Remove legacy fft arm9e code
Either for generic FFT code or FFT code specific to ARM-Cortex or ARM-Neon will be used, this folder should be removed. Review URL: http://webrtc-codereview.appspot.com/60003 git-svn-id: http://webrtc.googlecode.com/svn/trunk@225 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
parent
44fe667d86
commit
c93db4c4e1
@ -65,7 +65,7 @@
|
||||
((val) << (8 * ((index) & 0x1)))
|
||||
#endif
|
||||
|
||||
#ifndef WEBRTC_ANDROID
|
||||
#if (defined WEBRTC_ANDROID) && !(defined WEBRTC_ANDROID_ARCH_ARM)
|
||||
#define WEBRTC_SPL_MUL(a, b) \
|
||||
((WebRtc_Word32) ((WebRtc_Word32)(a) * (WebRtc_Word32)(b)))
|
||||
#endif
|
||||
@ -99,7 +99,7 @@
|
||||
((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 1) \
|
||||
+ (((WEBRTC_SPL_MUL_16_U16(a, (WebRtc_UWord16)(b)) >> 1) + 0x2000) >> 14))
|
||||
|
||||
#ifndef WEBRTC_ANDROID
|
||||
#if (defined WEBRTC_ANDROID) && !(defined WEBRTC_ANDROID_ARCH_ARM)
|
||||
#define WEBRTC_SPL_MUL_16_32_RSFT16(a, b) \
|
||||
(WEBRTC_SPL_MUL_16_16(a, b >> 16) \
|
||||
+ ((WEBRTC_SPL_MUL_16_16(a, (b & 0xffff) >> 1) + 0x4000) >> 15))
|
||||
@ -116,7 +116,7 @@
|
||||
#ifdef ARM_WINM
|
||||
#define WEBRTC_SPL_MUL_16_16(a, b) \
|
||||
_SmulLo_SW_SL((WebRtc_Word16)(a), (WebRtc_Word16)(b))
|
||||
#elif !defined (WEBRTC_ANDROID)
|
||||
#elif defined(WEBRTC_ANDROID) && !defined(WEBRTC_ANDROID_ARCH_ARM)
|
||||
#define WEBRTC_SPL_MUL_16_16(a, b) \
|
||||
((WebRtc_Word32) (((WebRtc_Word16)(a)) * ((WebRtc_Word16)(b))))
|
||||
#endif
|
||||
@ -431,14 +431,6 @@ int WebRtcSpl_DownsampleFast(WebRtc_Word16* in_vector,
|
||||
// FFT operations
|
||||
int WebRtcSpl_ComplexFFT(WebRtc_Word16 vector[], int stages, int mode);
|
||||
int WebRtcSpl_ComplexIFFT(WebRtc_Word16 vector[], int stages, int mode);
|
||||
#if (defined ARM9E_GCC) || (defined ARM_WINM) || (defined ANDROID_AECOPT)
|
||||
int WebRtcSpl_ComplexFFT2(WebRtc_Word16 in_vector[],
|
||||
WebRtc_Word16 out_vector[],
|
||||
int stages, int mode);
|
||||
int WebRtcSpl_ComplexIFFT2(WebRtc_Word16 in_vector[],
|
||||
WebRtc_Word16 out_vector[],
|
||||
int stages, int mode);
|
||||
#endif
|
||||
void WebRtcSpl_ComplexBitReverse(WebRtc_Word16 vector[], int stages);
|
||||
// End: FFT operations
|
||||
|
||||
@ -1575,43 +1567,6 @@ void WebRtcSpl_SynthesisQMF(const WebRtc_Word16* low_band,
|
||||
// value of -1, indicating error.
|
||||
//
|
||||
|
||||
#if (defined ARM9E_GCC) || (defined ARM_WINM) || (defined ANDROID_AECOPT)
|
||||
//
|
||||
// WebRtcSpl_ComplexIFFT2(...)
|
||||
//
|
||||
// Complex or Real inverse FFT, for ARM processor only
|
||||
//
|
||||
// Computes a 2^|stages|-point FFT on the input vector, which can be or not be
|
||||
// in bit-reversed order. If it is bit-reversed, the original content of the
|
||||
// vector could be overwritten by the output by setting the first two arguments
|
||||
// the same. With X as the input complex vector, y as the output complex vector
|
||||
// and with M = 2^|stages|, the following is computed:
|
||||
//
|
||||
// M-1
|
||||
// y(k) = sum[X(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]]
|
||||
// i=0
|
||||
//
|
||||
// The implementations are optimized for speed, not for code size. It uses the
|
||||
// decimation-in-time algorithm with radix-2 butterfly technique.
|
||||
//
|
||||
// Arguments:
|
||||
// - in_vector : In pointer to complex vector containing 2^|stages|
|
||||
// real elements interleaved with 2^|stages| imaginary
|
||||
// elements. [ReImReImReIm....]
|
||||
// The elements are in Q(-scale) domain.
|
||||
// - out_vector : Output pointer to vector containing 2^|stages| real
|
||||
// elements interleaved with 2^|stages| imaginary
|
||||
// elements. [ReImReImReIm....]
|
||||
// The output is in the Q0 domain.
|
||||
// - stages : Number of FFT stages. Must be at least 3 and at most
|
||||
// 10.
|
||||
// - mode : Dummy input.
|
||||
//
|
||||
// Return value : The scale parameter is always 0, except if N>1024,
|
||||
// which returns a scale value of -1, indicating error.
|
||||
//
|
||||
#endif
|
||||
|
||||
//
|
||||
// WebRtcSpl_ComplexFFT(...)
|
||||
//
|
||||
@ -1657,42 +1612,6 @@ void WebRtcSpl_SynthesisQMF(const WebRtc_Word16* low_band,
|
||||
// which returns a scale value of -1, indicating error.
|
||||
//
|
||||
|
||||
#if (defined ARM9E_GCC) || (defined ARM_WINM) || (defined ANDROID_AECOPT)
|
||||
//
|
||||
// WebRtcSpl_ComplexFFT2(...)
|
||||
//
|
||||
// Complex or Real FFT, for ARM processor only
|
||||
//
|
||||
// Computes a 2^|stages|-point FFT on the input vector, which can be or not be
|
||||
// in bit-reversed order. If it is bit-reversed, the original content of the
|
||||
// vector could be overwritten by the output by setting the first two arguments
|
||||
// the same. With x as the input complex vector, Y as the output complex vector
|
||||
// and with M = 2^|stages|, the following is computed:
|
||||
//
|
||||
// M-1
|
||||
// Y(k) = 1/M * sum[x(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]]
|
||||
// i=0
|
||||
//
|
||||
// The implementations are optimized for speed, not for code size. It uses the
|
||||
// decimation-in-time algorithm with radix-2 butterfly technique.
|
||||
//
|
||||
// Arguments:
|
||||
// - in_vector : In pointer to complex vector containing 2^|stages|
|
||||
// real elements interleaved with 2^|stages| imaginary
|
||||
// elements. [ReImReImReIm....]
|
||||
// - out_vector : Output pointer to vector containing 2^|stages| real
|
||||
// elements interleaved with 2^|stages| imaginary
|
||||
// elements. [ReImReImReIm....]
|
||||
// The output is in the Q0 domain.
|
||||
// - stages : Number of FFT stages. Must be at least 3 and at most
|
||||
// 10.
|
||||
// - mode : Dummy input
|
||||
//
|
||||
// Return value : The scale parameter is always 0, except if N>1024,
|
||||
// which returns a scale value of -1, indicating error.
|
||||
//
|
||||
#endif
|
||||
|
||||
//
|
||||
// WebRtcSpl_ComplexBitReverse(...)
|
||||
//
|
||||
|
@ -21,16 +21,6 @@
|
||||
#define CFFTRND 1
|
||||
#define CFFTRND2 16384
|
||||
|
||||
#if (defined ARM9E_GCC) || (defined ARM_WINM) || (defined ANDROID_AECOPT)
|
||||
extern "C" int FFT_4OFQ14(void *src, void *dest, int NC, int shift);
|
||||
|
||||
// For detailed description of the fft functions, check the readme files in fft_ARM9E folder.
|
||||
int WebRtcSpl_ComplexFFT2(WebRtc_Word16 frfi[], WebRtc_Word16 frfiOut[], int stages, int mode)
|
||||
{
|
||||
return FFT_4OFQ14(frfi, frfiOut, 1 << stages, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
int WebRtcSpl_ComplexFFT(WebRtc_Word16 frfi[], int stages, int mode)
|
||||
{
|
||||
int i, j, l, k, istep, n, m;
|
||||
|
@ -20,17 +20,6 @@
|
||||
#define CIFFTSFT 14
|
||||
#define CIFFTRND 1
|
||||
|
||||
#if (defined ARM9E_GCC) || (defined ARM_WINM) || (defined ANDROID_AECOPT)
|
||||
extern "C" int FFT_4OIQ14(void *src, void *dest, int NC, int shift);
|
||||
|
||||
// For detailed description of the fft functions, check the readme files in fft_ARM9E folder.
|
||||
int WebRtcSpl_ComplexIFFT2(WebRtc_Word16 frfi[], WebRtc_Word16 frfiOut[], int stages, int mode)
|
||||
{
|
||||
FFT_4OIQ14(frfi, frfiOut, 1 << stages, 0);
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
int WebRtcSpl_ComplexIFFT(WebRtc_Word16 frfi[], int stages, int mode)
|
||||
{
|
||||
int i, j, l, k, istep, n, m, scale, shift;
|
||||
|
@ -1,51 +0,0 @@
|
||||
;// Optimised ARM assembler multi-radix FFT
|
||||
INCLUDE fft_main_forward.h
|
||||
|
||||
|
||||
MACRO
|
||||
GENERATE_FFT_FUNCTION $flags
|
||||
; first work out a readable function name
|
||||
; based on the flags
|
||||
FFT_OPTIONS_STRING $flags, name
|
||||
|
||||
; Entry:
|
||||
; r0 = input array
|
||||
; r1 = output array
|
||||
; r2 = number of points in FFT
|
||||
; r3 = pre-scale shift
|
||||
;
|
||||
; Exit:
|
||||
; r0 = 0 if successful
|
||||
; = 1 if table too small
|
||||
;
|
||||
|
||||
EXPORT FFT_$name
|
||||
FFT_4OFQ14
|
||||
STMFD sp!, {r4-r11, r14}
|
||||
IF "$radix"="4O"
|
||||
tablename SETS "_8"
|
||||
tablename SETS "$qname$coeforder$tablename"
|
||||
ELSE
|
||||
tablename SETS "_4"
|
||||
tablename SETS "$qname$coeforder$tablename"
|
||||
ENDIF
|
||||
IMPORT s_$tablename
|
||||
LDR lr, =s_$tablename
|
||||
LDR lr,[lr]
|
||||
|
||||
CMP N, lr
|
||||
MOVGT r0, #1
|
||||
LDMGTFD sp!, {r4-r11, pc}
|
||||
GENERATE_FFT $flags
|
||||
MOV r0, #0
|
||||
LDMFD sp!, {r4-r11, pc}
|
||||
LTORG
|
||||
MEND
|
||||
|
||||
|
||||
AREA FFTCODE, CODE, READONLY
|
||||
|
||||
|
||||
GENERATE_FFT_FUNCTION FFT_16bit +FFT_RADIX4_8F +FFT_FORWARD ; +FFT_REVERSED
|
||||
|
||||
END
|
@ -1,51 +0,0 @@
|
||||
;// Optimised ARM assembler multi-radix FFT
|
||||
INCLUDE fft_main_inverse.h
|
||||
|
||||
|
||||
MACRO
|
||||
GENERATE_IFFT_FUNCTION $flags
|
||||
; first work out a readable function name
|
||||
; based on the flags
|
||||
FFT_OPTIONS_STRING $flags, name
|
||||
|
||||
; Entry:
|
||||
; r0 = input array
|
||||
; r1 = output array
|
||||
; r2 = number of points in FFT
|
||||
; r3 = pre-scale shift
|
||||
;
|
||||
; Exit:
|
||||
; r0 = 0 if successful
|
||||
; = 1 if table too small
|
||||
;
|
||||
|
||||
|
||||
EXPORT FFT_$name
|
||||
FFT_4OIQ14
|
||||
STMFD sp!, {r4-r11, r14}
|
||||
IF "$radix"="4O"
|
||||
tablename SETS "_8"
|
||||
tablename SETS "$qname$coeforder$tablename"
|
||||
ELSE
|
||||
tablename SETS "_4"
|
||||
tablename SETS "$qname$coeforder$tablename"
|
||||
ENDIF
|
||||
IMPORT s_$tablename
|
||||
LDR lr, =s_$tablename
|
||||
LDR lr,[lr]
|
||||
|
||||
CMP N, lr
|
||||
MOVGT r0, #1
|
||||
LDMGTFD sp!, {r4-r11, pc}
|
||||
GENERATE_FFT $flags
|
||||
MOV r0, #0
|
||||
LDMFD sp!, {r4-r11, pc}
|
||||
LTORG
|
||||
MEND
|
||||
|
||||
AREA FFTCODE, CODE, READONLY
|
||||
|
||||
|
||||
GENERATE_IFFT_FUNCTION FFT_16bit +FFT_RADIX4_8F +FFT_INVERSE +FFT_NONORM ; +FFT_REVERSED
|
||||
|
||||
END
|
@ -1,774 +0,0 @@
|
||||
;
|
||||
; $Copyright:
|
||||
; ----------------------------------------------------------------
|
||||
; This confidential and proprietary software may be used only as
|
||||
; authorised by a licensing agreement from ARM Limited
|
||||
; (C) COPYRIGHT 2000,2002 ARM Limited
|
||||
; ALL RIGHTS RESERVED
|
||||
; The entire notice above must be reproduced on all authorised
|
||||
; copies and copies may only be made to the extent permitted
|
||||
; by a licensing agreement from ARM Limited.
|
||||
; ----------------------------------------------------------------
|
||||
; File: fft_mac.h,v
|
||||
; Revision: 1.14
|
||||
; ----------------------------------------------------------------
|
||||
; $
|
||||
;
|
||||
; Optimised ARM assembler multi-radix FFT
|
||||
; Please read the readme.txt before this file
|
||||
;
|
||||
; Shared macros and interface definition file.
|
||||
|
||||
; NB: All the algorithms in this code are Decimation in Time. ARM
|
||||
; is much better at Decimation in Time (as opposed to Decimation
|
||||
; in Frequency) due to the position of the barrel shifter. Decimation
|
||||
; in time has the twiddeling at the start of the butterfly, where as
|
||||
; decimation in frequency has it at the end of the butterfly. The
|
||||
; post multiply shifts can be hidden for Decimation in Time.
