecm_InitMips();
#endif
return 0;
}
@ -1265,7 +1161,7 @@ void WebRtcAecm_UpdateChannel(AecmCore_t * aecm,
// level (Q14).
//
//
static int16_t CalcSuppressionGain(AecmCore_t * const aecm)
int16_t WebRtcAecm_CalcSuppressionGain(AecmCore_t * const aecm)
{
int32_t tmp32no1;
@ -1334,639 +1230,6 @@ static int16_t CalcSuppressionGain(AecmCore_t * const aecm)
return aecm->supGain;
}
// Transforms a time domain signal into the frequency domain, outputting the
// complex valued signal, absolute value and sum of absolute values.
//
// time_signal [in] Pointer to time domain signal
// freq_signal_real [out] Pointer to real part of frequency domain array
// freq_signal_imag [out] Pointer to imaginary part of frequency domain
// array
// freq_signal_abs [out] Pointer to absolute value of frequency domain
// array
// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
// the frequency domain array
// return value The Q-domain of current frequency values
//
static int TimeToFrequencyDomain(AecmCore_t* aecm,
const int16_t* time_signal,
complex16_t* freq_signal,
uint16_t* freq_signal_abs,
uint32_t* freq_signal_sum_abs)
{
int i = 0;
int time_signal_scaling = 0;
int32_t tmp32no1 = 0;
int32_t tmp32no2 = 0;
// In fft_buf, +16 for 32-byte alignment.
int16_t fft_buf[PART_LEN4 + 16];
int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
int16_t tmp16no1;
#ifndef WEBRTC_ARCH_ARM_V7
int16_t tmp16no2;
#endif
#ifdef AECM_WITH_ABS_APPROX
int16_t max_value = 0;
int16_t min_value = 0;
uint16_t alpha = 0;
uint16_t beta = 0;
#endif
#ifdef AECM_DYNAMIC_Q
tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
#endif
WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
// Extract imaginary and real part, calculate the magnitude for all frequency bins
freq_signal[0].imag = 0;
freq_signal[PART_LEN].imag = 0;
freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(
freq_signal[0].real);
freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
freq_signal[PART_LEN].real);
(*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
(uint32_t)(freq_signal_abs[PART_LEN]);
for (i = 1; i < PART_LEN; i++)
{
if (freq_signal[i].real == 0)
{
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(
freq_signal[i].imag);
}
else if (freq_signal[i].imag == 0)
{
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(
freq_signal[i].real);
}
else
{
// Approximation for magnitude of complex fft output
// magn = sqrt(real^2 + imag^2)
// magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
//
// The parameters alpha and beta are stored in Q15
#ifdef AECM_WITH_ABS_APPROX
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
if(tmp16no1 > tmp16no2)
{
max_value = tmp16no1;
min_value = tmp16no2;
} else
{
max_value = tmp16no2;
min_value = tmp16no1;
}
// Magnitude in Q(-6)
if ((max_value >> 2) > min_value)
{
alpha = kAlpha1;
beta = kBeta1;
} else if ((max_value >> 1) > min_value)
{
alpha = kAlpha2;
beta = kBeta2;
} else
{
alpha = kAlpha3;
beta = kBeta3;
}
tmp16no1 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(max_value,
alpha,
15);
tmp16no2 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(min_value,
beta,
15);
freq_signal_abs[i] = (uint16_t)tmp16no1 +
(uint16_t)tmp16no2;
#else
#ifdef WEBRTC_ARCH_ARM_V7
__asm __volatile(
"smulbb %[tmp32no1], %[real], %[real]\n\t"
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
:[tmp32no1]"+r"(tmp32no1),
[tmp32no2]"=r"(tmp32no2)
:[real]"r"(freq_signal[i].real),
[imag]"r"(freq_signal[i].imag)
);
#else
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
tmp32no1 = WEBRTC_SPL_MUL_16_16(tmp16no1, tmp16no1);
tmp32no2 = WEBRTC_SPL_MUL_16_16(tmp16no2, tmp16no2);
tmp32no2 = WEBRTC_SPL_ADD_SAT_W32(tmp32no1, tmp32no2);
#endif // WEBRTC_ARCH_ARM_V7
tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
freq_signal_abs[i] = (uint16_t)tmp32no1;
#endif // AECM_WITH_ABS_APPROX
}
(*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
}
return time_signal_scaling;
}
int WebRtcAecm_ProcessBlock(AecmCore_t * aecm,
const int16_t * farend,
const int16_t * nearendNoisy,
const int16_t * nearendClean,
int16_t * output)
{
int i;
uint32_t xfaSum;
uint32_t dfaNoisySum;
uint32_t dfaCleanSum;
uint32_t echoEst32Gained;
uint32_t tmpU32;
int32_t tmp32no1;
uint16_t xfa[PART_LEN1];
uint16_t dfaNoisy[PART_LEN1];
uint16_t dfaClean[PART_LEN1];
uint16_t* ptrDfaClean = dfaClean;
const uint16_t* far_spectrum_ptr = NULL;
// 32 byte aligned buffers (with +8 or +16).
