Revert "Activate ACM test for Android in modules_tests." (rev5364).

TBR=turaj@webrtc.org,tina.legrand@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/6999006

git-svn-id: http://webrtc.googlecode.com/svn/trunk@5372 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
andresp@webrtc.org 2014-01-13 13:15:59 +00:00
parent 44461fa5cb
commit d0b436a935
5 changed files with 48 additions and 293 deletions

View File

@ -63,11 +63,11 @@ void TestFEC::Perform() {
return;
#endif
char nameG722[] = "G722";
RegisterSendCodec('A', nameG722, 16000);
EXPECT_EQ(0, RegisterSendCodec('A', nameG722, 16000));
char nameCN[] = "CN";
RegisterSendCodec('A', nameCN, 16000);
EXPECT_EQ(0, RegisterSendCodec('A', nameCN, 16000));
char nameRED[] = "RED";
RegisterSendCodec('A', nameRED);
EXPECT_EQ(0, RegisterSendCodec('A', nameRED));
OpenOutFile(_testCntr);
EXPECT_EQ(0, SetVAD(true, true, VADAggr));
EXPECT_EQ(0, _acmA->SetFECStatus(false));
@ -81,9 +81,6 @@ void TestFEC::Perform() {
Run();
_outFileB.Close();
// FEC for iSAC is different that other codecs, therefore, we expect that iSAC
// be enabled for this test. The following is common for both floating-point
// and fixed-point implementations.
char nameISAC[] = "iSAC";
RegisterSendCodec('A', nameISAC, 16000);
OpenOutFile(_testCntr);
@ -99,8 +96,6 @@ void TestFEC::Perform() {
Run();
_outFileB.Close();
#if (defined(WEBRTC_CODEC_ISAC))
// Only for floating-point implementation, where super-wideband is supported.
RegisterSendCodec('A', nameISAC, 32000);
OpenOutFile(_testCntr);
EXPECT_EQ(0, SetVAD(true, true, VADVeryAggr));
@ -134,26 +129,11 @@ void TestFEC::Perform() {
EXPECT_TRUE(_acmA->FECStatus());
Run();
_outFileB.Close();
#else
// For fixed-point implementation.
OpenOutFile(_testCntr);
EXPECT_EQ(0, SetVAD(false, false, VADVeryAggr));
EXPECT_EQ(0, _acmA->SetFECStatus(false));
EXPECT_FALSE(_acmA->FECStatus());
Run();
_outFileB.Close();
EXPECT_EQ(0, _acmA->SetFECStatus(true));
EXPECT_TRUE(_acmA->FECStatus());
OpenOutFile(_testCntr);
Run();
_outFileB.Close();
#endif
_channelA2B->SetFECTestWithPacketLoss(true);
RegisterSendCodec('A', nameG722);
RegisterSendCodec('A', nameCN, 16000);
EXPECT_EQ(0, RegisterSendCodec('A', nameG722));
EXPECT_EQ(0, RegisterSendCodec('A', nameCN, 16000));
OpenOutFile(_testCntr);
EXPECT_EQ(0, SetVAD(true, true, VADAggr));
EXPECT_EQ(0, _acmA->SetFECStatus(false));
@ -181,8 +161,6 @@ void TestFEC::Perform() {
Run();
_outFileB.Close();
#if (defined(WEBRTC_CODEC_ISAC))
// Only for floating-point implementation, where super-wideband is supported.
RegisterSendCodec('A', nameISAC, 32000);
OpenOutFile(_testCntr);
EXPECT_EQ(0, SetVAD(true, true, VADVeryAggr));
@ -216,31 +194,16 @@ void TestFEC::Perform() {
EXPECT_TRUE(_acmA->FECStatus());
Run();
_outFileB.Close();
#else
// For fixed-point implementation.
OpenOutFile(_testCntr);
EXPECT_EQ(0, SetVAD(false, false, VADVeryAggr));
EXPECT_EQ(0, _acmA->SetFECStatus(false));
EXPECT_FALSE(_acmA->FECStatus());
Run();
_outFileB.Close();
EXPECT_EQ(0, _acmA->SetFECStatus(true));
EXPECT_TRUE(_acmA->FECStatus());
OpenOutFile(_testCntr);
Run();
_outFileB.Close();
#endif
}
int32_t TestFEC::SetVAD(bool enableDTX, bool enableVAD, ACMVADMode vadMode) {
return _acmA->SetVAD(enableDTX, enableVAD, vadMode);
}
void TestFEC::RegisterSendCodec(char side, char* codecName,
int16_t TestFEC::RegisterSendCodec(char side, char* codecName,
int32_t samplingFreqHz) {
std::cout << std::flush;
AudioCodingModule* myACM = NULL;
AudioCodingModule* myACM;
switch (side) {
case 'A': {
myACM = _acmA.get();
@ -251,15 +214,20 @@ void TestFEC::RegisterSendCodec(char side, char* codecName,
break;
}
default:
ASSERT_TRUE(false);
return -1;
}
ASSERT_TRUE(myACM != NULL);
if (myACM == NULL) {
assert(false);
return -1;
}
CodecInst myCodecParam;
ASSERT_GT(AudioCodingModule::Codec(codecName, &myCodecParam,
EXPECT_GT(AudioCodingModule::Codec(codecName, &myCodecParam,
samplingFreqHz, 1), -1);
ASSERT_GT(myACM->RegisterSendCodec(myCodecParam), -1);
EXPECT_GT(myACM->RegisterSendCodec(myCodecParam), -1);
// Initialization was successful.
return 0;
}
void TestFEC::Run() {