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; FIRST STAGE INTERFACE
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The FIRST STAGE macros "FS_RAD<R>" have the following interface:
|
||||
;
|
||||
; ON ENTRY:
|
||||
; REGISTERS:
|
||||
; r0 = inptr => points to the input buffer consisting of N complex
|
||||
; numbers of size (1<<datainlog) bytes each
|
||||
; r1 = dptr => points to the output buffer consisting of N complex
|
||||
; numbers of size (1<<datalog) bytes each
|
||||
; r2 = N => is the number of points in the transform
|
||||
; r3 = pscale => shift to prescale input by (if applicable)
|
||||
; ASSEMBLER VARIABLES:
|
||||
; reversed => logical variable, true if input data is already bit reversed
|
||||
; The data needs to be bit reversed otherwise
|
||||
;
|
||||
; ACTION:
|
||||
; The routine should
|
||||
; (1) Bit reverse the data as required for the whole FFT (unless
|
||||
; the reversed flag is set)
|
||||
; (2) Prescale the input data by
|
||||
; (3) Perform a radix R first stage on the data
|
||||
; (4) Place the processed data in the output array pointed to be dptr
|
||||
;
|
||||
; ON EXIT:
|
||||
; r1 = dptr => preserved and pointing to the output data
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in this stage
|
||||
; this is: R<<datalog
|
||||
; r3 = count => number of radix-R blocks or groups processed in this stage
|
||||
; this is: N/R
|
||||
; r0,r4-r12,r14 corrupted
|
||||
|
||||
inptr RN 0 ; input buffer
|
||||
dptr RN 1 ; output/scratch buffer
|
||||
N RN 2 ; size of the FFT
|
||||
|
||||
dptr RN 1 ; data pointer - points to end (load in reverse order)
|
||||
dinc RN 2 ; bytes between data elements at this level of FFT
|
||||
count RN 3 ; (elements per block<<16) | (blocks per stage)
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; GENERAL STAGE INTERFACE
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The GENERAL STAGE macros "GS_RAD<R>" have the following interface.
|
||||
;
|
||||
; To describe the arguments, suppose this routine is called as stage j
|
||||
; in a k-stage FFT with N=R1*R2*...*Rk. This stage is radix R=Rj.
|
||||
;
|
||||
; ON ENTRY:
|
||||
; REGISTERS:
|
||||
; r0 = cptr => Pointer to twiddle coefficients for this stage consisting
|
||||
; of complex numbers of size (1<<coeflog) bytes each in some
|
||||
; stage dependent format.
|
||||
; The format currently used in described in full in the
|
||||
; ReadMe file in the tables subdirectory.
|
||||
; r1 = dptr => points to the working buffer consisting of N complex
|
||||
; numbers of size (1<<datalog) bytes each
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in the last stage:
|
||||
; dinc = (R1*R2*...*R(j-1))<<datalog
|
||||
; r3 = count => number of blocks or Groups in the last stage:
|
||||
; count = Rj*R(j+1)*...*Rk
|
||||
; NB dinc*count = N<<datalog
|
||||
;
|
||||
; ACTION:
|
||||
; The routine should
|
||||
; (1) Twiddle the input data
|
||||
; (2) Perform a radix R stage on the data
|
||||
; (3) Perform the actions in place, result written to the dptr buffer
|
||||
;
|
||||
; ON EXIT:
|
||||
; r0 = cptr => Updated to the end of the coefficients for the stage
|
||||
; (the coefficients for the next stage will usually follow)
|
||||
; r1 = dptr => preserved and pointing to the output data
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in this stage:
|
||||
; dinc = (R1*R2*..*Rj)<<datalog = (input dinc)*R
|
||||
; r3 = count => number of radix-R blocks or groups processed in this stage
|
||||
; count = R(j+1)*...*Rk = (input count)/R
|
||||
; r0,r4-r12,r14 corrupted
|
||||
|
||||
cptr RN 0 ; pointer to twiddle coefficients
|
||||
dptr RN 1 ; pointer to FFT data working buffer
|
||||
dinc RN 2 ; bytes per block/group at this stage
|
||||
count RN 3 ; number of blocks/groups at this stage
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; LAST STAGE INTERFACE
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The LAST STAGE macros "LS_RAD<R>" have the following interface.
|
||||
;
|
||||
; ON ENTRY:
|
||||
; REGISTERS:
|
||||
; r0 = cptr => Pointer to twiddle coefficients for this stage consisting
|
||||
; of complex numbers of size (1<<coeflog) bytes each in some
|
||||
; stage dependent format.
|
||||
; The format currently used in described in full in the
|
||||
; ReadMe file in the tables subdirectory.
|
||||
; There is a possible stride between the coefficients
|
||||
; specified by cinc
|
||||
; r1 = dptr => points to the working buffer consisting of N complex
|
||||
; numbers of size (1<<datalog) bytes each
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in the last stage:
|
||||
; dinc = (N/R)<<datalog
|
||||
; r3 = cinc => Bytes between twiddle values in the array pointed to by cptr
|
||||
;
|
||||
; ACTION:
|
||||
; The routine should
|
||||
; (1) Twiddle the input data
|
||||
; (2) Perform a (last stage optimised) radix R stage on the data
|
||||
; (3) Perform the actions in place, result written to the dptr buffer
|
||||
;
|
||||
; ON EXIT:
|
||||
; r0 = cptr => Updated to point to real-to-complex conversion coefficients
|
||||
; r1 = dptr => preserved and pointing to the output data
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in this stage:
|
||||
; dinc = N<<datalog = (input dinc)*R
|
||||
; r0,r4-r12,r14 corrupted
|
||||
|
||||
cptr RN 0 ; pointer to twiddle coefficients
|
||||
dptr RN 1 ; pointer to FFT data working buffer
|
||||
dinc RN 2 ; bytes per block/group at this stage
|
||||
cinc RN 3 ; stride between twiddle coefficients in bytes
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; COMPLEX TO REAL CONVERSION INTERFACE
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The COMPLEX TO REAL macros "LS_ZTOR" have the following interface.
|
||||
;
|
||||
; Suppose that 'w' is the N'th root of unity being used for the real FFT
|
||||
; (usually exp(-2*pi*i/N) for forward transforms and exp(+2*pi*i/N) for
|
||||
; the inverse transform).
|
||||
;
|
||||
; ON ENTRY:
|
||||
; REGISTERS:
|
||||
; r0 = cptr => Pointer to twiddle coefficients for this stage
|
||||
; This consists of (1,w,w^2,w^3,...,w^(N/4-1)).
|
||||
; There is a stride between each coeficient specified by cinc
|
||||
; r1 = dptr => points to the working buffer consisting of N/2 complex
|
||||
; numbers of size (1<<datalog) bytes each
|
||||
; r2 = dinc => (N/2)<<datalog, the size of the complex buffer in bytes
|
||||
; r3 = cinc => Bytes between twiddle value in array pointed to by cptr
|
||||
; r4 = dout => Output buffer (usually the same as dptr)
|
||||
;
|
||||
; ACTION:
|
||||
; The routine should take the output of an N/2 point complex FFT and convert
|
||||
; it to the output of an N point real FFT, assuming that the real input
|
||||
; inputs were packed up into the real,imag,real,imag,... buffers of the complex
|
||||
; input. The output is N/2 complex numbers of the form:
|
||||
; y[0]+i*y[N/2], y[1], y[2], ..., y[N/2-1]
|
||||
; where y[0],...,y[N-1] is the output from a complex transform of the N
|
||||
; real inputs.
|
||||
;
|
||||
; ON EXIT:
|
||||
; r0-r12,r14 corrupted
|
||||
|
||||
cptr RN 0 ; pointer to twiddle coefficients
|
||||
dptr RN 1 ; pointer to FFT data working buffer
|
||||
dinc RN 2 ; (N/2)<<datalog, the size of the data in bytes
|
||||
cinc RN 3 ; bytes between twiddle values in the coefficient buffer
|
||||
dout RN 4 ; address to write the output (normally the same as dptr)
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;; END OF INTERFACES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; first stage/outer loop level
|
||||
;inptr RN 0
|
||||
;dptr RN 1
|
||||
;N RN 2 ; size of FFT
|
||||
;dinc RN 2 ; bytes between block size when bit reversed (scaling of N)
|
||||
bitrev RN 3
|
||||
|
||||
; inner loop level
|
||||
;cptr RN 0 ; coefficient pointer for this level
|
||||
;dptr RN 1 ; data pointer - points to end (load in reverse order)
|
||||
;dinc RN 2 ; bytes between data elements at this level of FFT
|
||||
;count RN 3 ; (elements per block<<16) | (blocks per stage)
|
||||
|
||||
; data registers
|
||||
x0r RN 4
|
||||
x0i RN 5
|
||||
x1r RN 6
|
||||
x1i RN 7
|
||||
x2r RN 8
|
||||
x2i RN 9
|
||||
x3r RN 10
|
||||
x3i RN 11
|
||||
|
||||
t0 RN 12 ; these MUST be in correct order (t0<t1) for STM's
|
||||
t1 RN 14
|
||||
|
||||
MACRO
|
||||
SETREG $prefix,$v0,$v1
|
||||
GBLS $prefix.r
|
||||
GBLS $prefix.i
|
||||
$prefix.r SETS "$v0"
|
||||
$prefix.i SETS "$v1"
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
SETREGS $prefix,$v0,$v1,$v2,$v3,$v4,$v5,$v6,$v7
|
||||
SETREG $prefix.0,$v0,$v1
|
||||
SETREG $prefix.1,$v2,$v3
|
||||
SETREG $prefix.2,$v4,$v5
|
||||
SETREG $prefix.3,$v6,$v7
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
SET2REGS $prefix,$v0,$v1,$v2,$v3
|
||||
SETREG $prefix.0,$v0,$v1
|
||||
SETREG $prefix.1,$v2,$v3
|
||||
MEND
|
||||
|
||||
; Macro to load twiddle coeficients
|
||||
; Customise according to coeficient format
|
||||
; Load next 3 complex coeficients into thr given registers
|
||||
; Update the coeficient pointer
|
||||
MACRO
|
||||
LOADCOEFS $cp, $c0r, $c0i, $c1r, $c1i, $c2r, $c2i
|
||||
IF "$coefformat"="W"
|
||||
; one word per scalar
|
||||
LDMIA $cp!, {$c0r, $c0i, $c1r, $c1i, $c2r, $c2i}
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$coefformat"="H"
|
||||
; one half word per scalar
|
||||
LDRSH $c0r, [$cp], #2
|
||||
LDRSH $c0i, [$cp], #2
|
||||
LDRSH $c1r, [$cp], #2
|
||||
LDRSH $c1i, [$cp], #2
|
||||
LDRSH $c2r, [$cp], #2
|
||||
LDRSH $c2i, [$cp], #2
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported coeficient format: $coefformat"
|
||||
MEND
|
||||
|
||||
; Macro to load one twiddle coeficient
|
||||
; $cp = address to load complex data
|
||||
; $ci = post index to make to address after load
|
||||
MACRO
|
||||
LOADCOEF $cp, $ci, $re, $im
|
||||
IF "$coefformat"="W"
|
||||
LDR $im, [$cp, #4]
|
||||
LDR $re, [$cp], $ci
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$coefformat"="H"
|
||||
LDRSH $im, [$cp, #2]
|
||||
LDRSH $re, [$cp], $ci
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported coeficient format: $coefformat"
|
||||
MEND
|
||||
|
||||
; Macro to load one component of one twiddle coeficient
|
||||
; $cp = address to load complex data
|
||||
; $ci = post index to make to address after load
|
||||
MACRO
|
||||
LOADCOEFR $cp, $re
|
||||
IF "$coefformat"="W"
|
||||
LDR $re, [$cp]
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$coefformat"="H"
|
||||
LDRSH $re, [$cp]
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported coeficient format: $coefformat"
|
||||
MEND
|
||||
|
||||
; Macro to load data elements in the given format
|
||||
; $dp = address to load complex data
|
||||
; $di = post index to make to address after load
|
||||
MACRO
|
||||
LOADDATAF $dp, $di, $re, $im, $format
|
||||
IF "$format"="W"
|
||||
LDR $im, [$dp, #4]
|
||||
LDR $re, [$dp], $di
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$format"="H"
|
||||
LDRSH $im, [$dp, #2]
|
||||
LDRSH $re, [$dp], $di
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported load format: $format"
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
LOADDATAZ $dp, $re, $im
|
||||
IF "$datainformat"="W"
|
||||
LDMIA $dp, {$re,$im}
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$datainformat"="H"
|
||||
LDRSH $im, [$dp, #2]
|
||||
LDRSH $re, [$dp]
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported load format: $format"
|
||||
MEND
|
||||
|
||||
; Load a complex data element from the working array
|
||||
MACRO
|
||||
LOADDATA $dp, $di, $re, $im
|
||||
LOADDATAF $dp, $di, $re, $im, $dataformat
|
||||
MEND
|
||||
|
||||
; Load a complex data element from the input array
|
||||
MACRO
|
||||
LOADDATAI $dp, $di, $re, $im
|
||||
LOADDATAF $dp, $di, $re, $im, $datainformat
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
LOADDATA4 $dp, $re0,$im0, $re1,$im1, $re2,$im2, $re3,$im3
|
||||
IF "$datainformat"="W"
|
||||
LDMIA $dp!, {$re0,$im0, $re1,$im1, $re2,$im2, $re3,$im3}
|
||||
ELSE
|
||||
LOADDATAI $dp, #1<<$datalog, $re0,$im0
|
||||
LOADDATAI $dp, #1<<$datalog, $re1,$im1
|
||||
LOADDATAI $dp, #1<<$datalog, $re2,$im2
|
||||
LOADDATAI $dp, #1<<$datalog, $re3,$im3
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
; Shift data after load
|
||||
MACRO
|
||||
SHIFTDATA $dr, $di
|
||||
IF "$postldshift"<>""
|
||||
IF "$di"<>""
|
||||
MOV $di, $di $postldshift
|
||||
ENDIF
|
||||
MOV $dr, $dr $postldshift
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
; Store a complex data item in the output data buffer
|
||||
MACRO
|
||||
STORE $dp, $di, $re, $im
|
||||
IF "$dataformat"="W"
|
||||
STR $im, [$dp, #4]
|
||||
STR $re, [$dp], $di
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$dataformat"="H"
|
||||
STRH $im, [$dp, #2]
|
||||
STRH $re, [$dp], $di
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported save format: $dataformat"
|
||||
MEND
|
||||
|
||||
; Store a complex data item in the output data buffer
|
||||
MACRO
|
||||
STOREP $dp, $re, $im
|
||||
IF "$dataformat"="W"
|
||||
STMIA $dp!, {$re,$im}
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$dataformat"="H"
|
||||
STRH $im, [$dp, #2]
|
||||
STRH $re, [$dp], #4
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported save format: $dataformat"
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
STORE3P $dp, $re0, $im0, $re1, $im1, $re2, $im2
|
||||
IF "$dataformat"="W"
|
||||
STMIA $dp!, {$re0,$im0, $re1,$im1, $re2,$im2}
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$dataformat"="H"