// TODO (kma): define fft with complex16_t.
int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
int32_t echoEst32_buf[PART_LEN1 + 8];
int32_t dfw_buf[PART_LEN2 + 8];
int32_t efw_buf[PART_LEN2 + 8];
int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31);
int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
complex16_t* dfw = (complex16_t*) (((uintptr_t) dfw_buf + 31) & ~ 31);
complex16_t* efw = (complex16_t*) (((uintptr_t) efw_buf + 31) & ~ 31);
int16_t hnl[PART_LEN1];
int16_t numPosCoef = 0;
int16_t nlpGain = ONE_Q14;
int delay;
int16_t tmp16no1;
int16_t tmp16no2;
int16_t mu;
int16_t supGain;
int16_t zeros32, zeros16;
int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
int far_q;
int16_t resolutionDiff, qDomainDiff;
const int kMinPrefBand = 4;
const int kMaxPrefBand = 24;
int32_t avgHnl32 = 0;
// Determine startup state. There are three states:
// (0) the first CONV_LEN blocks
// (1) another CONV_LEN blocks
// (2) the rest
if (aecm->startupState < 2)
{
aecm->startupState = (aecm->totCount >= CONV_LEN) + (aecm->totCount >= CONV_LEN2);
}
// END: Determine startup state
// Buffer near and far end signals
memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean + PART_LEN, nearendClean, sizeof(int16_t) * PART_LEN);
}
// Transform far end signal from time domain to frequency domain.
far_q = TimeToFrequencyDomain(aecm,
aecm->xBuf,
dfw,
xfa,
&xfaSum);
// Transform noisy near end signal from time domain to frequency domain.
zerosDBufNoisy = TimeToFrequencyDomain(aecm,
aecm->dBufNoisy,
dfw,
dfaNoisy,
&dfaNoisySum);
aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
if (nearendClean == NULL)
{
ptrDfaClean = dfaNoisy;
aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
dfaCleanSum = dfaNoisySum;
} else
{
// Transform clean near end signal from time domain to frequency domain.
zerosDBufClean = TimeToFrequencyDomain(aecm,
aecm->dBufClean,
dfw,
dfaClean,
&dfaCleanSum);
aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
}
// Get the delay
// Save far-end history and estimate delay
UpdateFarHistory(aecm, xfa, far_q);
if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, xfa, PART_LEN1,
far_q) == -1) {
return -1;
}
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
dfaNoisy,
PART_LEN1,
zerosDBufNoisy);
if (delay == -1)
{
return -1;
}
else if (delay == -2)
{
// If the delay is unknown, we assume zero.
// NOTE: this will have to be adjusted if we ever add lookahead.
delay = 0;
}
if (aecm->fixedDelay >= 0)
{
// Use fixed delay
delay = aecm->fixedDelay;
}
// Get aligned far end spectrum
far_spectrum_ptr = AlignedFarend(aecm, &far_q, delay);
zerosXBuf = (int16_t) far_q;
if (far_spectrum_ptr == NULL)
{
return -1;
}
// Calculate log(energy) and update energy threshold levels
WebRtcAecm_CalcEnergies(aecm,
far_spectrum_ptr,
zerosXBuf,
dfaNoisySum,
echoEst32);
// Calculate stepsize
mu = WebRtcAecm_CalcStepSize(aecm);
// Update counters
aecm->totCount++;
// This is the channel estimation algorithm.
// It is base on NLMS but has a variable step length, which was calculated above.
WebRtcAecm_UpdateChannel(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisy, mu, echoEst32);
supGain = CalcSuppressionGain(aecm);
// Calculate Wiener filter hnl[]
for (i = 0; i < PART_LEN1; i++)
{
// Far end signal through channel estimate in Q8
// How much can we shift right to preserve resolution
tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
aecm->echoFilt[i] += WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_32_16(tmp32no1, 50), 8);
zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
zeros16 = WebRtcSpl_NormW16(supGain) + 1;
if (zeros32 + zeros16 > 16)
{
// Multiplication is safe
// Result in Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+aecm->xfaQDomainBuf[diff])
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
(uint16_t)supGain);
resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
} else
{
tmp16no1 = 17 - zeros32 - zeros16;
resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
if (zeros32 > tmp16no1)
{
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
(uint16_t)WEBRTC_SPL_RSHIFT_W16(supGain,
tmp16no1)); // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
} else
{
// Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
echoEst32Gained = WEBRTC_SPL_UMUL_32_16(
(uint32_t)WEBRTC_SPL_RSHIFT_W32(aecm->echoFilt[i], tmp16no1),
(uint16_t)supGain);
}
}
zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
if ((zeros16 < (aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld))
& (aecm->nearFilt[i]))
{
tmp16no1 = WEBRTC_SPL_SHIFT_W16(aecm->nearFilt[i], zeros16);
qDomainDiff = zeros16 - aecm->dfaCleanQDomain + aecm->dfaCleanQDomainOld;
} else
{
tmp16no1 = WEBRTC_SPL_SHIFT_W16(aecm->nearFilt[i],
aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld);
qDomainDiff = 0;
}
tmp16no2 = WEBRTC_SPL_SHIFT_W16(ptrDfaClean[i], qDomainDiff);
tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
tmp16no2 = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32no1, 4);
tmp16no2 += tmp16no1;
zeros16 = WebRtcSpl_NormW16(tmp16no2);
if ((tmp16no2) & (-qDomainDiff > zeros16))
{
aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
} else
{
aecm->nearFilt[i] = WEBRTC_SPL_SHIFT_W16(tmp16no2, -qDomainDiff);
}
// Wiener filter coefficients, resulting hnl in Q14
if (echoEst32Gained == 0)
{
hnl[i] = ONE_Q14;
} else if (aecm->nearFilt[i] == 0)
{
hnl[i] = 0;
} else
{
// Multiply the suppression gain
// Rounding
echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained, (uint16_t)aecm->nearFilt[i]);
// Current resolution is
// Q-(RESOLUTION_CHANNEL + RESOLUTION_SUPGAIN - max(0, 17 - zeros16 - zeros32))
// Make sure we are in Q14
tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
if (tmp32no1 > ONE_Q14)
{
hnl[i] = 0;
} else if (tmp32no1 < 0)
{
hnl[i] = ONE_Q14;
} else
{
// 1-echoEst/dfa
hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
if (hnl[i] < 0)
{
hnl[i] = 0;
}
}
}
if (hnl[i])
{
numPosCoef++;
}
}
// Only in wideband. Prevent the gain in upper band from being larger than
// in lower band.