View File

@ -30,8 +30,8 @@ class TestFEC : public ACMTest {
// The default value of '-1' indicates that the registration is based only on
// codec name and a sampling frequency matching is not required. This is
// useful for codecs which support several sampling frequency.
void RegisterSendCodec(char side, char* codecName,
int32_t sampFreqHz = -1);
int16_t RegisterSendCodec(char side, char* codecName,
int32_t sampFreqHz = -1);
void Run();
void OpenOutFile(int16_t testNumber);
int32_t SetVAD(bool enableDTX, bool enableVAD, ACMVADMode vadMode);

View File

@ -809,14 +809,7 @@ void TestStereo::Run(TestPackStereo* channel, int in_channels, int out_channels,
channel->reset_payload_size();
int error_count = 0;
#ifdef WEBRTC_ARCH_ARM
const int kMaxNumProcessedFrames = 100; // Limit to 1 second of audio.
#else
const int kMaxNumProcessedFrames = 3000; // Limit to 30 second of audio.
#endif
int num_frames = 0;
while (num_frames < kMaxNumProcessedFrames) {
while (1) {
// Simulate packet loss by setting |packet_loss_| to "true" in
// |percent_loss| percent of the loops.
if (percent_loss > 0) {
@ -870,15 +863,16 @@ void TestStereo::Run(TestPackStereo* channel, int in_channels, int out_channels,
out_file_.Write10MsData(
audio_frame.data_,
audio_frame.samples_per_channel_ * audio_frame.num_channels_);
++num_frames;
}
EXPECT_EQ(0, error_count);
in_file_mono_->Rewind();
in_file_stereo_->Rewind();
if (in_file_mono_->EndOfFile()) {
in_file_mono_->Rewind();
}
if (in_file_stereo_->EndOfFile()) {
in_file_stereo_->Rewind();
}
// Reset in case we ended with a lost packet
channel->set_lost_packet(false);
}