|
||||
STRH $im0, [$dp, #2]
|
||||
STRH $re0, [$dp], #4
|
||||
STRH $im1, [$dp, #2]
|
||||
STRH $re1, [$dp], #4
|
||||
STRH $im2, [$dp, #2]
|
||||
STRH $re2, [$dp], #4
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported save format: $dataformat"
|
||||
MEND
|
||||
|
||||
; do different command depending on forward/inverse FFT
|
||||
MACRO
|
||||
DOi $for, $bac, $d, $s1, $s2, $shift
|
||||
IF "$shift"=""
|
||||
$for $d, $s1, $s2
|
||||
ELSE
|
||||
$for $d, $s1, $s2, $shift
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
; d = s1 + s2 if w=exp(+2*pi*i/N) j=+i - inverse transform
|
||||
; d = s1 - s2 if w=exp(-2*pi*i/N) j=-i - forward transform
|
||||
MACRO
|
||||
ADDi $d, $s1, $s2, $shift
|
||||
DOi SUB, ADD, $d, $s1, $s2, $shift
|
||||
MEND
|
||||
|
||||
; d = s1 - s2 if w=exp(+2*pi*i/N) j=+i - inverse transform
|
||||
; d = s1 + s2 if w=exp(-2*pi*i/N) j=-i - forward transform
|
||||
MACRO
|
||||
SUBi $d, $s1, $s2, $shift
|
||||
DOi ADD, SUB, $d, $s1, $s2, $shift
|
||||
MEND
|
||||
|
||||
; check that $val is in the range -$max to +$max-1
|
||||
; set carry flag (sicky) if not (2 cycles)
|
||||
; has the advantage of not needing a separate register
|
||||
; to store the overflow state
|
||||
MACRO
|
||||
CHECKOV $val, $tmp, $max
|
||||
EOR $tmp, $val, $val, ASR#31
|
||||
CMPCC $tmp, $max
|
||||
MEND
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; Macro's to perform the twiddle stage (complex multiply by coefficient)
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; The coefficients are stored in different formats according to the
|
||||
; precision and processor architecture. The coefficients required
|
||||
; will be of the form:
|
||||
;
|
||||
; c(k) = cos( + k*2*pi*i/N ), s(k) = sin( + k*2*pi*i/N )
|
||||
;
|
||||
; c(k) + i*s(k) = exp(+2*pi*k*i/N)
|
||||
;
|
||||
; for some k's. The storage formats are:
|
||||
;
|
||||
; Format Data
|
||||
; Q14S (c-s, s) in Q14 format, 16-bits per real
|
||||
; Q14R (c, s) in Q14 format, 16-bits per real
|
||||
; Q30S (c-s, s) in Q30 format, 32-bits per real
|
||||
;
|
||||
; The operation to be performed is one of:
|
||||
;
|
||||
; a+i*b = (x+i*y)*(c-i*s) => forward transform
|
||||
; OR a+i*b = (x+i*y)*(c+i*s) => inverse transform
|
||||
;
|
||||
; For the R format the operation is quite simple - requiring 4 muls
|
||||
; and 2 adds:
|
||||
;
|
||||
; Forward: a = x*c+y*s, b = y*c-x*s
|
||||
; Inverse: a = x*c-y*s, b = y*c+x*s
|
||||
;
|
||||
; For the S format the operations is more complex but only requires
|
||||
; three multiplies, and is simpler to schedule:
|
||||
;
|
||||
; Forward: a = (y-x)*s + x*(c+s) = x*(c-s) + (x+y)*s
|
||||
; b = (y-x)*s + y*(c-s) = y*(c+s) - (x+y)*s
|
||||
;
|
||||
; Inverse: a = (x-y)*s + x*(c-s)
|
||||
; b = (x-y)*s + y*(c+s)
|
||||
;
|
||||
; S advantage 16bit: 1ADD, 1SUB, 1MUL, 2MLA instead of 1SUB, 3MUL, 1MLA
|
||||
; S advantage 32bit: 2ADD, 1SUB, 2SMULL, 1SMLAL instead of 1RSB, 2SMULL, 2SMLAL
|
||||
; So S wins except for a very fast multiplier (eg 9E)
|
||||
;
|
||||
; NB The coefficients must always be the second operand on processor that
|
||||
; take a variable number of cycles per multiply - so the FFT time remains constant
|
||||
|
||||
; This twiddle takes unpacked real and imaginary values
|
||||
; Expects (cr,ci) = (c-s,s) on input
|
||||
; Sets (cr,ci) = (a,b) on output
|
||||
MACRO
|
||||
TWIDDLE $xr, $xi, $cr, $ci, $t0, $t1
|
||||
IF qshift>=0 :LAND: qshift<32
|
||||
SUB $t1, $xi, $xr ; y-x
|
||||
MUL $t0, $t1, $ci ; (y-x)*s
|
||||
ADD $t1, $cr, $ci, LSL #1 ; t1 = c+s allow mul to finish on SA
|
||||
MLA $ci, $xi, $cr, $t0 ; b
|
||||
MLA $cr, $xr, $t1, $t0 ; a
|
||||
ELSE
|
||||
ADD $t1, $cr, $ci, LSL #1 ; t1 = c+s
|
||||
SMULL $cr, $t0, $xi, $cr ; t0 = y*(c-s)
|
||||
SUB $xi, $xi, $xr ; xr = y-x + allow mul to finish on SA
|
||||
SMULL $ci, $cr, $xi, $ci ; cr = (y-x)*s
|
||||
ADD $ci, $cr, $t0 ; b + allow mul to finish on SA
|
||||
SMLAL $t0, $cr, $xr, $t1 ; a
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
; The following twiddle variant is similar to the above
|
||||
; except that it is for an "E" processor varient. A standard
|
||||
; 4 multiply twiddle is used as it requires the same number
|
||||
; of cycles and needs less intermediate precision
|
||||
;
|
||||
; $co = coeficent real and imaginary (c,s) (packed)
|
||||
; $xx = input data real and imaginary part (packed)
|
||||
;
|
||||
; $xr = destination register for real part of product
|
||||
; $xi = destination register for imaginary part of product
|
||||
;
|
||||
; All registers should be distinct
|
||||
;
|
||||
MACRO
|
||||
TWIDDLE_E $xr, $xi, $c0, $t0, $xx, $xxi
|
||||
SMULBT $t0, $xx, $c0
|
||||
SMULBB $xr, $xx, $c0
|
||||
IF "$xxi"=""
|
||||
SMULTB $xi, $xx, $c0
|
||||
SMLATT $xr, $xx, $c0, $xr
|
||||
ELSE
|
||||
SMULBB $xi, $xxi, $c0
|
||||
SMLABT $xr, $xxi, $c0, $xr
|
||||
ENDIF
|
||||
SUB $xi, $xi, $t0
|
||||
MEND
|
||||
|
||||
; Scale data value in by the coefficient, writing result to out
|
||||
; The coeficient must be the second multiplicand
|
||||
; The post mul shift need not be done so in most cases this
|
||||
; is just a multiply (unless you need higher precision)
|
||||
; coef must be preserved
|
||||
MACRO
|
||||
SCALE $out, $in, $coef, $tmp
|
||||
IF qshift>=0 :LAND: qshift<32
|
||||
MUL $out, $in, $coef
|
||||
ELSE
|
||||
SMULL $tmp, $out, $in, $coef
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
DECODEFORMAT $out, $format
|
||||
GBLS $out.log
|
||||
GBLS $out.format
|
||||
$out.format SETS "$format"
|
||||
IF "$format"="B"
|
||||
$out.log SETS "1"
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$format"="H"
|
||||
$out.log SETS "2"
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$format"="W"
|
||||
$out.log SETS "3"
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unrecognised format for $out: $format"
|
||||
MEND
|
||||
|
||||
; generate a string in $var of the correct right shift
|
||||
; amount - negative values = left shift
|
||||
MACRO
|
||||
SETSHIFT $var, $value
|
||||
LCLA svalue
|
||||
svalue SETA $value
|
||||
$var SETS ""
|
||||
IF svalue>0 :LAND: svalue<32
|
||||
$var SETS ",ASR #0x$svalue"
|
||||
ENDIF
|
||||
svalue SETA -svalue
|
||||
IF svalue>0 :LAND: svalue<32
|
||||
$var SETS ",LSL #0x$svalue"
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; ;
|
||||
; CODE to decipher the FFT options ;
|
||||
; ;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
|
||||
; The $flags variable specifies the FFT options
|
||||
; The global string $name is set to a textual version
|
||||
; The global string $table is set the table name
|
||||
MACRO
|
||||
FFT_OPTIONS_STRING $flags, $name
|
||||
GBLS $name
|
||||
GBLS qname ; name of the precision (eg Q14, Q30)
|
||||
GBLS direction ; name of the direction (eg I, F)
|
||||
GBLS radix ; name of the radix (2, 4E, 4B, 4O etc)
|
||||
GBLS intype ; name of input data type (if real)
|
||||
GBLS prescale ; flag to indicate prescale
|
||||
GBLS outpos ; position for the output data
|
||||
GBLS datainformat ; bytes per input data item
|
||||
GBLS dataformat ; bytes per working item
|
||||
GBLS coefformat ; bytes per coefficient working item
|
||||
GBLS coeforder ; R=(c,s) S=(c-s,s) storage format
|
||||
GBLA datainlog ; shift to bytes per input complex
|
||||
GBLA datalog ; shift to bytes per working complex
|
||||
GBLA coeflog ; shift to bytes per coefficient complex
|
||||
GBLA qshift ; right shift after multiply
|
||||
GBLA norm
|
||||
GBLA architecture ; 4=Arch4(7TDMI,SA), 5=Arch5TE(ARM9E)
|
||||
GBLS cdshift
|
||||
GBLS postmulshift
|
||||
GBLS postldshift
|
||||
GBLS postmulshift1
|
||||
GBLS postldshift1
|
||||
GBLL reversed ; flag to indicate input is already bit reversed
|
||||
GBLS tablename
|
||||
|
||||
|
||||
; find what sort of processor we are building the FFT for
|
||||
architecture SETA 4 ; Architecture 4 (7TDMI, StrongARM etc)
|
||||
;qname SETS {CPU}
|
||||
; P $qname
|
||||
IF ((({ARCHITECTURE}:CC:"aaaa"):LEFT:3="5TE") :LOR: (({ARCHITECTURE}:CC:"aa"):LEFT:1="6"))
|
||||
architecture SETA 5 ; Architecture 5 (ARM9E, E extensions)
|
||||
; P arch E
|
||||
ENDIF
|
||||
|
||||
reversed SETL {FALSE}
|
||||
; decode input order
|
||||
IF ($flags:AND:FFT_INPUTORDER)=FFT_REVERSED
|
||||
reversed SETL {TRUE}
|
||||
ENDIF
|
||||
|
||||
; decode radix type to $radix
|
||||
IF ($flags:AND:FFT_RADIX)=FFT_RADIX4
|
||||
radix SETS "4E"
|
||||
ENDIF
|
||||
IF ($flags:AND:FFT_RADIX)=FFT_RADIX4_8F
|
||||
radix SETS "4O"
|
||||
ENDIF
|
||||
IF ($flags:AND:FFT_RADIX)=FFT_RADIX4_2L
|
||||
radix SETS "4B"
|
||||
ENDIF
|
||||
|
||||
; decode direction to $direction
|
||||
direction SETS "F"
|
||||
|
||||
; decode data size to $qname, and *log's
|
||||
IF ($flags:AND:FFT_DATA_SIZES)=FFT_32bit
|
||||
qname SETS "Q30"
|
||||
datainlog SETA 3 ; 8 bytes per complex
|
||||
datalog SETA 3
|
||||
coeflog SETA 3
|
||||
datainformat SETS "W"
|
||||
dataformat SETS "W"
|
||||
coefformat SETS "W"
|
||||
qshift SETA -2 ; shift left top word of 32 bit result
|
||||
ENDIF
|
||||
IF ($flags:AND:FFT_DATA_SIZES)=FFT_16bit
|
||||
qname SETS "Q14"
|
||||
datainlog SETA 2
|
||||
datalog SETA 2
|
||||
coeflog SETA 2
|
||||
datainformat SETS "H"
|
||||
dataformat SETS "H"
|
||||
coefformat SETS "H"
|
||||
qshift SETA 14
|
||||
ENDIF
|
||||
|
||||
; find the coefficient ordering
|
||||
coeforder SETS "S"
|
||||
IF (architecture>=5):LAND:(qshift<16)
|
||||
coeforder SETS "R"
|
||||
ENDIF
|
||||
|
||||
; decode real vs complex input data type
|
||||
intype SETS ""
|
||||
IF ($flags:AND:FFT_INPUTTYPE)=FFT_REAL
|
||||
intype SETS "R"
|
||||
ENDIF
|
||||
|
||||
; decode on outpos
|
||||
outpos SETS ""
|
||||
IF ($flags:AND:FFT_OUTPUTPOS)=FFT_OUT_INBUF
|
||||
outpos SETS "I"
|
||||
ENDIF
|
||||
|
||||
; decode on prescale
|
||||
prescale SETS ""
|
||||
IF ($flags:AND:FFT_INPUTSCALE)=FFT_PRESCALE
|
||||
prescale SETS "P"
|
||||
ENDIF
|
||||
|
||||
; decode on output scale
|
||||
norm SETA 1
|
||||
IF ($flags:AND:FFT_OUTPUTSCALE)=FFT_NONORM
|
||||
norm SETA 0
|
||||
ENDIF
|
||||
|
||||
; calculate shift to convert data offsets to coefficient offsets
|
||||
SETSHIFT cdshift, ($datalog)-($coeflog)
|
||||
|
||||
$name SETS "$radix$direction$qname$intype$outpos$prescale"
|
||||
MEND
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; ;
|
||||
; FFT GENERATOR ;
|
||||
; ;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; FFT options bitfield
|
||||
|
||||
FFT_DIRECTION EQU 0x00000001 ; direction select bit
|
||||
FFT_FORWARD EQU 0x00000000 ; forward exp(-ijkw) coefficient FFT
|
||||
FFT_INVERSE EQU 0x00000001 ; inverse exp(+ijkw) coefficient FFT
|
||||
|
||||
FFT_INPUTORDER EQU 0x00000002 ; input order select field
|
||||
FFT_BITREV EQU 0x00000000 ; input data is in normal order (bit reverse)
|
||||
FFT_REVERSED EQU 0x00000002 ; assume input data is already bit revesed
|
||||
|
||||
FFT_INPUTSCALE EQU 0x00000004 ; select scale on input data
|
||||
FFT_NOPRESCALE EQU 0x00000000 ; do not scale input data
|
||||
FFT_PRESCALE EQU 0x00000004 ; scale input data up by a register amount
|
||||
|
||||
FFT_INPUTTYPE EQU 0x00000010 ; selector for real/complex input data
|
||||
FFT_COMPLEX EQU 0x00000000 ; do complex FFT of N points
|
||||
FFT_REAL EQU 0x00000010 ; do a 2*N point real FFT
|
||||
|
||||
FFT_OUTPUTPOS EQU 0x00000020 ; where is the output placed?
|
||||
FFT_OUT_OUTBUF EQU 0x00000000 ; default - in the output buffer
|
||||
FFT_OUT_INBUF EQU 0x00000020 ; copy it back to the input buffer
|
||||
|
||||
FFT_RADIX EQU 0x00000F00 ; radix select
|
||||
FFT_RADIX4 EQU 0x00000000 ; radix 4 (log_2 N must be even)
|
||||
FFT_RADIX4_8F EQU 0x00000100 ; radix 4 with radix 8 first stage
|
||||
FFT_RADIX4_2L EQU 0x00000200 ; radix 4 with optional radix 2 last stage
|
||||
|
||||
FFT_OUTPUTSCALE EQU 0x00001000 ; select output scale value
|
||||
FFT_NORMALISE EQU 0x00000000 ; default - divide by N during algorithm
|
||||
FFT_NONORM EQU 0x00001000 ; calculate the raw sum (no scale)
|
||||
|
||||
FFT_DATA_SIZES EQU 0x000F0000
|
||||
FFT_16bit EQU 0x00000000 ; 16-bit data and Q14 coefs
|
||||
FFT_32bit EQU 0x00010000 ; 32-bit data and Q30 coefs
|
||||
|
||||
END
|
@ -1,774 +0,0 @@
|
||||
;
|
||||
; $Copyright:
|
||||
; ----------------------------------------------------------------
|
||||
; This confidential and proprietary software may be used only as
|
||||
; authorised by a licensing agreement from ARM Limited
|
||||
; (C) COPYRIGHT 2000,2002 ARM Limited
|
||||
; ALL RIGHTS RESERVED
|
||||
; The entire notice above must be reproduced on all authorised
|
||||
; copies and copies may only be made to the extent permitted
|
||||
; by a licensing agreement from ARM Limited.
|
||||
; ----------------------------------------------------------------
|
||||
; File: fft_mac.h,v
|
||||
; Revision: 1.14
|
||||
; ----------------------------------------------------------------
|
||||
; $
|
||||
;
|
||||
; Optimised ARM assembler multi-radix FFT
|
||||
; Please read the readme.txt before this file
|
||||
;
|
||||
; Shared macros and interface definition file.
|
||||
|
||||
; NB: All the algorithms in this code are Decimation in Time. ARM
|
||||
; is much better at Decimation in Time (as opposed to Decimation
|
||||
; in Frequency) due to the position of the barrel shifter. Decimation
|
||||
; in time has the twiddeling at the start of the butterfly, where as
|
||||
; decimation in frequency has it at the end of the butterfly. The
|
||||
; post multiply shifts can be hidden for Decimation in Time.