if (aecm->mult == 2)
{
// TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
// speech distortion in double-talk.
for (i = 0; i < PART_LEN1; i++)
{
hnl[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(hnl[i], hnl[i], 14);
}
for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
{
avgHnl32 += (int32_t)hnl[i];
}
assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
for (i = kMaxPrefBand; i < PART_LEN1; i++)
{
if (hnl[i] > (int16_t)avgHnl32)
{
hnl[i] = (int16_t)avgHnl32;
}
}
}
// Calculate NLP gain, result is in Q14
if (aecm->nlpFlag)
{
for (i = 0; i < PART_LEN1; i++)
{
// Truncate values close to zero and one.
if (hnl[i] > NLP_COMP_HIGH)
{
hnl[i] = ONE_Q14;
} else if (hnl[i] < NLP_COMP_LOW)
{
hnl[i] = 0;
}
// Remove outliers
if (numPosCoef < 3)
{
nlpGain = 0;
} else
{
nlpGain = ONE_Q14;
}
// NLP
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
{
hnl[i] = ONE_Q14;
} else
{
hnl[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(hnl[i], nlpGain, 14);
}
// multiply with Wiener coefficients
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
else
{
// multiply with Wiener coefficients
for (i = 0; i < PART_LEN1; i++)
{
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
if (aecm->cngMode == AecmTrue)
{
ComfortNoise(aecm, ptrDfaClean, efw, hnl);
}
InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
return 0;
}
// Generate comfort noise and add to output signal.
//
// \param[in] aecm Handle of the AECM instance.
// \param[in] dfa Absolute value of the nearend signal (Q[aecm->dfaQDomain]).
// \param[in,out] outReal Real part of the output signal (Q[aecm->dfaQDomain]).
// \param[in,out] outImag Imaginary part of the output signal (Q[aecm->dfaQDomain]).
// \param[in] lambda Suppression gain with which to scale the noise level (Q14).
//
static void ComfortNoise(AecmCore_t* aecm,
const uint16_t* dfa,
complex16_t* out,
const int16_t* lambda)
{
int16_t i;
int16_t tmp16;
int32_t tmp32;
int16_t randW16[PART_LEN];
int16_t uReal[PART_LEN1];
int16_t uImag[PART_LEN1];
int32_t outLShift32;
int16_t noiseRShift16[PART_LEN1];
int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
int16_t minTrackShift;
assert(shiftFromNearToNoise >= 0);
assert(shiftFromNearToNoise < 16);
if (aecm->noiseEstCtr < 100)
{
// Track the minimum more quickly initially.
aecm->noiseEstCtr++;
minTrackShift = 6;
} else
{
minTrackShift = 9;
}
// Estimate noise power.
for (i = 0; i < PART_LEN1; i++)
{
// Shift to the noise domain.
tmp32 = (int32_t)dfa[i];
outLShift32 = WEBRTC_SPL_LSHIFT_W32(tmp32, shiftFromNearToNoise);
if (outLShift32 < aecm->noiseEst[i])
{
// Reset "too low" counter
aecm->noiseEstTooLowCtr[i] = 0;
// Track the minimum.
if (aecm->noiseEst[i] < (1 << minTrackShift))
{
// For small values, decrease noiseEst[i] every
// |kNoiseEstIncCount| block. The regular approach below can not
// go further down due to truncation.
aecm->noiseEstTooHighCtr[i]++;
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i]--;
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
}
}
else
{
aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32) >> minTrackShift);
}
} else
{
// Reset "too high" counter
aecm->noiseEstTooHighCtr[i] = 0;
// Ramp slowly upwards until we hit the minimum again.
if ((aecm->noiseEst[i] >> 19) > 0)
{
// Avoid overflow.