View File

@ -50,7 +50,7 @@ TEST(AudioCodingModuleTest, TestAllCodecs) {
Trace::ReturnTrace();
}
TEST(AudioCodingModuleTest, TestEncodeDecode) {
TEST(AudioCodingModuleTest, DISABLED_ON_ANDROID(TestEncodeDecode)) {
Trace::CreateTrace();
Trace::SetTraceFile((webrtc::test::OutputPath() +
"acm_encodedecode_trace.txt").c_str());
@ -65,7 +65,7 @@ TEST(AudioCodingModuleTest, TestEncodeDecode) {
Trace::ReturnTrace();
}
TEST(AudioCodingModuleTest, TestFEC) {
TEST(AudioCodingModuleTest, DISABLED_ON_ANDROID(TestFEC)) {
Trace::CreateTrace();
Trace::SetTraceFile((webrtc::test::OutputPath() +
"acm_fec_trace.txt").c_str());
@ -80,7 +80,7 @@ TEST(AudioCodingModuleTest, TestFEC) {
Trace::ReturnTrace();
}
TEST(AudioCodingModuleTest, TestIsac) {
TEST(AudioCodingModuleTest, DISABLED_ON_ANDROID(TestIsac)) {
Trace::CreateTrace();
Trace::SetTraceFile((webrtc::test::OutputPath() +
"acm_isac_trace.txt").c_str());
@ -95,7 +95,7 @@ TEST(AudioCodingModuleTest, TestIsac) {
Trace::ReturnTrace();
}
TEST(AudioCodingModuleTest, TwoWayCommunication) {
TEST(AudioCodingModuleTest, DISABLED_ON_ANDROID(TwoWayCommunication)) {
Trace::CreateTrace();
Trace::SetTraceFile((webrtc::test::OutputPath() +
"acm_twowaycom_trace.txt").c_str());
@ -110,7 +110,7 @@ TEST(AudioCodingModuleTest, TwoWayCommunication) {
Trace::ReturnTrace();
}
TEST(AudioCodingModuleTest, TestStereo) {
TEST(AudioCodingModuleTest, DISABLED_ON_ANDROID(TestStereo)) {
Trace::CreateTrace();
Trace::SetTraceFile((webrtc::test::OutputPath() +
"acm_stereo_trace.txt").c_str());
@ -125,7 +125,7 @@ TEST(AudioCodingModuleTest, TestStereo) {
Trace::ReturnTrace();
}
TEST(AudioCodingModuleTest, TestVADDTX) {
TEST(AudioCodingModuleTest, DISABLED_ON_ANDROID(TestVADDTX)) {
Trace::CreateTrace();
Trace::SetTraceFile((webrtc::test::OutputPath() +
"acm_vaddtx_trace.txt").c_str());