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; FIRST STAGE INTERFACE
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The FIRST STAGE macros "FS_RAD<R>" have the following interface:
|
||||
;
|
||||
; ON ENTRY:
|
||||
; REGISTERS:
|
||||
; r0 = inptr => points to the input buffer consisting of N complex
|
||||
; numbers of size (1<<datainlog) bytes each
|
||||
; r1 = dptr => points to the output buffer consisting of N complex
|
||||
; numbers of size (1<<datalog) bytes each
|
||||
; r2 = N => is the number of points in the transform
|
||||
; r3 = pscale => shift to prescale input by (if applicable)
|
||||
; ASSEMBLER VARIABLES:
|
||||
; reversed => logical variable, true if input data is already bit reversed
|
||||
; The data needs to be bit reversed otherwise
|
||||
;
|
||||
; ACTION:
|
||||
; The routine should
|
||||
; (1) Bit reverse the data as required for the whole FFT (unless
|
||||
; the reversed flag is set)
|
||||
; (2) Prescale the input data by
|
||||
; (3) Perform a radix R first stage on the data
|
||||
; (4) Place the processed data in the output array pointed to be dptr
|
||||
;
|
||||
; ON EXIT:
|
||||
; r1 = dptr => preserved and pointing to the output data
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in this stage
|
||||
; this is: R<<datalog
|
||||
; r3 = count => number of radix-R blocks or groups processed in this stage
|
||||
; this is: N/R
|
||||
; r0,r4-r12,r14 corrupted
|
||||
|
||||
inptr RN 0 ; input buffer
|
||||
dptr RN 1 ; output/scratch buffer
|
||||
N RN 2 ; size of the FFT
|
||||
|
||||
dptr RN 1 ; data pointer - points to end (load in reverse order)
|
||||
dinc RN 2 ; bytes between data elements at this level of FFT
|
||||
count RN 3 ; (elements per block<<16) | (blocks per stage)
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; GENERAL STAGE INTERFACE
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The GENERAL STAGE macros "GS_RAD<R>" have the following interface.
|
||||
;
|
||||
; To describe the arguments, suppose this routine is called as stage j
|
||||
; in a k-stage FFT with N=R1*R2*...*Rk. This stage is radix R=Rj.
|
||||
;
|
||||
; ON ENTRY:
|
||||
; REGISTERS:
|
||||
; r0 = cptr => Pointer to twiddle coefficients for this stage consisting
|
||||
; of complex numbers of size (1<<coeflog) bytes each in some
|
||||
; stage dependent format.
|
||||
; The format currently used in described in full in the
|
||||
; ReadMe file in the tables subdirectory.
|
||||
; r1 = dptr => points to the working buffer consisting of N complex
|
||||
; numbers of size (1<<datalog) bytes each
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in the last stage:
|
||||
; dinc = (R1*R2*...*R(j-1))<<datalog
|
||||
; r3 = count => number of blocks or Groups in the last stage:
|
||||
; count = Rj*R(j+1)*...*Rk
|
||||
; NB dinc*count = N<<datalog
|
||||
;
|
||||
; ACTION:
|
||||
; The routine should
|
||||
; (1) Twiddle the input data
|
||||
; (2) Perform a radix R stage on the data
|
||||
; (3) Perform the actions in place, result written to the dptr buffer
|
||||
;
|
||||
; ON EXIT:
|
||||
; r0 = cptr => Updated to the end of the coefficients for the stage
|
||||
; (the coefficients for the next stage will usually follow)
|
||||
; r1 = dptr => preserved and pointing to the output data
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in this stage:
|
||||
; dinc = (R1*R2*..*Rj)<<datalog = (input dinc)*R
|
||||
; r3 = count => number of radix-R blocks or groups processed in this stage
|
||||
; count = R(j+1)*...*Rk = (input count)/R
|
||||
; r0,r4-r12,r14 corrupted
|
||||
|
||||
cptr RN 0 ; pointer to twiddle coefficients
|
||||
dptr RN 1 ; pointer to FFT data working buffer
|
||||
dinc RN 2 ; bytes per block/group at this stage
|
||||
count RN 3 ; number of blocks/groups at this stage
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; LAST STAGE INTERFACE
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The LAST STAGE macros "LS_RAD<R>" have the following interface.
|
||||
;
|
||||
; ON ENTRY:
|
||||
; REGISTERS:
|
||||
; r0 = cptr => Pointer to twiddle coefficients for this stage consisting
|
||||
; of complex numbers of size (1<<coeflog) bytes each in some
|
||||
; stage dependent format.
|
||||
; The format currently used in described in full in the
|
||||
; ReadMe file in the tables subdirectory.
|
||||
; There is a possible stride between the coefficients
|
||||
; specified by cinc
|
||||
; r1 = dptr => points to the working buffer consisting of N complex
|
||||
; numbers of size (1<<datalog) bytes each
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in the last stage:
|
||||
; dinc = (N/R)<<datalog
|
||||
; r3 = cinc => Bytes between twiddle values in the array pointed to by cptr
|
||||
;
|
||||
; ACTION:
|
||||
; The routine should
|
||||
; (1) Twiddle the input data
|
||||
; (2) Perform a (last stage optimised) radix R stage on the data
|
||||
; (3) Perform the actions in place, result written to the dptr buffer
|
||||
;
|
||||
; ON EXIT:
|
||||
; r0 = cptr => Updated to point to real-to-complex conversion coefficients
|
||||
; r1 = dptr => preserved and pointing to the output data
|
||||
; r2 = dinc => number of bytes per "block" or "Group" in this stage:
|
||||
; dinc = N<<datalog = (input dinc)*R
|
||||
; r0,r4-r12,r14 corrupted
|
||||
|
||||
cptr RN 0 ; pointer to twiddle coefficients
|
||||
dptr RN 1 ; pointer to FFT data working buffer
|
||||
dinc RN 2 ; bytes per block/group at this stage
|
||||
cinc RN 3 ; stride between twiddle coefficients in bytes
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; COMPLEX TO REAL CONVERSION INTERFACE
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The COMPLEX TO REAL macros "LS_ZTOR" have the following interface.
|
||||
;
|
||||
; Suppose that 'w' is the N'th root of unity being used for the real FFT
|
||||
; (usually exp(-2*pi*i/N) for forward transforms and exp(+2*pi*i/N) for
|
||||
; the inverse transform).
|
||||
;
|
||||
; ON ENTRY:
|
||||
; REGISTERS:
|
||||
; r0 = cptr => Pointer to twiddle coefficients for this stage
|
||||
; This consists of (1,w,w^2,w^3,...,w^(N/4-1)).
|
||||
; There is a stride between each coeficient specified by cinc
|
||||
; r1 = dptr => points to the working buffer consisting of N/2 complex
|
||||
; numbers of size (1<<datalog) bytes each
|
||||
; r2 = dinc => (N/2)<<datalog, the size of the complex buffer in bytes
|
||||
; r3 = cinc => Bytes between twiddle value in array pointed to by cptr
|
||||
; r4 = dout => Output buffer (usually the same as dptr)
|
||||
;
|
||||
; ACTION:
|
||||
; The routine should take the output of an N/2 point complex FFT and convert
|
||||
; it to the output of an N point real FFT, assuming that the real input
|
||||
; inputs were packed up into the real,imag,real,imag,... buffers of the complex
|
||||
; input. The output is N/2 complex numbers of the form:
|
||||
; y[0]+i*y[N/2], y[1], y[2], ..., y[N/2-1]
|
||||
; where y[0],...,y[N-1] is the output from a complex transform of the N
|
||||
; real inputs.
|
||||
;
|
||||
; ON EXIT:
|
||||
; r0-r12,r14 corrupted
|
||||
|
||||
cptr RN 0 ; pointer to twiddle coefficients
|
||||
dptr RN 1 ; pointer to FFT data working buffer
|
||||
dinc RN 2 ; (N/2)<<datalog, the size of the data in bytes
|
||||
cinc RN 3 ; bytes between twiddle values in the coefficient buffer
|
||||
dout RN 4 ; address to write the output (normally the same as dptr)
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;; END OF INTERFACES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; first stage/outer loop level
|
||||
;inptr RN 0
|
||||
;dptr RN 1
|
||||
;N RN 2 ; size of FFT
|
||||
;dinc RN 2 ; bytes between block size when bit reversed (scaling of N)
|
||||
bitrev RN 3
|
||||
|
||||
; inner loop level
|
||||
;cptr RN 0 ; coefficient pointer for this level
|
||||
;dptr RN 1 ; data pointer - points to end (load in reverse order)
|
||||
;dinc RN 2 ; bytes between data elements at this level of FFT
|
||||
;count RN 3 ; (elements per block<<16) | (blocks per stage)
|
||||
|
||||
; data registers
|
||||
x0r RN 4
|
||||
x0i RN 5
|
||||
x1r RN 6
|
||||
x1i RN 7
|
||||
x2r RN 8
|
||||
x2i RN 9
|
||||
x3r RN 10
|
||||
x3i RN 11
|
||||
|
||||
t0 RN 12 ; these MUST be in correct order (t0<t1) for STM's
|
||||
t1 RN 14
|
||||
|
||||
MACRO
|
||||
SETREG $prefix,$v0,$v1
|
||||
GBLS $prefix.r
|
||||
GBLS $prefix.i
|
||||
$prefix.r SETS "$v0"
|
||||
$prefix.i SETS "$v1"
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
SETREGS $prefix,$v0,$v1,$v2,$v3,$v4,$v5,$v6,$v7
|
||||
SETREG $prefix.0,$v0,$v1
|
||||
SETREG $prefix.1,$v2,$v3
|
||||
SETREG $prefix.2,$v4,$v5
|
||||
SETREG $prefix.3,$v6,$v7
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
SET2REGS $prefix,$v0,$v1,$v2,$v3
|
||||
SETREG $prefix.0,$v0,$v1
|
||||
SETREG $prefix.1,$v2,$v3
|
||||
MEND
|
||||
|
||||
; Macro to load twiddle coeficients
|
||||
; Customise according to coeficient format
|
||||
; Load next 3 complex coeficients into thr given registers
|
||||
; Update the coeficient pointer
|
||||
MACRO
|
||||
LOADCOEFS $cp, $c0r, $c0i, $c1r, $c1i, $c2r, $c2i
|
||||
IF "$coefformat"="W"
|
||||
; one word per scalar
|
||||
LDMIA $cp!, {$c0r, $c0i, $c1r, $c1i, $c2r, $c2i}
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$coefformat"="H"
|
||||
; one half word per scalar
|
||||
LDRSH $c0r, [$cp], #2
|
||||
LDRSH $c0i, [$cp], #2
|
||||
LDRSH $c1r, [$cp], #2
|
||||
LDRSH $c1i, [$cp], #2
|
||||
LDRSH $c2r, [$cp], #2
|
||||
LDRSH $c2i, [$cp], #2
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported coeficient format: $coefformat"
|
||||
MEND
|
||||
|
||||
; Macro to load one twiddle coeficient
|
||||
; $cp = address to load complex data
|
||||
; $ci = post index to make to address after load
|
||||
MACRO
|
||||
LOADCOEF $cp, $ci, $re, $im
|
||||
IF "$coefformat"="W"
|
||||
LDR $im, [$cp, #4]
|
||||
LDR $re, [$cp], $ci
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$coefformat"="H"
|
||||
LDRSH $im, [$cp, #2]
|
||||
LDRSH $re, [$cp], $ci
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported coeficient format: $coefformat"
|
||||
MEND
|
||||
|
||||
; Macro to load one component of one twiddle coeficient
|
||||
; $cp = address to load complex data
|
||||
; $ci = post index to make to address after load
|
||||
MACRO
|
||||
LOADCOEFR $cp, $re
|
||||
IF "$coefformat"="W"
|
||||
LDR $re, [$cp]
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$coefformat"="H"
|
||||
LDRSH $re, [$cp]
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported coeficient format: $coefformat"
|
||||
MEND
|
||||
|
||||
; Macro to load data elements in the given format
|
||||
; $dp = address to load complex data
|
||||
; $di = post index to make to address after load
|
||||
MACRO
|
||||
LOADDATAF $dp, $di, $re, $im, $format
|
||||
IF "$format"="W"
|
||||
LDR $im, [$dp, #4]
|
||||
LDR $re, [$dp], $di
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$format"="H"
|
||||
LDRSH $im, [$dp, #2]
|
||||
LDRSH $re, [$dp], $di
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported load format: $format"
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
LOADDATAZ $dp, $re, $im
|
||||
IF "$datainformat"="W"
|
||||
LDMIA $dp, {$re,$im}
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$datainformat"="H"
|
||||
LDRSH $im, [$dp, #2]
|
||||
LDRSH $re, [$dp]
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported load format: $format"
|
||||
MEND
|
||||
|
||||
; Load a complex data element from the working array
|
||||
MACRO
|
||||
LOADDATA $dp, $di, $re, $im
|
||||
LOADDATAF $dp, $di, $re, $im, $dataformat
|
||||
MEND
|
||||
|
||||
; Load a complex data element from the input array
|
||||
MACRO
|
||||
LOADDATAI $dp, $di, $re, $im
|
||||
LOADDATAF $dp, $di, $re, $im, $datainformat
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
LOADDATA4 $dp, $re0,$im0, $re1,$im1, $re2,$im2, $re3,$im3
|
||||
IF "$datainformat"="W"
|
||||
LDMIA $dp!, {$re0,$im0, $re1,$im1, $re2,$im2, $re3,$im3}
|
||||
ELSE
|
||||
LOADDATAI $dp, #1<<$datalog, $re0,$im0
|
||||
LOADDATAI $dp, #1<<$datalog, $re1,$im1
|
||||
LOADDATAI $dp, #1<<$datalog, $re2,$im2
|
||||
LOADDATAI $dp, #1<<$datalog, $re3,$im3
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
; Shift data after load
|
||||
MACRO
|
||||
SHIFTDATA $dr, $di
|
||||
IF "$postldshift"<>""
|
||||
IF "$di"<>""
|
||||
MOV $di, $di $postldshift
|
||||
ENDIF
|
||||