// Multiplication with 2049 will cause wrap around. Scale
// down first and then multiply
aecm->noiseEst[i] >>= 11;
aecm->noiseEst[i] *= 2049;
}
else if ((aecm->noiseEst[i] >> 11) > 0)
{
// Large enough for relative increase
aecm->noiseEst[i] *= 2049;
aecm->noiseEst[i] >>= 11;
}
else
{
// Make incremental increases based on size every
// |kNoiseEstIncCount| block
aecm->noiseEstTooLowCtr[i]++;
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
}
}
}
}
for (i = 0; i < PART_LEN1; i++)
{
tmp32 = WEBRTC_SPL_RSHIFT_W32(aecm->noiseEst[i], shiftFromNearToNoise);
if (tmp32 > 32767)
{
tmp32 = 32767;
aecm->noiseEst[i] = WEBRTC_SPL_LSHIFT_W32(tmp32, shiftFromNearToNoise);
}
noiseRShift16[i] = (int16_t)tmp32;
tmp16 = ONE_Q14 - lambda[i];
noiseRShift16[i]
= (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(tmp16, noiseRShift16[i], 14);
}
// Generate a uniform random array on [0 2^15-1].
WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
// Generate noise according to estimated energy.
uReal[0] = 0; // Reject LF noise.
uImag[0] = 0;
for (i = 1; i < PART_LEN1; i++)
{
// Get a random index for the cos and sin tables over [0 359].
tmp16 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(359, randW16[i - 1], 15);
// Tables are in Q13.
uReal[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(noiseRShift16[i],
kCosTable[tmp16], 13);
uImag[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(-noiseRShift16[i],
kSinTable[tmp16], 13);
}
uImag[PART_LEN] = 0;
for (i = 0; i < PART_LEN1; i++)
{
out[i].real = WEBRTC_SPL_ADD_SAT_W16(out[i].real, uReal[i]);
out[i].imag = WEBRTC_SPL_ADD_SAT_W16(out[i].imag, uImag[i]);
}
}
void WebRtcAecm_BufferFarFrame(AecmCore_t* const aecm,
const int16_t* const farend,
const int farLen)

View File

@ -272,6 +272,125 @@ void WebRtcAecm_FetchFarFrame(AecmCore_t * const aecm,
int16_t * const farend,
const int farLen, const int knownDelay);
// All the functions below are intended to be private
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_UpdateFarHistory()
//
// Moves the pointer to the next entry and inserts |far_spectrum| and
// corresponding Q-domain in its buffer.
//
// Inputs:
// - self : Pointer to the delay estimation instance
// - far_spectrum : Pointer to the far end spectrum
// - far_q : Q-domain of far end spectrum
//
void WebRtcAecm_UpdateFarHistory(AecmCore_t* self,
uint16_t* far_spectrum,
int far_q);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_AlignedFarend()
//
// Returns a pointer to the far end spectrum aligned to current near end
// spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been
// called before AlignedFarend(...). Otherwise, you get the pointer to the
// previous frame. The memory is only valid until the next call of
// WebRtc_DelayEstimatorProcessFix(...).
//
// Inputs:
// - self : Pointer to the AECM instance.
// - delay : Current delay estimate.
//
// Output:
// - far_q : The Q-domain of the aligned far end spectrum
//
// Return value:
// - far_spectrum : Pointer to the aligned far end spectrum
// NULL - Error
//
const uint16_t* WebRtcAecm_AlignedFarend(AecmCore_t* self,
int* far_q,
int delay);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcSuppressionGain()
//
// This function calculates the suppression gain that is used in the
// Wiener filter.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
//
// Return value:
// - supGain : Suppression gain with which to scale the noise
// level (Q14).
//
int16_t WebRtcAecm_CalcSuppressionGain(AecmCore_t * const aecm);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcEnergies()
//
// This function calculates the log of energies for nearend, farend and
// estimated echoes. There is also an update of energy decision levels,
// i.e. internal VAD.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
// - far_spectrum : Pointer to farend spectrum.
// - far_q : Q-domain of farend spectrum.
// - nearEner : Near end energy for current block in
// Q(aecm->dfaQDomain).
//
// Output:
// - echoEst : Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_CalcEnergies(AecmCore_t * aecm,
const uint16_t* far_spectrum,
const int16_t far_q,
const uint32_t nearEner,
int32_t * echoEst);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcStepSize()
//
// This function calculates the step size used in channel estimation
//
// Inputs:
// - aecm : Pointer to the AECM instance.
//
// Return value:
// - mu : Stepsize in log2(), i.e. number of shifts.
//
int16_t WebRtcAecm_CalcStepSize(AecmCore_t * const aecm);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_UpdateChannel(...)
//
// This function performs channel estimation.
// NLMS and decision on channel storage.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
// - far_spectrum : Absolute value of the farend signal in Q(far_q)
// - far_q : Q-domain of the farend signal
// - dfa : Absolute value of the nearend signal
// (Q[aecm->dfaQDomain])
// - mu : NLMS step size.