View File

@ -94,24 +94,6 @@ ISACTest::ISACTest(int testMode, const Config& config)
ISACTest::~ISACTest() {}
void ISACTest::Run10ms() {
AudioFrame audioFrame;
EXPECT_GT(_inFileA.Read10MsData(audioFrame), 0);
EXPECT_EQ(0, _acmA->Add10MsData(audioFrame));
EXPECT_EQ(0, _acmB->Add10MsData(audioFrame));
EXPECT_GT(_acmA->Process(), -1);
EXPECT_GT(_acmB->Process(), -1);
EXPECT_EQ(0, _acmA->PlayoutData10Ms(32000, &audioFrame));
_outFileA.Write10MsData(audioFrame);
EXPECT_EQ(0, _acmB->PlayoutData10Ms(32000, &audioFrame));
_outFileB.Write10MsData(audioFrame);
}
#if (defined(WEBRTC_CODEC_ISAC))
// Depending on whether the floating-point iSAC is activated the following
// implementations would differ.
void ISACTest::Setup() {
int codecCntr;
CodecInst codecParam;
@ -262,6 +244,19 @@ void ISACTest::Perform() {
}
}
void ISACTest::Run10ms() {
AudioFrame audioFrame;
EXPECT_GT(_inFileA.Read10MsData(audioFrame), 0);
EXPECT_EQ(0, _acmA->Add10MsData(audioFrame));
EXPECT_EQ(0, _acmB->Add10MsData(audioFrame));
EXPECT_GT(_acmA->Process(), -1);
EXPECT_GT(_acmB->Process(), -1);
EXPECT_EQ(0, _acmA->PlayoutData10Ms(32000, &audioFrame));
_outFileA.Write10MsData(audioFrame);
EXPECT_EQ(0, _acmB->PlayoutData10Ms(32000, &audioFrame));
_outFileB.Write10MsData(audioFrame);
}
void ISACTest::EncodeDecode(int testNr, ACMTestISACConfig& wbISACConfig,
ACMTestISACConfig& swbISACConfig) {
// Files in Side A and B
@ -322,6 +317,9 @@ void ISACTest::EncodeDecode(int testNr, ACMTestISACConfig& wbISACConfig,
_channel_B2A->PrintStats(_paramISAC16kHz);
}
_channel_A2B->ResetStats();
_channel_B2A->ResetStats();
_outFileA.Close();
_outFileB.Close();
_inFileA.Close();
@ -394,210 +392,5 @@ void ISACTest::SwitchingSamplingRate(int testNr, int maxSampRateChange) {
_inFileA.Close();
_inFileB.Close();
}
#else // Only iSAC fixed-point is defined.
static int PayloadSizeToInstantaneousRate(int payload_size_bytes,
int frame_size_ms) {
return payload_size_bytes * 8 / frame_size_ms / 1000;
}
void ISACTest::Setup() {
CodecInst codec_param;
codec_param.plfreq = 0; // Invalid value.
for (int n = 0; n < AudioCodingModule::NumberOfCodecs(); ++n) {
EXPECT_EQ(0, AudioCodingModule::Codec(n, &codec_param));
if (!STR_CASE_CMP(codec_param.plname, "ISAC")) {
ASSERT_EQ(16000, codec_param.plfreq);
memcpy(&_paramISAC16kHz, &codec_param, sizeof(codec_param));
_idISAC16kHz = n;
break;
}
}
EXPECT_GT(codec_param.plfreq, 0);
EXPECT_EQ(0, _acmA->RegisterReceiveCodec(_paramISAC16kHz));
EXPECT_EQ(0, _acmB->RegisterReceiveCodec(_paramISAC16kHz));
//--- Set A-to-B channel
_channel_A2B.reset(new Channel);
EXPECT_EQ(0, _acmA->RegisterTransportCallback(_channel_A2B.get()));
_channel_A2B->RegisterReceiverACM(_acmB.get());
//--- Set B-to-A channel
_channel_B2A.reset(new Channel);
EXPECT_EQ(0, _acmB->RegisterTransportCallback(_channel_B2A.get()));
_channel_B2A->RegisterReceiverACM(_acmA.get());
file_name_swb_ = webrtc::test::ResourcePath("audio_coding/testfile32kHz",
"pcm");
EXPECT_EQ(0, _acmB->RegisterSendCodec(_paramISAC16kHz));
EXPECT_EQ(0, _acmA->RegisterSendCodec(_paramISAC16kHz));
}
void ISACTest::EncodeDecode(int test_number, ACMTestISACConfig& isac_config_a,
ACMTestISACConfig& isac_config_b) {
// Files in Side A and B
_inFileA.Open(file_name_swb_, 32000, "rb", true);
_inFileB.Open(file_name_swb_, 32000, "rb", true);
std::string file_name_out;
std::stringstream file_stream_a;
std::stringstream file_stream_b;
file_stream_a << webrtc::test::OutputPath();
file_stream_b << webrtc::test::OutputPath();
file_stream_a << "out_iSACTest_A_" << test_number << ".pcm";
file_stream_b << "out_iSACTest_B_" << test_number << ".pcm";
file_name_out = file_stream_a.str();
_outFileA.Open(file_name_out, 32000, "wb");
file_name_out = file_stream_b.str();
_outFileB.Open(file_name_out, 32000, "wb");
CodecInst codec;
EXPECT_EQ(0, _acmA->SendCodec(&codec));
EXPECT_EQ(0, _acmB->SendCodec(&codec));
// Set the configurations.
SetISAConfig(isac_config_a, _acmA.get(), _testMode);
SetISAConfig(isac_config_b, _acmB.get(), _testMode);
bool adaptiveMode = false;
if (isac_config_a.currentRateBitPerSec == -1 ||
isac_config_b.currentRateBitPerSec == -1) {
adaptiveMode = true;
}
_channel_A2B->ResetStats();
_channel_B2A->ResetStats();
EventWrapper* myEvent = EventWrapper::Create();