MOV $dr, $dr $postldshift
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
; Store a complex data item in the output data buffer
|
||||
MACRO
|
||||
STORE $dp, $di, $re, $im
|
||||
IF "$dataformat"="W"
|
||||
STR $im, [$dp, #4]
|
||||
STR $re, [$dp], $di
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$dataformat"="H"
|
||||
STRH $im, [$dp, #2]
|
||||
STRH $re, [$dp], $di
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported save format: $dataformat"
|
||||
MEND
|
||||
|
||||
; Store a complex data item in the output data buffer
|
||||
MACRO
|
||||
STOREP $dp, $re, $im
|
||||
IF "$dataformat"="W"
|
||||
STMIA $dp!, {$re,$im}
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$dataformat"="H"
|
||||
STRH $im, [$dp, #2]
|
||||
STRH $re, [$dp], #4
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported save format: $dataformat"
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
STORE3P $dp, $re0, $im0, $re1, $im1, $re2, $im2
|
||||
IF "$dataformat"="W"
|
||||
STMIA $dp!, {$re0,$im0, $re1,$im1, $re2,$im2}
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$dataformat"="H"
|
||||
STRH $im0, [$dp, #2]
|
||||
STRH $re0, [$dp], #4
|
||||
STRH $im1, [$dp, #2]
|
||||
STRH $re1, [$dp], #4
|
||||
STRH $im2, [$dp, #2]
|
||||
STRH $re2, [$dp], #4
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unsupported save format: $dataformat"
|
||||
MEND
|
||||
|
||||
; do different command depending on forward/inverse FFT
|
||||
MACRO
|
||||
DOi $for, $bac, $d, $s1, $s2, $shift
|
||||
IF "$shift"=""
|
||||
$bac $d, $s1, $s2
|
||||
ELSE
|
||||
$bac $d, $s1, $s2, $shift
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
; d = s1 + s2 if w=exp(+2*pi*i/N) j=+i - inverse transform
|
||||
; d = s1 - s2 if w=exp(-2*pi*i/N) j=-i - forward transform
|
||||
MACRO
|
||||
ADDi $d, $s1, $s2, $shift
|
||||
DOi SUB, ADD, $d, $s1, $s2, $shift
|
||||
MEND
|
||||
|
||||
; d = s1 - s2 if w=exp(+2*pi*i/N) j=+i - inverse transform
|
||||
; d = s1 + s2 if w=exp(-2*pi*i/N) j=-i - forward transform
|
||||
MACRO
|
||||
SUBi $d, $s1, $s2, $shift
|
||||
DOi ADD, SUB, $d, $s1, $s2, $shift
|
||||
MEND
|
||||
|
||||
; check that $val is in the range -$max to +$max-1
|
||||
; set carry flag (sicky) if not (2 cycles)
|
||||
; has the advantage of not needing a separate register
|
||||
; to store the overflow state
|
||||
MACRO
|
||||
CHECKOV $val, $tmp, $max
|
||||
EOR $tmp, $val, $val, ASR#31
|
||||
CMPCC $tmp, $max
|
||||
MEND
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; Macro's to perform the twiddle stage (complex multiply by coefficient)
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; The coefficients are stored in different formats according to the
|
||||
; precision and processor architecture. The coefficients required
|
||||
; will be of the form:
|
||||
;
|
||||
; c(k) = cos( + k*2*pi*i/N ), s(k) = sin( + k*2*pi*i/N )
|
||||
;
|
||||
; c(k) + i*s(k) = exp(+2*pi*k*i/N)
|
||||
;
|
||||
; for some k's. The storage formats are:
|
||||
;
|
||||
; Format Data
|
||||
; Q14S (c-s, s) in Q14 format, 16-bits per real
|
||||
; Q14R (c, s) in Q14 format, 16-bits per real
|
||||
; Q30S (c-s, s) in Q30 format, 32-bits per real
|
||||
;
|
||||
; The operation to be performed is one of:
|
||||
;
|
||||
; a+i*b = (x+i*y)*(c-i*s) => forward transform
|
||||
; OR a+i*b = (x+i*y)*(c+i*s) => inverse transform
|
||||
;
|
||||
; For the R format the operation is quite simple - requiring 4 muls
|
||||
; and 2 adds:
|
||||
;
|
||||
; Forward: a = x*c+y*s, b = y*c-x*s
|
||||
; Inverse: a = x*c-y*s, b = y*c+x*s
|
||||
;
|
||||
; For the S format the operations is more complex but only requires
|
||||
; three multiplies, and is simpler to schedule:
|
||||
;
|
||||
; Forward: a = (y-x)*s + x*(c+s) = x*(c-s) + (x+y)*s
|
||||
; b = (y-x)*s + y*(c-s) = y*(c+s) - (x+y)*s
|
||||
;
|
||||
; Inverse: a = (x-y)*s + x*(c-s)
|
||||
; b = (x-y)*s + y*(c+s)
|
||||
;
|
||||
; S advantage 16bit: 1ADD, 1SUB, 1MUL, 2MLA instead of 1SUB, 3MUL, 1MLA
|
||||
; S advantage 32bit: 2ADD, 1SUB, 2SMULL, 1SMLAL instead of 1RSB, 2SMULL, 2SMLAL
|
||||
; So S wins except for a very fast multiplier (eg 9E)
|
||||
;
|
||||
; NB The coefficients must always be the second operand on processor that
|
||||
; take a variable number of cycles per multiply - so the FFT time remains constant
|
||||
|
||||
; This twiddle takes unpacked real and imaginary values
|
||||
; Expects (cr,ci) = (c-s,s) on input
|
||||
; Sets (cr,ci) = (a,b) on output
|
||||
MACRO
|
||||
TWIDDLE $xr, $xi, $cr, $ci, $t0, $t1
|
||||
IF qshift>=0 :LAND: qshift<32
|
||||
SUB $t1, $xr, $xi ; x-y
|
||||
MUL $t0, $t1, $ci ; (x-y)*s
|
||||
ADD $ci, $cr, $ci, LSL #1 ; ci = c+s allow mul to finish on SA
|
||||
MLA $cr, $xr, $cr, $t0 ; a
|
||||
MLA $ci, $xi, $ci, $t0 ; b
|
||||
ELSE
|
||||
ADD $t1, $cr, $ci, LSL #1 ; c+s
|
||||
SMULL $t0, $cr, $xr, $cr ; x*(c-s)
|
||||
SUB $xr, $xr, $xi ; x-y + allow mul to finish on SA
|
||||
SMULL $t0, $ci, $xr, $ci ; (x-y)*s
|
||||
ADD $cr, $cr, $ci ; a + allow mul to finish on SA
|
||||
SMLAL $t0, $ci, $xi, $t1 ; b
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
; The following twiddle variant is similar to the above
|
||||
; except that it is for an "E" processor varient. A standard
|
||||
; 4 multiply twiddle is used as it requires the same number
|
||||
; of cycles and needs less intermediate precision
|
||||
;
|
||||
; $co = coeficent real and imaginary (c,s) (packed)
|
||||
; $xx = input data real and imaginary part (packed)
|
||||
;
|
||||
; $xr = destination register for real part of product
|
||||
; $xi = destination register for imaginary part of product
|
||||
;
|
||||
; All registers should be distinct
|
||||
;
|
||||
MACRO
|
||||
TWIDDLE_E $xr, $xi, $c0, $t0, $xx, $xxi
|
||||
SMULBB $t0, $xx, $c0
|
||||
SMULBT $xi, $xx, $c0
|
||||
IF "$xxi"=""
|
||||
SMULTT $xr, $xx, $c0
|
||||
SMLATB $xi, $xx, $c0, $xi
|
||||
ELSE
|
||||
SMULBT $xr, $xxi, $c0
|
||||
SMLABB $xi, $xxi, $c0, $xi
|
||||
ENDIF
|
||||
SUB $xr, $t0, $xr
|
||||
MEND
|
||||
|
||||
; Scale data value in by the coefficient, writing result to out
|
||||
; The coeficient must be the second multiplicand
|
||||
; The post mul shift need not be done so in most cases this
|
||||
; is just a multiply (unless you need higher precision)
|
||||
; coef must be preserved
|
||||
MACRO
|
||||
SCALE $out, $in, $coef, $tmp
|
||||
IF qshift>=0 :LAND: qshift<32
|
||||
MUL $out, $in, $coef
|
||||
ELSE
|
||||
SMULL $tmp, $out, $in, $coef
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
DECODEFORMAT $out, $format
|
||||
GBLS $out.log
|
||||
GBLS $out.format
|
||||
$out.format SETS "$format"
|
||||
IF "$format"="B"
|
||||
$out.log SETS "1"
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$format"="H"
|
||||
$out.log SETS "2"
|
||||
MEXIT
|
||||
ENDIF
|
||||
IF "$format"="W"
|
||||
$out.log SETS "3"
|
||||
MEXIT
|
||||
ENDIF
|
||||
ERROR "Unrecognised format for $out: $format"
|
||||
MEND
|
||||
|
||||
; generate a string in $var of the correct right shift
|
||||
; amount - negative values = left shift
|
||||
MACRO
|
||||
SETSHIFT $var, $value
|
||||
LCLA svalue
|
||||
svalue SETA $value
|
||||
$var SETS ""
|
||||
IF svalue>0 :LAND: svalue<32
|
||||
$var SETS ",ASR #0x$svalue"
|
||||
ENDIF
|
||||
svalue SETA -svalue
|
||||
IF svalue>0 :LAND: svalue<32
|
||||
$var SETS ",LSL #0x$svalue"
|
||||
ENDIF
|
||||
MEND
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; ;
|
||||
; CODE to decipher the FFT options ;
|
||||
; ;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
|
||||
; The $flags variable specifies the FFT options
|
||||
; The global string $name is set to a textual version
|
||||
; The global string $table is set the table name
|
||||
MACRO
|
||||
FFT_OPTIONS_STRING $flags, $name
|
||||
GBLS $name
|
||||
GBLS qname ; name of the precision (eg Q14, Q30)
|
||||
GBLS direction ; name of the direction (eg I, F)
|
||||
GBLS radix ; name of the radix (2, 4E, 4B, 4O etc)
|
||||
GBLS intype ; name of input data type (if real)
|
||||
GBLS prescale ; flag to indicate prescale
|
||||
GBLS outpos ; position for the output data
|
||||
GBLS datainformat ; bytes per input data item
|
||||
GBLS dataformat ; bytes per working item
|
||||
GBLS coefformat ; bytes per coefficient working item
|
||||
GBLS coeforder ; R=(c,s) S=(c-s,s) storage format
|
||||
GBLA datainlog ; shift to bytes per input complex
|
||||
GBLA datalog ; shift to bytes per working complex
|
||||
GBLA coeflog ; shift to bytes per coefficient complex
|
||||
GBLA qshift ; right shift after multiply
|
||||
GBLA norm
|
||||
GBLA architecture ; 4=Arch4(7TDMI,SA), 5=Arch5TE(ARM9E)
|
||||
GBLS cdshift
|
||||
GBLS postmulshift
|
||||
GBLS postldshift
|
||||
GBLS postmulshift1
|
||||
GBLS postldshift1
|
||||
GBLL reversed ; flag to indicate input is already bit reversed
|
||||
GBLS tablename
|
||||
|
||||
|
||||
; find what sort of processor we are building the FFT for
|
||||
architecture SETA 4 ; Architecture 4 (7TDMI, StrongARM etc)
|
||||
;qname SETS {CPU}
|
||||
; P $qname
|
||||
IF ((({ARCHITECTURE}:CC:"aaaa"):LEFT:3="5TE") :LOR: (({ARCHITECTURE}:CC:"aa"):LEFT:1="6"))
|
||||
architecture SETA 5 ; Architecture 5 (ARM9E, E extensions)
|
||||
; P arch E
|
||||
ENDIF
|
||||
|
||||
reversed SETL {FALSE}
|
||||
; decode input order
|
||||
IF ($flags:AND:FFT_INPUTORDER)=FFT_REVERSED
|
||||
reversed SETL {TRUE}
|
||||
ENDIF
|
||||
|
||||
; decode radix type to $radix
|
||||
IF ($flags:AND:FFT_RADIX)=FFT_RADIX4
|
||||
radix SETS "4E"
|
||||
ENDIF
|
||||
IF ($flags:AND:FFT_RADIX)=FFT_RADIX4_8F
|
||||
radix SETS "4O"
|
||||
ENDIF
|
||||
IF ($flags:AND:FFT_RADIX)=FFT_RADIX4_2L
|
||||
radix SETS "4B"
|
||||
ENDIF
|
||||
|
||||
; decode direction to $direction
|
||||
direction SETS "I"
|
||||
|
||||
; decode data size to $qname, and *log's
|
||||
IF ($flags:AND:FFT_DATA_SIZES)=FFT_32bit
|
||||
qname SETS "Q30"
|
||||
datainlog SETA 3 ; 8 bytes per complex
|
||||
datalog SETA 3
|
||||
coeflog SETA 3
|
||||
datainformat SETS "W"
|
||||
dataformat SETS "W"
|
||||
coefformat SETS "W"
|
||||
qshift SETA -2 ; shift left top word of 32 bit result
|
||||
ENDIF
|
||||
IF ($flags:AND:FFT_DATA_SIZES)=FFT_16bit
|
||||
qname SETS "Q14"
|
||||
datainlog SETA 2
|
||||
datalog SETA 2
|
||||
coeflog SETA 2
|
||||
datainformat SETS "H"
|
||||
dataformat SETS "H"
|
||||
coefformat SETS "H"
|
||||
qshift SETA 14
|
||||
ENDIF
|
||||
|
||||
; find the coefficient ordering
|
||||
coeforder SETS "S"
|
||||
IF (architecture>=5):LAND:(qshift<16)
|
||||
coeforder SETS "R"
|
||||
ENDIF
|
||||
|
||||
; decode real vs complex input data type
|
||||
intype SETS ""
|
||||
IF ($flags:AND:FFT_INPUTTYPE)=FFT_REAL
|
||||
intype SETS "R"
|
||||
ENDIF
|
||||
|
||||
; decode on outpos
|
||||
outpos SETS ""
|
||||
IF ($flags:AND:FFT_OUTPUTPOS)=FFT_OUT_INBUF
|
||||
outpos SETS "I"
|
||||
ENDIF
|
||||
|
||||
; decode on prescale
|
||||
prescale SETS ""
|
||||
IF ($flags:AND:FFT_INPUTSCALE)=FFT_PRESCALE
|
||||
prescale SETS "P"
|
||||
ENDIF
|
||||
|
||||
; decode on output scale
|
||||
norm SETA 1
|
||||
IF ($flags:AND:FFT_OUTPUTSCALE)=FFT_NONORM
|
||||
norm SETA 0
|
||||
ENDIF
|
||||
|
||||
; calculate shift to convert data offsets to coefficient offsets
|
||||
SETSHIFT cdshift, ($datalog)-($coeflog)
|
||||
|
||||
$name SETS "$radix$direction$qname$intype$outpos$prescale"
|
||||
MEND
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; ;
|
||||
; FFT GENERATOR ;
|
||||
; ;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; FFT options bitfield
|
||||
|
||||
FFT_DIRECTION EQU 0x00000001 ; direction select bit
|
||||
FFT_FORWARD EQU 0x00000000 ; forward exp(-ijkw) coefficient FFT
|
||||
FFT_INVERSE EQU 0x00000001 ; inverse exp(+ijkw) coefficient FFT
|
||||
|
||||
FFT_INPUTORDER EQU 0x00000002 ; input order select field
|
||||
FFT_BITREV EQU 0x00000000 ; input data is in normal order (bit reverse)
|
||||
FFT_REVERSED EQU 0x00000002 ; assume input data is already bit revesed
|
||||
|
||||
FFT_INPUTSCALE EQU 0x00000004 ; select scale on input data
|
||||
FFT_NOPRESCALE EQU 0x00000000 ; do not scale input data
|
||||
FFT_PRESCALE EQU 0x00000004 ; scale input data up by a register amount
|
||||
|
||||
FFT_INPUTTYPE EQU 0x00000010 ; selector for real/complex input data
|
||||
FFT_COMPLEX EQU 0x00000000 ; do complex FFT of N points
|
||||
FFT_REAL EQU 0x00000010 ; do a 2*N point real FFT
|
||||
|
||||
FFT_OUTPUTPOS EQU 0x00000020 ; where is the output placed?