// Input/Output:
// - echoEst : Estimated echo in Q(far_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_UpdateChannel(AecmCore_t * aecm,
const uint16_t* far_spectrum,
const int16_t far_q,
const uint16_t * const dfa,
const int16_t mu,
int32_t * echoEst);
extern const int16_t WebRtcAecm_kCosTable[];
extern const int16_t WebRtcAecm_kSinTable[];
///////////////////////////////////////////////////////////////////////////////
// Some function pointers, for internal functions shared by ARM NEON and
// generic C code.
@ -312,4 +431,20 @@ void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore_t* aecm,
void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore_t* aecm);
#endif
#if defined(MIPS32_LE)
void WebRtcAecm_CalcLinearEnergies_mips(AecmCore_t* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored);
#if defined(MIPS_DSP_R1_LE)
void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore_t* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est);
void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore_t* aecm);
#endif
#endif
#endif

View File

@ -0,0 +1,792 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
#include "webrtc/modules/audio_processing/utility/ring_buffer.h"
#include "webrtc/system_wrappers/interface/compile_assert_c.h"
#include "webrtc/system_wrappers/interface/cpu_features_wrapper.h"
#include "webrtc/typedefs.h"
// Square root of Hanning window in Q14.
#if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON)
// Table is defined in an ARM assembly file.
extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END;
#else
static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
};
#endif
#ifdef AECM_WITH_ABS_APPROX
//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
static const uint16_t kAlpha1 = 32584;
//Q15 beta = 0.12967166976970 const Factor for magnitude approximation
static const uint16_t kBeta1 = 4249;
//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
static const uint16_t kAlpha2 = 30879;
//Q15 beta = 0.33787806009150 const Factor for magnitude approximation
static const uint16_t kBeta2 = 11072;
//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
static const uint16_t kAlpha3 = 26951;
//Q15 beta = 0.57762063060713 const Factor for magnitude approximation
static const uint16_t kBeta3 = 18927;
#endif
static const int16_t kNoiseEstQDomain = 15;
static const int16_t kNoiseEstIncCount = 5;
static void ComfortNoise(AecmCore_t* aecm,
const uint16_t* dfa,
complex16_t* out,
const int16_t* lambda);
static void WindowAndFFT(AecmCore_t* aecm,
int16_t* fft,
const int16_t* time_signal,
complex16_t* freq_signal,
int time_signal_scaling) {
int i = 0;
// FFT of signal
for (i = 0; i < PART_LEN; i++) {
// Window time domain signal and insert into real part of
// transformation array |fft|
fft[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
(time_signal[i] << time_signal_scaling),
WebRtcAecm_kSqrtHanning[i],
14);
fft[PART_LEN + i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(
(time_signal[i + PART_LEN] << time_signal_scaling),
WebRtcAecm_kSqrtHanning[PART_LEN - i],
14);
}
// Do forward FFT, then take only the first PART_LEN complex samples,
// and change signs of the imaginary parts.
WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
for (i = 0; i < PART_LEN; i++) {
freq_signal[i].imag = -freq_signal[i].imag;
}
}
static void InverseFFTAndWindow(AecmCore_t* aecm,
int16_t* fft,
complex16_t* efw,
int16_t* output,
const int16_t* nearendClean)
{
int i, j, outCFFT;
int32_t tmp32no1;
// Reuse |efw| for the inverse FFT output after transferring
// the contents to |fft|.
int16_t* ifft_out = (int16_t*)efw;
// Synthesis
for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
fft[j] = efw[i].real;
fft[j + 1] = -efw[i].imag;
}
fft[0] = efw[0].real;
fft[1] = -efw[0].imag;
fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
// Inverse FFT. Keep outCFFT to scale the samples in the next block.
outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
for (i = 0; i < PART_LEN; i++) {
ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
outCFFT - aecm->dfaCleanQDomain);
output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1 + aecm->outBuf[i],
WEBRTC_SPL_WORD16_MIN);
tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT(ifft_out[PART_LEN + i],
WebRtcAecm_kSqrtHanning[PART_LEN - i],
14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1,
WEBRTC_SPL_WORD16_MIN);
}
// Copy the current block to the old position
// (aecm->outBuf is shifted elsewhere)
memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy,
aecm->dBufNoisy + PART_LEN,
sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean,
aecm->dBufClean + PART_LEN,
sizeof(int16_t) * PART_LEN);
}
}
// Transforms a time domain signal into the frequency domain, outputting the
// complex valued signal, absolute value and sum of absolute values.
//
// time_signal [in] Pointer to time domain signal
// freq_signal_real [out] Pointer to real part of frequency domain array
// freq_signal_imag [out] Pointer to imaginary part of frequency domain
// array
// freq_signal_abs [out] Pointer to absolute value of frequency domain
// array
// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
// the frequency domain array
// return value The Q-domain of current frequency values
//
static int TimeToFrequencyDomain(AecmCore_t* aecm,
const int16_t* time_signal,
complex16_t* freq_signal,
uint16_t* freq_signal_abs,
uint32_t* freq_signal_sum_abs)
{
int i = 0;
int time_signal_scaling = 0;
int32_t tmp32no1 = 0;
int32_t tmp32no2 = 0;
// In fft_buf, +16 for 32-byte alignment.