EXPECT_TRUE(myEvent->StartTimer(true, 10));
while (!(_inFileA.EndOfFile() || _inFileA.Rewinded())) {
Run10ms();
if (adaptiveMode && _testMode != 0) {
myEvent->Wait(5000);
}
}
if (_testMode != 0) {
printf("\n\nSide A statistics\n\n");
_channel_A2B->PrintStats(_paramISAC32kHz);
printf("\n\nSide B statistics\n\n");
_channel_B2A->PrintStats(_paramISAC16kHz);
}
_outFileA.Close();
_outFileB.Close();
_inFileA.Close();
_inFileB.Close();
}
void ISACTest::Perform() {
Setup();
int16_t test_number = 0;
ACMTestISACConfig isac_config_a;
ACMTestISACConfig isac_config_b;
SetISACConfigDefault(isac_config_a);
SetISACConfigDefault(isac_config_b);
// Instantaneous mode.
isac_config_a.currentRateBitPerSec = 32000;
isac_config_b.currentRateBitPerSec = 12000;
EncodeDecode(test_number, isac_config_a, isac_config_b);
test_number++;
SetISACConfigDefault(isac_config_a);
SetISACConfigDefault(isac_config_b);
// Channel adaptive.
isac_config_a.currentRateBitPerSec = -1;
isac_config_b.currentRateBitPerSec = -1;
isac_config_a.initRateBitPerSec = 13000;
isac_config_a.initFrameSizeInMsec = 60;
isac_config_a.enforceFrameSize = true;
isac_config_a.currentFrameSizeMsec = 60;
isac_config_b.initRateBitPerSec = 20000;
isac_config_b.initFrameSizeInMsec = 30;
EncodeDecode(test_number, isac_config_a, isac_config_b);
test_number++;
SetISACConfigDefault(isac_config_a);
SetISACConfigDefault(isac_config_b);
isac_config_a.currentRateBitPerSec = 32000;
isac_config_b.currentRateBitPerSec = 32000;
isac_config_a.currentFrameSizeMsec = 30;
isac_config_b.currentFrameSizeMsec = 60;
int user_input;
const int kMaxPayloadLenBytes30MSec = 110;
const int kMaxPayloadLenBytes60MSec = 160;
if ((_testMode == 0) || (_testMode == 1)) {
isac_config_a.maxPayloadSizeByte =
static_cast<uint16_t>(kMaxPayloadLenBytes30MSec);
isac_config_b.maxPayloadSizeByte =
static_cast<uint16_t>(kMaxPayloadLenBytes60MSec);
} else {
printf("Enter the max payload-size for side A: ");
CHECK_ERROR(scanf("%d", &user_input));
isac_config_a.maxPayloadSizeByte = (uint16_t) user_input;
printf("Enter the max payload-size for side B: ");
CHECK_ERROR(scanf("%d", &user_input));
isac_config_b.maxPayloadSizeByte = (uint16_t) user_input;
}
EncodeDecode(test_number, isac_config_a, isac_config_b);
test_number++;
ACMTestPayloadStats payload_stats;
_channel_A2B->Stats(_paramISAC16kHz, payload_stats);
EXPECT_GT(payload_stats.frameSizeStats[0].maxPayloadLen, 0);
EXPECT_LE(payload_stats.frameSizeStats[0].maxPayloadLen,
static_cast<int>(isac_config_a.maxPayloadSizeByte));
_channel_B2A->Stats(_paramISAC16kHz, payload_stats);
EXPECT_GT(payload_stats.frameSizeStats[0].maxPayloadLen, 0);
EXPECT_LE(payload_stats.frameSizeStats[0].maxPayloadLen,
static_cast<int>(isac_config_b.maxPayloadSizeByte));
_acmA->ResetEncoder();
_acmB->ResetEncoder();
SetISACConfigDefault(isac_config_a);
SetISACConfigDefault(isac_config_b);
isac_config_a.currentRateBitPerSec = 32000;
isac_config_b.currentRateBitPerSec = 32000;
isac_config_a.currentFrameSizeMsec = 30;
isac_config_b.currentFrameSizeMsec = 60;
const int kMaxEncodingRateBitsPerSec = 32000;
if ((_testMode == 0) || (_testMode == 1)) {
isac_config_a.maxRateBitPerSec =
static_cast<uint32_t>(kMaxEncodingRateBitsPerSec);
isac_config_b.maxRateBitPerSec =
static_cast<uint32_t>(kMaxEncodingRateBitsPerSec);
} else {
printf("Enter the max rate for side A: ");
CHECK_ERROR(scanf("%d", &user_input));
isac_config_a.maxRateBitPerSec = (uint32_t) user_input;
printf("Enter the max rate for side B: ");
CHECK_ERROR(scanf("%d", &user_input));
isac_config_b.maxRateBitPerSec = (uint32_t) user_input;
}
EncodeDecode(test_number, isac_config_a, isac_config_b);
_channel_A2B->Stats(_paramISAC16kHz, payload_stats);
EXPECT_GT(payload_stats.frameSizeStats[0].maxPayloadLen, 0);
EXPECT_LE(PayloadSizeToInstantaneousRate(
payload_stats.frameSizeStats[0].maxPayloadLen,
isac_config_a.currentFrameSizeMsec),
static_cast<int>(isac_config_a.maxRateBitPerSec));
_channel_B2A->Stats(_paramISAC16kHz, payload_stats);
EXPECT_GT(payload_stats.frameSizeStats[0].maxPayloadLen, 0);
EXPECT_LE(PayloadSizeToInstantaneousRate(
payload_stats.frameSizeStats[0].maxPayloadLen,
isac_config_b.currentFrameSizeMsec),
static_cast<int>(isac_config_b.maxRateBitPerSec));
}
#endif // WEBRTC_CODEC_ISAC
} // namespace webrtc