|
||||
FFT_OUT_OUTBUF EQU 0x00000000 ; default - in the output buffer
|
||||
FFT_OUT_INBUF EQU 0x00000020 ; copy it back to the input buffer
|
||||
|
||||
FFT_RADIX EQU 0x00000F00 ; radix select
|
||||
FFT_RADIX4 EQU 0x00000000 ; radix 4 (log_2 N must be even)
|
||||
FFT_RADIX4_8F EQU 0x00000100 ; radix 4 with radix 8 first stage
|
||||
FFT_RADIX4_2L EQU 0x00000200 ; radix 4 with optional radix 2 last stage
|
||||
|
||||
FFT_OUTPUTSCALE EQU 0x00001000 ; select output scale value
|
||||
FFT_NORMALISE EQU 0x00000000 ; default - divide by N during algorithm
|
||||
FFT_NONORM EQU 0x00001000 ; calculate the raw sum (no scale)
|
||||
|
||||
FFT_DATA_SIZES EQU 0x000F0000
|
||||
FFT_16bit EQU 0x00000000 ; 16-bit data and Q14 coefs
|
||||
FFT_32bit EQU 0x00010000 ; 32-bit data and Q30 coefs
|
||||
|
||||
END
|
@ -1,101 +0,0 @@
|
||||
;
|
||||
; $Copyright:
|
||||
; ----------------------------------------------------------------
|
||||
; This confidential and proprietary software may be used only as
|
||||
; authorised by a licensing agreement from ARM Limited
|
||||
; (C) COPYRIGHT 2000,2002 ARM Limited
|
||||
; ALL RIGHTS RESERVED
|
||||
; The entire notice above must be reproduced on all authorised
|
||||
; copies and copies may only be made to the extent permitted
|
||||
; by a licensing agreement from ARM Limited.
|
||||
; ----------------------------------------------------------------
|
||||
; File: fft_main.h,v
|
||||
; Revision: 1.10
|
||||
; ----------------------------------------------------------------
|
||||
; $
|
||||
;
|
||||
; Optimised ARM assembler multi-radix FFT
|
||||
; Please read the readme.txt before this file
|
||||
;
|
||||
|
||||
INCLUDE fft_mac_forward.h ; general macros
|
||||
INCLUDE fs_rad8_forward.h ; first stage, radix 8 macros
|
||||
INCLUDE gs_rad4.h ; general stage, radix 4 macros
|
||||
|
||||
; The macro in this file generates a whole FFT by glueing together
|
||||
; FFT stage macros. It is designed to handle a range of power-of-2
|
||||
; FFT's, the power of 2 set at run time.
|
||||
|
||||
; The following should be set up:
|
||||
;
|
||||
; $flags = a 32-bit integer indicating what FFT code to generate
|
||||
; formed by a bitmask of the above FFT_* flag definitions
|
||||
; (see fft_mac.h)
|
||||
;
|
||||
; r0 = inptr = address of the input buffer
|
||||
; r1 = dptr = address of the output buffer
|
||||
; r2 = N = the number of points in the FFT
|
||||
; r3 = = optional pre-left shift to apply to the input data
|
||||
;
|
||||
; The contents of the input buffer are preserved (provided that the
|
||||
; input and output buffer are different, which must be the case unless
|
||||
; no bitreversal is required and the input is provided pre-reversed).
|
||||
|
||||
MACRO
|
||||
GENERATE_FFT $flags
|
||||
; decode the options word
|
||||
FFT_OPTIONS_STRING $flags, name
|
||||
|
||||
IF "$outpos"<>""
|
||||
; stack the input buffer address for later on
|
||||
STMFD sp!, {inptr}
|
||||
ENDIF
|
||||
|
||||
; Do first stage - radix 4 or radix 8 depending on parity
|
||||
IF "$radix"="4O"
|
||||
FS_RAD8
|
||||
tablename SETS "_8"
|
||||
tablename SETS "$qname$coeforder$tablename"
|
||||
ELSE
|
||||
FS_RAD4
|
||||
tablename SETS "_4"
|
||||
tablename SETS "$qname$coeforder$tablename"
|
||||
ENDIF
|
||||
IMPORT t_$tablename
|
||||
LDR cptr, =t_$tablename ; coefficient table
|
||||
CMP count, #1
|
||||
BEQ %FT10 ; exit for small case
|
||||
|
||||
12 ; General stage loop
|
||||
GS_RAD4
|
||||
CMP count, #2
|
||||
BGT %BT12
|
||||
|
||||
IF "$radix"="4B"
|
||||
; support odd parity as well
|
||||
;BLT %FT10 ; less than 2 left (ie, finished)
|
||||
;LS_RAD2 ; finish off with a radix 2 stage
|
||||
ENDIF
|
||||
|
||||
10 ; we've finished the complex FFT
|
||||
IF ($flags:AND:FFT_INPUTTYPE)=FFT_REAL
|
||||
; convert to a real FFT
|
||||
IF "$outpos"="I"
|
||||
LDMFD sp!, {dout}
|
||||
ELSE
|
||||
MOV dout, dptr
|
||||
ENDIF
|
||||
; dinc = (N/2) >> datalog where N is the number of real points
|
||||
IMPORT s_$tablename
|
||||
LDR t0, = s_$tablename
|
||||
LDR t0, [t0] ; max N handled by the table
|
||||
MOV t1, dinc, LSR #($datalog-1) ; real N we want to handle
|
||||
CMP t0, t1
|
||||
MOV cinc, #3<<$coeflog ; radix 4 table stage
|
||||
MOVEQ cinc, #1<<$coeflog ; radix 4 table stage
|
||||
LS_ZTOR
|
||||
ENDIF
|
||||
|
||||
MEND
|
||||
|
||||
END
|
@ -1,101 +0,0 @@
|
||||
;
|
||||
; $Copyright:
|
||||
; ----------------------------------------------------------------
|
||||
; This confidential and proprietary software may be used only as
|
||||
; authorised by a licensing agreement from ARM Limited
|
||||
; (C) COPYRIGHT 2000,2002 ARM Limited
|
||||
; ALL RIGHTS RESERVED
|
||||
; The entire notice above must be reproduced on all authorised
|
||||
; copies and copies may only be made to the extent permitted
|
||||
; by a licensing agreement from ARM Limited.
|
||||
; ----------------------------------------------------------------
|
||||
; File: fft_main.h,v
|
||||
; Revision: 1.10
|
||||
; ----------------------------------------------------------------
|
||||
; $
|
||||
;
|
||||
; Optimised ARM assembler multi-radix FFT
|
||||
; Please read the readme.txt before this file
|
||||
;
|
||||
|
||||
INCLUDE fft_mac_inverse.h ; general macros
|
||||
INCLUDE fs_rad8_inverse.h ; first stage, radix 8 macros
|
||||
INCLUDE gs_rad4.h ; general stage, radix 4 macros
|
||||
|
||||
; The macro in this file generates a whole FFT by glueing together
|
||||
; FFT stage macros. It is designed to handle a range of power-of-2
|
||||
; FFT's, the power of 2 set at run time.
|
||||
|
||||
; The following should be set up:
|
||||
;
|
||||
; $flags = a 32-bit integer indicating what FFT code to generate
|
||||
; formed by a bitmask of the above FFT_* flag definitions
|
||||
; (see fft_mac.h)
|
||||
;
|
||||
; r0 = inptr = address of the input buffer
|
||||
; r1 = dptr = address of the output buffer
|
||||
; r2 = N = the number of points in the FFT
|
||||
; r3 = = optional pre-left shift to apply to the input data
|
||||
;
|
||||
; The contents of the input buffer are preserved (provided that the
|
||||
; input and output buffer are different, which must be the case unless
|
||||
; no bitreversal is required and the input is provided pre-reversed).
|
||||
|
||||
MACRO
|
||||
GENERATE_FFT $flags
|
||||
; decode the options word
|
||||
FFT_OPTIONS_STRING $flags, name
|
||||
|
||||
IF "$outpos"<>""
|
||||
; stack the input buffer address for later on
|
||||
STMFD sp!, {inptr}
|
||||
ENDIF
|
||||
|
||||
; Do first stage - radix 4 or radix 8 depending on parity
|
||||
IF "$radix"="4O"
|
||||
FS_RAD8
|
||||
tablename SETS "_8"
|
||||
tablename SETS "$qname$coeforder$tablename"
|
||||
ELSE
|
||||
FS_RAD4
|
||||
tablename SETS "_4"
|
||||
tablename SETS "$qname$coeforder$tablename"
|
||||
ENDIF
|
||||
IMPORT t_$tablename
|
||||
LDR cptr, =t_$tablename ; coefficient table
|
||||
CMP count, #1
|
||||
BEQ %FT10 ; exit for small case
|
||||
|
||||
12 ; General stage loop
|
||||
GS_RAD4
|
||||
CMP count, #2
|
||||
BGT %BT12
|
||||
|
||||
IF "$radix"="4B"
|
||||
; support odd parity as well
|
||||
;BLT %FT10 ; less than 2 left (ie, finished)
|
||||
;LS_RAD2 ; finish off with a radix 2 stage
|
||||
ENDIF
|
||||
|
||||
10 ; we've finished the complex FFT
|
||||
IF ($flags:AND:FFT_INPUTTYPE)=FFT_REAL
|
||||
; convert to a real FFT
|
||||
IF "$outpos"="I"
|
||||
LDMFD sp!, {dout}
|
||||
ELSE
|
||||
MOV dout, dptr
|
||||
ENDIF
|
||||
; dinc = (N/2) >> datalog where N is the number of real points
|
||||
IMPORT s_$tablename
|
||||
LDR t0, = s_$tablename
|
||||
LDR t0, [t0] ; max N handled by the table
|
||||
MOV t1, dinc, LSR #($datalog-1) ; real N we want to handle
|
||||
CMP t0, t1
|
||||
MOV cinc, #3<<$coeflog ; radix 4 table stage
|
||||
MOVEQ cinc, #1<<$coeflog ; radix 4 table stage
|
||||
LS_ZTOR
|
||||
ENDIF
|
||||
|
||||
MEND
|
||||
|
||||
END
|
@ -1,236 +0,0 @@
|
||||
;
|
||||
; $Copyright:
|
||||
; ----------------------------------------------------------------
|
||||
; This confidential and proprietary software may be used only as
|
||||
; authorised by a licensing agreement from ARM Limited
|
||||
; (C) COPYRIGHT 2000,2002 ARM Limited
|
||||
; ALL RIGHTS RESERVED
|
||||
; The entire notice above must be reproduced on all authorised
|
||||
; copies and copies may only be made to the extent permitted
|
||||
; by a licensing agreement from ARM Limited.