int16_t fft_buf[PART_LEN4 + 16];
int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
int16_t tmp16no1;
#ifndef WEBRTC_ARCH_ARM_V7
int16_t tmp16no2;
#endif
#ifdef AECM_WITH_ABS_APPROX
int16_t max_value = 0;
int16_t min_value = 0;
uint16_t alpha = 0;
uint16_t beta = 0;
#endif
#ifdef AECM_DYNAMIC_Q
tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
#endif
WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
// Extract imaginary and real part, calculate the magnitude for
// all frequency bins
freq_signal[0].imag = 0;
freq_signal[PART_LEN].imag = 0;
freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
freq_signal[PART_LEN].real);
(*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
(uint32_t)(freq_signal_abs[PART_LEN]);
for (i = 1; i < PART_LEN; i++)
{
if (freq_signal[i].real == 0)
{
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
}
else if (freq_signal[i].imag == 0)
{
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
}
else
{
// Approximation for magnitude of complex fft output
// magn = sqrt(real^2 + imag^2)
// magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
//
// The parameters alpha and beta are stored in Q15
#ifdef AECM_WITH_ABS_APPROX
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
if(tmp16no1 > tmp16no2)
{
max_value = tmp16no1;
min_value = tmp16no2;
} else
{
max_value = tmp16no2;
min_value = tmp16no1;
}
// Magnitude in Q(-6)
if ((max_value >> 2) > min_value)
{
alpha = kAlpha1;
beta = kBeta1;
} else if ((max_value >> 1) > min_value)
{
alpha = kAlpha2;
beta = kBeta2;
} else
{
alpha = kAlpha3;
beta = kBeta3;
}
tmp16no1 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(max_value, alpha, 15);
tmp16no2 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(min_value, beta, 15);
freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2;
#else
#ifdef WEBRTC_ARCH_ARM_V7
__asm __volatile(
"smulbb %[tmp32no1], %[real], %[real]\n\t"
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
:[tmp32no1]"+r"(tmp32no1),
[tmp32no2]"=r"(tmp32no2)
:[real]"r"(freq_signal[i].real),
[imag]"r"(freq_signal[i].imag)
);
#else
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
tmp32no1 = WEBRTC_SPL_MUL_16_16(tmp16no1, tmp16no1);
tmp32no2 = WEBRTC_SPL_MUL_16_16(tmp16no2, tmp16no2);
tmp32no2 = WEBRTC_SPL_ADD_SAT_W32(tmp32no1, tmp32no2);
#endif // WEBRTC_ARCH_ARM_V7
tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
freq_signal_abs[i] = (uint16_t)tmp32no1;
#endif // AECM_WITH_ABS_APPROX
}
(*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
}
return time_signal_scaling;
}
int WebRtcAecm_ProcessBlock(AecmCore_t * aecm,
const int16_t * farend,
const int16_t * nearendNoisy,
const int16_t * nearendClean,
int16_t * output)
{
int i;
uint32_t xfaSum;
uint32_t dfaNoisySum;
uint32_t dfaCleanSum;
uint32_t echoEst32Gained;
uint32_t tmpU32;
int32_t tmp32no1;
uint16_t xfa[PART_LEN1];
uint16_t dfaNoisy[PART_LEN1];
uint16_t dfaClean[PART_LEN1];
uint16_t* ptrDfaClean = dfaClean;
const uint16_t* far_spectrum_ptr = NULL;
// 32 byte aligned buffers (with +8 or +16).
// TODO (kma): define fft with complex16_t.
int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
int32_t echoEst32_buf[PART_LEN1 + 8];
int32_t dfw_buf[PART_LEN2 + 8];
int32_t efw_buf[PART_LEN2 + 8];
int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31);
int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
complex16_t* dfw = (complex16_t*) (((uintptr_t) dfw_buf + 31) & ~ 31);
complex16_t* efw = (complex16_t*) (((uintptr_t) efw_buf + 31) & ~ 31);
int16_t hnl[PART_LEN1];
int16_t numPosCoef = 0;
int16_t nlpGain = ONE_Q14;
int delay;
int16_t tmp16no1;
int16_t tmp16no2;
int16_t mu;
int16_t supGain;
int16_t zeros32, zeros16;
int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
int far_q;
int16_t resolutionDiff, qDomainDiff;
const int kMinPrefBand = 4;
const int kMaxPrefBand = 24;
int32_t avgHnl32 = 0;
// Determine startup state. There are three states:
// (0) the first CONV_LEN blocks
// (1) another CONV_LEN blocks
// (2) the rest
if (aecm->startupState < 2)
{
aecm->startupState = (aecm->totCount >= CONV_LEN) +
(aecm->totCount >= CONV_LEN2);
}
// END: Determine startup state
// Buffer near and far end signals
memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean + PART_LEN,
nearendClean,
sizeof(int16_t) * PART_LEN);
}
// Transform far end signal from time domain to frequency domain.
far_q = TimeToFrequencyDomain(aecm,
aecm->xBuf,
dfw,
xfa,
&xfaSum);
// Transform noisy near end signal from time domain to frequency domain.
zerosDBufNoisy = TimeToFrequencyDomain(aecm,
aecm->dBufNoisy,
dfw,
dfaNoisy,
&dfaNoisySum);
aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
if (nearendClean == NULL)
{
ptrDfaClean = dfaNoisy;
aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
dfaCleanSum = dfaNoisySum;
} else
{
// Transform clean near end signal from time domain to frequency domain.
zerosDBufClean = TimeToFrequencyDomain(aecm,
aecm->dBufClean,
dfw,
dfaClean,
&dfaCleanSum);
aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
}
// Get the delay
// Save far-end history and estimate delay
WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend,
xfa,
PART_LEN1,
far_q) == -1) {
return -1;
}
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
dfaNoisy,
PART_LEN1,
zerosDBufNoisy);
if (delay == -1)
{
return -1;
}
else if (delay == -2)
{
// If the delay is unknown, we assume zero.
// NOTE: this will have to be adjusted if we ever add lookahead.
delay = 0;
}
if (aecm->fixedDelay >= 0)
{
// Use fixed delay
delay = aecm->fixedDelay;
}
// Get aligned far end spectrum
far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
zerosXBuf = (int16_t) far_q;
if (far_spectrum_ptr == NULL)
{
return -1;
}
// Calculate log(energy) and update energy threshold levels
WebRtcAecm_CalcEnergies(aecm,
far_spectrum_ptr,
zerosXBuf,
dfaNoisySum,
echoEst32);
// Calculate stepsize
mu = WebRtcAecm_CalcStepSize(aecm);
// Update counters
aecm->totCount++;
// This is the channel estimation algorithm.
// It is base on NLMS but has a variable step length,
// which was calculated above.
WebRtcAecm_UpdateChannel(aecm,
far_spectrum_ptr,
zerosXBuf,
dfaNoisy,
mu,
echoEst32);
supGain = WebRtcAecm_CalcSuppressionGain(aecm);
// Calculate Wiener filter hnl[]
for (i = 0; i < PART_LEN1; i++)
{
// Far end signal through channel estimate in Q8
// How much can we shift right to preserve resolution
tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
aecm->echoFilt[i] += WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_32_16(tmp32no1,
50), 8);
zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
zeros16 = WebRtcSpl_NormW16(supGain) + 1;
if (zeros32 + zeros16 > 16)
{
// Multiplication is safe
// Result in
// Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
// aecm->xfaQDomainBuf[diff])
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
(uint16_t)supGain);
resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
} else
{
tmp16no1 = 17 - zeros32 - zeros16;
resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
if (zeros32 > tmp16no1)
{
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
(uint16_t)WEBRTC_SPL_RSHIFT_W16(
supGain,
tmp16no1)
);
} else
{
// Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)WEBRTC_SPL_RSHIFT_W32(
aecm->echoFilt[i],
tmp16no1),
(uint16_t)supGain);
}
}
zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
if ((zeros16 < (aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld))
& (aecm->nearFilt[i]))
{
tmp16no1 = WEBRTC_SPL_SHIFT_W16(aecm->nearFilt[i], zeros16);
qDomainDiff = zeros16 - aecm->dfaCleanQDomain + aecm->dfaCleanQDomainOld;
} else
{
tmp16no1 = WEBRTC_SPL_SHIFT_W16(aecm->nearFilt[i],
aecm->dfaCleanQDomain -
aecm->dfaCleanQDomainOld);
qDomainDiff = 0;
}
tmp16no2 = WEBRTC_SPL_SHIFT_W16(ptrDfaClean[i], qDomainDiff);
tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
tmp16no2 = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32no1, 4);
tmp16no2 += tmp16no1;
zeros16 = WebRtcSpl_NormW16(tmp16no2);
if ((tmp16no2) & (-qDomainDiff > zeros16))
{
aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
} else
{
aecm->nearFilt[i] = WEBRTC_SPL_SHIFT_W16(tmp16no2, -qDomainDiff);
}
// Wiener filter coefficients, resulting hnl in Q14
if (echoEst32Gained == 0)
{
hnl[i] = ONE_Q14;
} else if (aecm->nearFilt[i] == 0)
{
hnl[i] = 0;
} else
{
// Multiply the suppression gain
// Rounding
echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
(uint16_t)aecm->nearFilt[i]);
// Current resolution is
// Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
// Make sure we are in Q14
tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
if (tmp32no1 > ONE_Q14)
{
hnl[i] = 0;
} else if (tmp32no1 < 0)
{
hnl[i] = ONE_Q14;
} else
{
// 1-echoEst/dfa
hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
if (hnl[i] < 0)
{
hnl[i] = 0;
}
}
}
if (hnl[i])
{
numPosCoef++;
}
}
// Only in wideband. Prevent the gain in upper band from being larger than
// in lower band.
if (aecm->mult == 2)
{
// TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
// speech distortion in double-talk.
for (i = 0; i < PART_LEN1; i++)
{
hnl[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(hnl[i], hnl[i], 14);
}
for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
{
avgHnl32 += (int32_t)hnl[i];
}
assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
for (i = kMaxPrefBand; i < PART_LEN1; i++)
{
if (hnl[i] > (int16_t)avgHnl32)
{
hnl[i] = (int16_t)avgHnl32;
}
}
}
// Calculate NLP gain, result is in Q14
if (aecm->nlpFlag)
{
for (i = 0; i < PART_LEN1; i++)
{
// Truncate values close to zero and one.