|
||||
; ----------------------------------------------------------------
|
||||
; File: fs_rad8.h,v
|
||||
; Revision: 1.5
|
||||
; ----------------------------------------------------------------
|
||||
; $
|
||||
;
|
||||
; Optimised ARM assembler multi-radix FFT
|
||||
; Please read the readme.txt before this file
|
||||
;
|
||||
; This file contains first stage, radix-8 code
|
||||
; It bit reverses (assuming a power of 2 FFT) and performs the first stage
|
||||
;
|
||||
|
||||
MACRO
|
||||
FS_RAD8
|
||||
SETSHIFT postldshift, 3*norm
|
||||
SETSHIFT postmulshift, 3*norm+qshift
|
||||
SETSHIFT postldshift1, 3*norm-1
|
||||
SETSHIFT postmulshift1, 3*norm+qshift-1
|
||||
IF "$prescale"<>""
|
||||
STMFD sp!, {dptr, N, r3}
|
||||
ELSE
|
||||
STMFD sp!, {dptr, N}
|
||||
ENDIF
|
||||
MOV bitrev, #0
|
||||
MOV dinc, N, LSL #($datalog-2)
|
||||
12 ; first (radix 8) stage loop
|
||||
; do first two (radix 2) stages
|
||||
FIRST_STAGE_RADIX8_ODD dinc, "dinc, LSR #1", bitrev
|
||||
FIRST_STAGE_RADIX8_EVEN dinc, bitrev
|
||||
; third (radix 2) stage
|
||||
LDMFD sp!, {x0r, x0i}
|
||||
ADD $h0r, $h0r, x0r $postldshift ; standard add
|
||||
ADD $h0i, $h0i, x0i $postldshift
|
||||
SUB x0r, $h0r, x0r $postldshift1
|
||||
SUB x0i, $h0i, x0i $postldshift1
|
||||
STORE dptr, #1<<$datalog, $h0r, $h0i
|
||||
LDMFD sp!, {x1r, x1i}
|
||||
ADD $h1r, $h1r, x1r $postmulshift
|
||||
ADD $h1i, $h1i, x1i $postmulshift
|
||||
SUB x1r, $h1r, x1r $postmulshift1
|
||||
SUB x1i, $h1i, x1i $postmulshift1
|
||||
STORE dptr, #1<<$datalog, $h1r, $h1i
|
||||
LDMFD sp!, {x2r, x2i}
|
||||
SUBi $h2r, $h2r, x2r $postldshift ; note that x2r & x2i were
|
||||
ADDi $h2i, $h2i, x2i $postldshift ; swapped above
|
||||
ADDi x2r, $h2r, x2r $postldshift1
|
||||
SUBi x2i, $h2i, x2i $postldshift1
|
||||
STORE dptr, #1<<$datalog, $h2r, $h2i
|
||||
LDMFD sp!, {x3r, x3i}
|
||||
ADD $h3r, $h3r, x3r $postmulshift
|
||||
ADD $h3i, $h3i, x3i $postmulshift
|
||||
SUB x3r, $h3r, x3r $postmulshift1
|
||||
SUB x3i, $h3i, x3i $postmulshift1
|
||||
STORE dptr, #1<<$datalog, $h3r, $h3i
|
||||
STORE dptr, #1<<$datalog, x0r, x0i
|
||||
STORE dptr, #1<<$datalog, x1r, x1i
|
||||
STORE dptr, #1<<$datalog, x2r, x2i
|
||||
STORE dptr, #1<<$datalog, x3r, x3i
|
||||
|
||||
IF reversed
|
||||
SUBS dinc, dinc, #2<<$datalog
|
||||
BGT %BT12
|
||||
ELSE
|
||||
; increment the count in a bit reverse manner
|
||||
EOR bitrev, bitrev, dinc, LSR #($datalog-2+4) ; t0 = (N/8)>>1
|
||||
TST bitrev, dinc, LSR #($datalog-2+4)
|
||||
BNE %BT12
|
||||
; get here for 1/2 the loops - carry to next bit
|
||||
EOR bitrev, bitrev, dinc, LSR #($datalog-2+5)
|
||||
TST bitrev, dinc, LSR #($datalog-2+5)
|
||||
BNE %BT12
|
||||
; get here for 1/4 of the loops - stop unrolling
|
||||
MOV t0, dinc, LSR #($datalog-2+6)
|
||||
15 ; bit reverse increment loop
|
||||
EOR bitrev, bitrev, t0
|
||||
TST bitrev, t0
|
||||
BNE %BT12
|
||||
; get here for 1/8 of the loops (or when finished)
|
||||
MOVS t0, t0, LSR #1 ; move down to next bit
|
||||
BNE %BT15 ; carry on if we haven't run off the bottom
|
||||
ENDIF
|
||||
|
||||
IF "$prescale"<>""
|
||||
LDMFD sp!, {dptr, N, r3}
|
||||
ELSE
|
||||
LDMFD sp!, {dptr, N}
|
||||
ENDIF
|
||||
MOV count, N, LSR #3 ; start with N/8 blocks 8 each
|
||||
MOV dinc, #8<<$datalog ; initial skip is 8 elements
|
||||
MEND
|
||||
|
||||
|
||||
|
||||
MACRO
|
||||
FIRST_STAGE_RADIX8_ODD $dinc, $dinc_lsr1, $bitrev
|
||||
|
||||
IF reversed
|
||||
; load non bit reversed
|
||||
ADD t0, inptr, #4<<$datalog
|
||||
LOADDATAI t0, #1<<$datalog, x0r, x0i
|
||||
LOADDATAI t0, #1<<$datalog, x1r, x1i
|
||||
LOADDATAI t0, #1<<$datalog, x2r, x2i
|
||||
LOADDATAI t0, #1<<$datalog, x3r, x3i
|
||||
ELSE
|
||||
; load data elements 1,3,5,7 into register order 1,5,3,7
|
||||
ADD t0, inptr, $bitrev, LSL #$datalog
|
||||
ADD t0, t0, $dinc_lsr1 ; load in odd terms first
|
||||
LOADDATAI t0, $dinc, x0r, x0i
|
||||
LOADDATAI t0, $dinc, x2r, x2i
|
||||
LOADDATAI t0, $dinc, x1r, x1i
|
||||
LOADDATAI t0, $dinc, x3r, x3i
|
||||
ENDIF
|
||||
|
||||
IF "$prescale"="P"
|
||||
LDR t0, [sp, #8]
|
||||
MOV x0r, x0r, LSL t0
|
||||
MOV x0i, x0i, LSL t0
|
||||
MOV x1r, x1r, LSL t0
|
||||
MOV x1i, x1i, LSL t0
|
||||
MOV x2r, x2r, LSL t0
|
||||
MOV x2i, x2i, LSL t0
|
||||
MOV x3r, x3r, LSL t0
|
||||
MOV x3i, x3i, LSL t0
|
||||
ENDIF
|
||||
|
||||
SETREG h2, x3r, x3i
|
||||
SETREG h3, t0, t1
|
||||
; first stage (radix 2) butterflies
|
||||
ADD x0r, x0r, x1r
|
||||
ADD x0i, x0i, x1i
|
||||
SUB x1r, x0r, x1r, LSL #1
|
||||
SUB x1i, x0i, x1i, LSL #1
|
||||
SUB $h3r, x2r, x3r
|
||||
SUB $h3i, x2i, x3i
|
||||
ADD $h2r, x2r, x3r
|
||||
ADD $h2i, x2i, x3i
|
||||
; second stage (radix 2) butterflies
|
||||
SUB x2i, x0r, $h2r ; swap real and imag here
|
||||
SUB x2r, x0i, $h2i ; for use later
|
||||
ADD x0r, x0r, $h2r
|
||||
ADD x0i, x0i, $h2i
|
||||
ADDi x3r, x1r, $h3i
|
||||
SUBi x3i, x1i, $h3r
|
||||
SUBi x1r, x1r, $h3i
|
||||
ADDi x1i, x1i, $h3r
|
||||
; do the 1/sqrt(2) (+/-1 +/- i) twiddles for third stage
|
||||
LCLS tempname
|
||||
tempname SETS "R_rad8"
|
||||
IMPORT t_$qname$tempname
|
||||
LDR t1, =t_$qname$tempname
|
||||
; IMPORT t_$qname.R_rad8
|
||||
; LDR t1, =t_$qname.R_rad8
|
||||
LOADCOEFR t1, t1
|
||||
|
||||
STMFD sp!, {dinc} ;;; FIXME!!!
|
||||
|
||||
ADD t0, x1r, x1i ; real part when * (1-i)
|
||||
SCALE x1r, t0, t1, dinc ; scale by 1/sqrt(2)
|
||||
RSB t0, t0, x1i, LSL #1 ; imag part when * (1-i)
|
||||
SCALE x1i, t0, t1, dinc ; scale by 1/sqrt(2)
|
||||
SUB t0, x3i, x3r ; real part when * (-1-i)
|
||||
SCALE x3r, t0, t1, dinc ; scale by 1/sqrt(2)
|
||||
SUB t0, t0, x3i, LSL #1 ; imag part when * (-1-i)
|
||||
SCALE x3i, t0, t1, dinc ; scale by 1/sqrt(2)
|
||||
|
||||
LDMFD sp!, {dinc} ;;; FIXME!!!
|
||||
STMFD sp!, {x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i}
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
FIRST_STAGE_RADIX8_EVEN $dinc, $bitrev
|
||||
; load elements 0,2,4,6 into register order 0,4,2,6
|
||||
SETREGS h, x1r, x1i, x2r, x2i, x3r, x3i, t0, t1
|
||||
SETREG g3, x0r, x0i
|
||||
|
||||
IF reversed
|
||||
; load normally
|
||||
LOADDATAI inptr, #1<<$datalog, $h0r, $h0i
|
||||
LOADDATAI inptr, #1<<$datalog, $h1r, $h1i
|
||||
LOADDATAI inptr, #1<<$datalog, $h2r, $h2i
|
||||
LOADDATAI inptr, #1<<$datalog, $h3r, $h3i
|
||||
ADD inptr, inptr, #4<<$datalog
|
||||
ELSE
|
||||
; load bit reversed
|
||||
ADD x0r, inptr, $bitrev, LSL #$datalog
|
||||
LOADDATAI x0r, $dinc, $h0r, $h0i
|
||||
LOADDATAI x0r, $dinc, $h2r, $h2i
|
||||
LOADDATAI x0r, $dinc, $h1r, $h1i
|
||||
LOADDATAI x0r, $dinc, $h3r, $h3i
|
||||
ENDIF
|
||||
|
||||
IF "$prescale"="P"
|
||||
LDR x0r, [sp, #8+32] ; NB we've stacked 8 extra regs!
|
||||
MOV $h0r, $h0r, LSL x0r
|
||||
MOV $h0i, $h0i, LSL x0r
|
||||
MOV $h1r, $h1r, LSL x0r
|
||||
MOV $h1i, $h1i, LSL x0r
|
||||
MOV $h2r, $h2r, LSL x0r
|
||||
MOV $h2i, $h2i, LSL x0r
|
||||
MOV $h3r, $h3r, LSL x0r
|
||||
MOV $h3i, $h3i, LSL x0r
|
||||
ENDIF
|
||||
|
||||
SHIFTDATA $h0r, $h0i
|
||||
; first stage (radix 2) butterflies
|
||||
ADD $h0r, $h0r, $h1r $postldshift
|
||||
ADD $h0i, $h0i, $h1i $postldshift
|
||||
SUB $h1r, $h0r, $h1r $postldshift1
|
||||
SUB $h1i, $h0i, $h1i $postldshift1
|
||||
SUB $g3r, $h2r, $h3r
|
||||
SUB $g3i, $h2i, $h3i
|
||||
ADD $h2r, $h2r, $h3r
|
||||
ADD $h2i, $h2i, $h3i
|
||||
; second stage (radix 2) butterflies
|
||||
ADD $h0r, $h0r, $h2r $postldshift
|
||||
ADD $h0i, $h0i, $h2i $postldshift
|
||||
SUB $h2r, $h0r, $h2r $postldshift1
|
||||
SUB $h2i, $h0i, $h2i $postldshift1
|
||||
ADDi $h3r, $h1r, $g3i $postldshift
|
||||
SUBi $h3i, $h1i, $g3r $postldshift
|
||||
SUBi $h1r, $h1r, $g3i $postldshift
|
||||
ADDi $h1i, $h1i, $g3r $postldshift
|
||||
MEND
|
||||
|
||||
END
|
@ -1,236 +0,0 @@
|
||||
;
|
||||
; $Copyright:
|
||||
; ----------------------------------------------------------------
|
||||
; This confidential and proprietary software may be used only as
|
||||
; authorised by a licensing agreement from ARM Limited
|
||||
; (C) COPYRIGHT 2000,2002 ARM Limited
|
||||
; ALL RIGHTS RESERVED
|
||||
; The entire notice above must be reproduced on all authorised
|
||||
; copies and copies may only be made to the extent permitted
|
||||
; by a licensing agreement from ARM Limited.
|
||||
; ----------------------------------------------------------------
|
||||
; File: fs_rad8.h,v
|
||||
; Revision: 1.5
|
||||
; ----------------------------------------------------------------
|
||||
; $
|
||||
;
|
||||
; Optimised ARM assembler multi-radix FFT
|
||||
; Please read the readme.txt before this file
|
||||
;
|
||||
; This file contains first stage, radix-8 code
|
||||
; It bit reverses (assuming a power of 2 FFT) and performs the first stage
|
||||
;
|
||||
|
||||
MACRO
|
||||
FS_RAD8
|
||||
SETSHIFT postldshift, 3*norm
|
||||
SETSHIFT postmulshift, 3*norm+qshift
|
||||
SETSHIFT postldshift1, 3*norm-1
|
||||
SETSHIFT postmulshift1, 3*norm+qshift-1
|
||||
IF "$prescale"<>""
|
||||
STMFD sp!, {dptr, N, r3}
|
||||
ELSE
|
||||
STMFD sp!, {dptr, N}
|
||||
ENDIF
|
||||
MOV bitrev, #0
|
||||
MOV dinc, N, LSL #($datalog-2)
|
||||
12 ; first (radix 8) stage loop
|
||||
; do first two (radix 2) stages
|
||||
FIRST_STAGE_RADIX8_ODD dinc, "dinc, LSR #1", bitrev
|
||||
FIRST_STAGE_RADIX8_EVEN dinc, bitrev
|
||||
; third (radix 2) stage
|
||||
LDMFD sp!, {x0r, x0i}
|
||||
ADD $h0r, $h0r, x0r $postldshift ; standard add
|
||||
ADD $h0i, $h0i, x0i $postldshift
|
||||
SUB x0r, $h0r, x0r $postldshift1
|
||||
SUB x0i, $h0i, x0i $postldshift1
|
||||
STORE dptr, #1<<$datalog, $h0r, $h0i
|
||||
LDMFD sp!, {x1r, x1i}
|
||||
ADD $h1r, $h1r, x1r $postmulshift
|
||||
ADD $h1i, $h1i, x1i $postmulshift
|
||||
SUB x1r, $h1r, x1r $postmulshift1
|
||||
SUB x1i, $h1i, x1i $postmulshift1
|
||||
STORE dptr, #1<<$datalog, $h1r, $h1i
|
||||
LDMFD sp!, {x2r, x2i}
|
||||
SUBi $h2r, $h2r, x2r $postldshift ; note that x2r & x2i were
|
||||
ADDi $h2i, $h2i, x2i $postldshift ; swapped above
|
||||
ADDi x2r, $h2r, x2r $postldshift1
|
||||
SUBi x2i, $h2i, x2i $postldshift1
|
||||
STORE dptr, #1<<$datalog, $h2r, $h2i
|
||||
LDMFD sp!, {x3r, x3i}
|
||||
ADD $h3r, $h3r, x3r $postmulshift
|
||||
ADD $h3i, $h3i, x3i $postmulshift
|
||||
SUB x3r, $h3r, x3r $postmulshift1
|
||||
SUB x3i, $h3i, x3i $postmulshift1
|
||||
STORE dptr, #1<<$datalog, $h3r, $h3i
|
||||
STORE dptr, #1<<$datalog, x0r, x0i
|
||||
STORE dptr, #1<<$datalog, x1r, x1i
|
||||
STORE dptr, #1<<$datalog, x2r, x2i
|
||||
STORE dptr, #1<<$datalog, x3r, x3i
|
||||
|
||||
IF reversed
|
||||
SUBS dinc, dinc, #2<<$datalog
|
||||
BGT %BT12
|
||||
ELSE
|
||||
; increment the count in a bit reverse manner
|
||||
EOR bitrev, bitrev, dinc, LSR #($datalog-2+4) ; t0 = (N/8)>>1
|
||||
TST bitrev, dinc, LSR #($datalog-2+4)
|
||||
BNE %BT12
|
||||
; get here for 1/2 the loops - carry to next bit
|
||||
EOR bitrev, bitrev, dinc, LSR #($datalog-2+5)
|
||||
TST bitrev, dinc, LSR #($datalog-2+5)
|
||||
BNE %BT12
|
||||
; get here for 1/4 of the loops - stop unrolling
|
||||
MOV t0, dinc, LSR #($datalog-2+6)
|
||||
15 ; bit reverse increment loop
|
||||
EOR bitrev, bitrev, t0
|
||||
TST bitrev, t0
|
||||
BNE %BT12
|
||||
; get here for 1/8 of the loops (or when finished)
|
||||
MOVS t0, t0, LSR #1 ; move down to next bit
|
||||
BNE %BT15 ; carry on if we haven't run off the bottom
|
||||
ENDIF
|
||||
|
||||
IF "$prescale"<>""
|
||||
LDMFD sp!, {dptr, N, r3}
|
||||
ELSE
|
||||
LDMFD sp!, {dptr, N}
|
||||
ENDIF
|
||||
MOV count, N, LSR #3 ; start with N/8 blocks 8 each
|
||||
MOV dinc, #8<<$datalog ; initial skip is 8 elements
|
||||
MEND
|
||||
|
||||
|
||||
|
||||
MACRO
|
||||
FIRST_STAGE_RADIX8_ODD $dinc, $dinc_lsr1, $bitrev
|
||||
|
||||
IF reversed
|
||||
; load non bit reversed
|
||||
ADD t0, inptr, #4<<$datalog
|
||||
LOADDATAI t0, #1<<$datalog, x0r, x0i
|
||||
LOADDATAI t0, #1<<$datalog, x1r, x1i
|
||||
LOADDATAI t0, #1<<$datalog, x2r, x2i
|
||||
LOADDATAI t0, #1<<$datalog, x3r, x3i
|
||||
ELSE
|
||||
; load data elements 1,3,5,7 into register order 1,5,3,7
|
||||
ADD t0, inptr, $bitrev, LSL #$datalog
|
||||
ADD t0, t0, $dinc_lsr1 ; load in odd terms first
|
||||
LOADDATAI t0, $dinc, x0r, x0i
|
||||
LOADDATAI t0, $dinc, x2r, x2i
|
||||
LOADDATAI t0, $dinc, x1r, x1i
|
||||
LOADDATAI t0, $dinc, x3r, x3i
|
||||
ENDIF
|
||||
|
||||
IF "$prescale"="P"
|
||||
LDR t0, [sp, #8]
|
||||
MOV x0r, x0r, LSL t0
|
||||
MOV x0i, x0i, LSL t0
|
||||
MOV x1r, x1r, LSL t0
|
||||
MOV x1i, x1i, LSL t0
|
||||
MOV x2r, x2r, LSL t0
|
||||
MOV x2i, x2i, LSL t0
|
||||
MOV x3r, x3r, LSL t0
|
||||
MOV x3i, x3i, LSL t0
|
||||
ENDIF
|
||||
|
||||
SETREG h2, x3r, x3i
|
||||
SETREG h3, t0, t1
|
||||
; first stage (radix 2) butterflies
|
||||
ADD x0r, x0r, x1r
|
||||
ADD x0i, x0i, x1i
|
||||
SUB x1r, x0r, x1r, LSL #1
|
||||
SUB x1i, x0i, x1i, LSL #1
|
||||
SUB $h3r, x2r, x3r
|
||||
SUB $h3i, x2i, x3i
|
||||
ADD $h2r, x2r, x3r
|
||||
ADD $h2i, x2i, x3i
|
||||
; second stage (radix 2) butterflies
|
||||
SUB x2i, x0r, $h2r ; swap real and imag here
|
||||
SUB x2r, x0i, $h2i ; for use later
|
||||
ADD x0r, x0r, $h2r
|
||||
ADD x0i, x0i, $h2i
|
||||
ADDi x3r, x1r, $h3i
|
||||
SUBi x3i, x1i, $h3r
|
||||
SUBi x1r, x1r, $h3i
|
||||
ADDi x1i, x1i, $h3r
|
||||
; do the 1/sqrt(2) (+/-1 +/- i) twiddles for third stage
|
||||
LCLS tempname
|
||||
tempname SETS "R_rad8"
|
||||
IMPORT t_$qname$tempname
|
||||
LDR t1, =t_$qname$tempname
|
||||
; IMPORT t_$qname.R_rad8
|
||||
; LDR t1, =t_$qname.R_rad8
|
||||
LOADCOEFR t1, t1
|
||||
|
||||
STMFD sp!, {dinc} ;;; FIXME!!!