if (hnl[i] > NLP_COMP_HIGH)
{
hnl[i] = ONE_Q14;
} else if (hnl[i] < NLP_COMP_LOW)
{
hnl[i] = 0;
}
// Remove outliers
if (numPosCoef < 3)
{
nlpGain = 0;
} else
{
nlpGain = ONE_Q14;
}
// NLP
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
{
hnl[i] = ONE_Q14;
} else
{
hnl[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(hnl[i], nlpGain, 14);
}
// multiply with Wiener coefficients
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
else
{
// multiply with Wiener coefficients
for (i = 0; i < PART_LEN1; i++)
{
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
if (aecm->cngMode == AecmTrue)
{
ComfortNoise(aecm, ptrDfaClean, efw, hnl);
}
InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
return 0;
}
static void ComfortNoise(AecmCore_t* aecm,
const uint16_t* dfa,
complex16_t* out,
const int16_t* lambda)
{
int16_t i;
int16_t tmp16;
int32_t tmp32;
int16_t randW16[PART_LEN];
int16_t uReal[PART_LEN1];
int16_t uImag[PART_LEN1];
int32_t outLShift32;
int16_t noiseRShift16[PART_LEN1];
int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
int16_t minTrackShift;
assert(shiftFromNearToNoise >= 0);
assert(shiftFromNearToNoise < 16);
if (aecm->noiseEstCtr < 100)
{
// Track the minimum more quickly initially.
aecm->noiseEstCtr++;
minTrackShift = 6;
} else
{
minTrackShift = 9;
}
// Estimate noise power.
for (i = 0; i < PART_LEN1; i++)
{
// Shift to the noise domain.
tmp32 = (int32_t)dfa[i];
outLShift32 = WEBRTC_SPL_LSHIFT_W32(tmp32, shiftFromNearToNoise);
if (outLShift32 < aecm->noiseEst[i])
{
// Reset "too low" counter
aecm->noiseEstTooLowCtr[i] = 0;
// Track the minimum.
if (aecm->noiseEst[i] < (1 << minTrackShift))
{
// For small values, decrease noiseEst[i] every
// |kNoiseEstIncCount| block. The regular approach below can not
// go further down due to truncation.
aecm->noiseEstTooHighCtr[i]++;
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i]--;
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
}
}
else
{
aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32)
>> minTrackShift);
}
} else
{
// Reset "too high" counter
aecm->noiseEstTooHighCtr[i] = 0;
// Ramp slowly upwards until we hit the minimum again.
if ((aecm->noiseEst[i] >> 19) > 0)
{
// Avoid overflow.
// Multiplication with 2049 will cause wrap around. Scale
// down first and then multiply
aecm->noiseEst[i] >>= 11;
aecm->noiseEst[i] *= 2049;
}
else if ((aecm->noiseEst[i] >> 11) > 0)
{
// Large enough for relative increase
aecm->noiseEst[i] *= 2049;
aecm->noiseEst[i] >>= 11;
}
else
{
// Make incremental increases based on size every
// |kNoiseEstIncCount| block
aecm->noiseEstTooLowCtr[i]++;
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
}
}
}
}
for (i = 0; i < PART_LEN1; i++)
{
tmp32 = WEBRTC_SPL_RSHIFT_W32(aecm->noiseEst[i], shiftFromNearToNoise);
if (tmp32 > 32767)
{
tmp32 = 32767;
aecm->noiseEst[i] = WEBRTC_SPL_LSHIFT_W32(tmp32, shiftFromNearToNoise);
}
noiseRShift16[i] = (int16_t)tmp32;
tmp16 = ONE_Q14 - lambda[i];
noiseRShift16[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(tmp16,
noiseRShift16[i],
14);
}
// Generate a uniform random array on [0 2^15-1].
WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
// Generate noise according to estimated energy.
uReal[0] = 0; // Reject LF noise.
uImag[0] = 0;
for (i = 1; i < PART_LEN1; i++)
{
// Get a random index for the cos and sin tables over [0 359].
tmp16 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(359, randW16[i - 1], 15);
// Tables are in Q13.
uReal[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(noiseRShift16[i],
WebRtcAecm_kCosTable[tmp16],
13);
uImag[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(-noiseRShift16[i],
WebRtcAecm_kSinTable[tmp16],
13);
}
uImag[PART_LEN] = 0;
for (i = 0; i < PART_LEN1; i++)
{
out[i].real = WEBRTC_SPL_ADD_SAT_W16(out[i].real, uReal[i]);
out[i].imag = WEBRTC_SPL_ADD_SAT_W16(out[i].imag, uImag[i]);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -120,6 +120,15 @@
['(target_arch=="arm" and armv7==1) or target_arch=="armv7"', {
'dependencies': ['audio_processing_neon',],
}],
['target_arch=="mipsel"', {
'sources': [
'aecm/aecm_core_mips.c',
],
}, {
'sources': [
'aecm/aecm_core_c.c',
],
}],
],
# TODO(jschuh): Bug 1348: fix size_t to int truncations.
'msvs_disabled_warnings': [ 4267, ],