|
||||
|
||||
SUB t0, x1r, x1i ; real part when * (1+i)
|
||||
SCALE x1r, t0, t1, dinc ; scale by 1/sqrt(2)
|
||||
ADD t0, t0, x1i, LSL #1 ; imag part when * (1+i)
|
||||
SCALE x1i, t0, t1, dinc ; scale by 1/sqrt(2)
|
||||
SUB t0, x3r, x3i ; imag part when * (-1+i)
|
||||
SCALE x3i, t0, t1, dinc ; scale by 1/sqrt(2)
|
||||
SUB t0, t0, x3r, LSL #1 ; real part when * (-1+i)
|
||||
SCALE x3r, t0, t1, dinc ; scale by 1/sqrt(2)
|
||||
|
||||
LDMFD sp!, {dinc} ;;; FIXME!!!
|
||||
STMFD sp!, {x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i}
|
||||
MEND
|
||||
|
||||
MACRO
|
||||
FIRST_STAGE_RADIX8_EVEN $dinc, $bitrev
|
||||
; load elements 0,2,4,6 into register order 0,4,2,6
|
||||
SETREGS h, x1r, x1i, x2r, x2i, x3r, x3i, t0, t1
|
||||
SETREG g3, x0r, x0i
|
||||
|
||||
IF reversed
|
||||
; load normally
|
||||
LOADDATAI inptr, #1<<$datalog, $h0r, $h0i
|
||||
LOADDATAI inptr, #1<<$datalog, $h1r, $h1i
|
||||
LOADDATAI inptr, #1<<$datalog, $h2r, $h2i
|
||||
LOADDATAI inptr, #1<<$datalog, $h3r, $h3i
|
||||
ADD inptr, inptr, #4<<$datalog
|
||||
ELSE
|
||||
; load bit reversed
|
||||
ADD x0r, inptr, $bitrev, LSL #$datalog
|
||||
LOADDATAI x0r, $dinc, $h0r, $h0i
|
||||
LOADDATAI x0r, $dinc, $h2r, $h2i
|
||||
LOADDATAI x0r, $dinc, $h1r, $h1i
|
||||
LOADDATAI x0r, $dinc, $h3r, $h3i
|
||||
ENDIF
|
||||
|
||||
IF "$prescale"="P"
|
||||
LDR x0r, [sp, #8+32] ; NB we've stacked 8 extra regs!
|
||||
MOV $h0r, $h0r, LSL x0r
|
||||
MOV $h0i, $h0i, LSL x0r
|
||||
MOV $h1r, $h1r, LSL x0r
|
||||
MOV $h1i, $h1i, LSL x0r
|
||||
MOV $h2r, $h2r, LSL x0r
|
||||
MOV $h2i, $h2i, LSL x0r
|
||||
MOV $h3r, $h3r, LSL x0r
|
||||
MOV $h3i, $h3i, LSL x0r
|
||||
ENDIF
|
||||
|
||||
SHIFTDATA $h0r, $h0i
|
||||
; first stage (radix 2) butterflies
|
||||
ADD $h0r, $h0r, $h1r $postldshift
|
||||
ADD $h0i, $h0i, $h1i $postldshift
|
||||
SUB $h1r, $h0r, $h1r $postldshift1
|
||||
SUB $h1i, $h0i, $h1i $postldshift1
|
||||
SUB $g3r, $h2r, $h3r
|
||||
SUB $g3i, $h2i, $h3i
|
||||
ADD $h2r, $h2r, $h3r
|
||||
ADD $h2i, $h2i, $h3i
|
||||
; second stage (radix 2) butterflies
|
||||
ADD $h0r, $h0r, $h2r $postldshift
|
||||
ADD $h0i, $h0i, $h2i $postldshift
|
||||
SUB $h2r, $h0r, $h2r $postldshift1
|
||||
SUB $h2i, $h0i, $h2i $postldshift1
|
||||
ADDi $h3r, $h1r, $g3i $postldshift
|
||||
SUBi $h3i, $h1i, $g3r $postldshift
|
||||
SUBi $h1r, $h1r, $g3i $postldshift
|
||||
ADDi $h1i, $h1i, $g3r $postldshift
|
||||
MEND
|
||||
|
||||
END
|
@ -1,111 +0,0 @@
|
||||
;
|
||||
; $Copyright:
|
||||
; ----------------------------------------------------------------
|
||||
; This confidential and proprietary software may be used only as
|
||||
; authorised by a licensing agreement from ARM Limited
|
||||
; (C) COPYRIGHT 2000,2002 ARM Limited
|
||||
; ALL RIGHTS RESERVED
|
||||
; The entire notice above must be reproduced on all authorised
|
||||
; copies and copies may only be made to the extent permitted
|
||||
; by a licensing agreement from ARM Limited.
|
||||
; ----------------------------------------------------------------
|
||||
; File: gs_rad4.h,v
|
||||
; Revision: 1.8
|
||||
; ----------------------------------------------------------------
|
||||
; $
|
||||
;
|
||||
; Optimised ARM assembler multi-radix FFT
|
||||
; Please read the readme.txt before this file
|
||||
;
|
||||
; This file contains the general stage, radix 4 macro
|
||||
|
||||
MACRO
|
||||
GS_RAD4
|
||||
SETSHIFT postldshift, 2*norm
|
||||
SETSHIFT postmulshift, 2*norm+qshift
|
||||
; dinc contains the number of bytes between the values to read
|
||||
; for the radix 4 bufferfly
|
||||
; Thus:
|
||||
; dinc*4 = number of bytes between the blocks at this level
|
||||
; dinc>>datalog = number of elements in each block at this level
|
||||
MOV count, count, LSR #2 ; a quarter the blocks per stage
|
||||
STMFD sp!, {dptr, count}
|
||||
ADD t0, dinc, dinc, LSL #1 ; 3*dinc
|
||||
ADD dptr, dptr, t0 ; move to last of 4 butterflys
|
||||
SUB count, count, #1<<16 ; prepare top half of counter
|
||||
12 ; block loop
|
||||
; set top half of counter to (elements/block - 1)
|
||||
ADD count, count, dinc, LSL #(16-$datalog)
|
||||
15 ; butterfly loop
|
||||
IF (architecture>=5):LAND:(qshift<16)
|
||||
; E extensions available (21 cycles)
|
||||
; But needs a different table format
|
||||
LDMIA cptr!, {x0i, x1i, x2i}
|
||||
LDR x2r, [dptr], -dinc
|
||||
LDR x1r, [dptr], -dinc
|
||||
LDR x0r, [dptr], -dinc
|
||||
TWIDDLE_E x3r, x3i, x2i, t0, x2r
|
||||
TWIDDLE_E x2r, x2i, x1i, t0, x1r
|
||||
TWIDDLE_E x1r, x1i, x0i, t0, x0r
|
||||
ELSE
|
||||
; load next three twiddle factors (66 @ 4 cycles/mul)
|
||||
LOADCOEFS cptr, x1r, x1i, x2r, x2i, x3r, x3i
|
||||
; load data in reversed order & perform twiddles
|
||||
LOADDATA dptr, -dinc, x0r, x0i
|
||||
TWIDDLE x0r, x0i, x3r, x3i, t0, t1
|
||||
LOADDATA dptr, -dinc, x0r, x0i
|
||||
TWIDDLE x0r, x0i, x2r, x2i, t0, t1
|
||||
LOADDATA dptr, -dinc, x0r, x0i
|
||||
TWIDDLE x0r, x0i, x1r, x1i, t0, t1
|
||||
ENDIF
|
||||
LOADDATAZ dptr, x0r, x0i
|
||||
SHIFTDATA x0r, x0i
|
||||
; now calculate the h's
|
||||
; h[0,k] = g[0,k] + g[2,k]
|
||||
; h[1,k] = g[0,k] - g[2,k]
|
||||
; h[2,k] = g[1,k] + g[3,k]
|
||||
; h[3,k] = g[1,k] - g[3,k]
|
||||
SETREGS h,t0,t1,x0r,x0i,x1r,x1i,x2r,x2i
|
||||
ADD $h0r, x0r, x1r $postmulshift
|
||||
ADD $h0i, x0i, x1i $postmulshift
|
||||
SUB $h1r, x0r, x1r $postmulshift
|
||||
SUB $h1i, x0i, x1i $postmulshift
|
||||
ADD $h2r, x2r, x3r
|
||||
ADD $h2i, x2i, x3i
|
||||
SUB $h3r, x2r, x3r
|
||||
SUB $h3i, x2i, x3i
|
||||
; now calculate the y's and store results
|
||||
; y[0*N/4+k] = h[0,k] + h[2,k]
|
||||
; y[1*N/4+k] = h[1,k] + j*h[3,k]
|
||||
; y[2*N/4+k] = h[0,k] - h[2,k]
|
||||
; y[3*N/4+k] = h[1,k] - j*h[3,k]
|
||||
SETREG y0,x3r,x3i
|
||||
ADD $y0r, $h0r, $h2r $postmulshift
|
||||
ADD $y0i, $h0i, $h2i $postmulshift
|
||||
STORE dptr, dinc, $y0r, $y0i
|
||||
SUBi $y0r, $h1r, $h3i $postmulshift
|
||||
ADDi $y0i, $h1i, $h3r $postmulshift
|
||||
STORE dptr, dinc, $y0r, $y0i
|
||||
SUB $y0r, $h0r, $h2r $postmulshift
|
||||
SUB $y0i, $h0i, $h2i $postmulshift
|
||||
STORE dptr, dinc, $y0r, $y0i
|
||||
ADDi $y0r, $h1r, $h3i $postmulshift
|
||||
SUBi $y0i, $h1i, $h3r $postmulshift
|
||||
STOREP dptr, $y0r, $y0i
|
||||
; continue butterfly loop
|
||||
SUBS count, count, #1<<16
|
||||
BGE %BT15
|
||||
; decrement counts for block loop
|
||||
ADD t0, dinc, dinc, LSL #1 ; dinc * 3
|
||||
ADD dptr, dptr, t0 ; move onto next block
|
||||
SUB cptr, cptr, t0 $cdshift ; move back to coeficients start
|
||||
SUB count, count, #1 ; done one more block
|
||||
MOVS t1, count, LSL #16
|
||||
BNE %BT12 ; still more blocks to do
|
||||
; finished stage
|
||||
ADD cptr, cptr, t0 $cdshift ; move onto next stage coeficients
|
||||
LDMFD sp!, {dptr, count}
|
||||
MOV dinc, dinc, LSL #2 ; four times the entries per block
|
||||
MEND
|
||||
|
||||
END
|
@ -1,91 +0,0 @@
|
||||
# $Copyright:
|
||||
# ----------------------------------------------------------------
|
||||
# This confidential and proprietary software may be used only as
|
||||
# authorised by a licensing agreement from ARM Limited
|
||||
# (C) COPYRIGHT 2000,2002 ARM Limited
|
||||
# ALL RIGHTS RESERVED
|
||||
# The entire notice above must be reproduced on all authorised
|
||||
# copies and copies may only be made to the extent permitted
|
||||
# by a licensing agreement from ARM Limited.
|
||||
# ----------------------------------------------------------------
|
||||
# File: readme.txt,v
|
||||
# Revision: 1.4
|
||||
# ----------------------------------------------------------------
|
||||
# $
|
||||
|
||||
|
||||
|
||||
!!! To fully understand the FFT/ARM9E/WIN_MOB implementation in SPLIB,
|
||||
!!! you have to refer to the full set of files in RVDS' package:
|
||||
!!! C:\Program Files\ARM\RVDS\Examples\3.0\79\windows\fft_v5te.
|
||||
|
||||
|
||||
|
||||
ARM Assembler FFT implementation
|
||||
================================
|
||||
|
||||
Overview
|
||||
========
|
||||
|
||||
This implementation has been restructured to allow FFT's of varying radix
|
||||
rather than the fixed radix-2 or radix-4 versions allowed earlier. The
|
||||
implementation of an optimised assembler FFT of a given size (N points)
|
||||
consists of chaining together a sequence of stages 1,2,3,...,k such that the
|
||||
j'th stage has radix Rj and:
|
||||
|
||||
N = R1*R2*R3*...*Rk
|
||||
|
||||
For the ARM implementations we keep the size of the Rj's decreasing with
|
||||
increasing j, EXCEPT that if there are any non power of 2 factors (ie, odd
|
||||
prime factors) then these come before all the power of 2 factors.
|
||||
|
||||
For example:
|
||||
|
||||
N=64 would be implemented as stages:
|
||||
radix 4, radix 4, radix 4
|
||||
|
||||
N=128 would be implemented as stages:
|
||||
radix 8, radix 4, radix 4
|
||||
OR
|
||||
radix 4, radix 4, radix 4, radix 2
|
||||
|
||||
N=192 would be implemented as stages:
|
||||
radix 3, radix 4, radix 4, radix 4
|
||||
|
||||
The bitreversal is usally combined with the first stage where possible.
|
||||
|
||||
|
||||
Structure
|
||||
=========
|
||||
|
||||
The actual FFT routine is built out of a hierarchy of macros. All stage
|
||||
macros and filenames are one of:
|
||||
|
||||
fs_rad<n> => the macro implements a radix <n> First Stage (usually
|
||||
including the bit reversal)
|
||||
|
||||
gs_rad<n> => the macro implements a radix <n> General Stage (any
|
||||
stage except the first - includes the twiddle operations)
|
||||
|
||||
ls_rad<n> => the macro implements a radix <n> Last Stage (this macro
|
||||
is like the gs_rad<n> version but is optimised for
|
||||
efficiency in the last stage)
|
||||
|
||||
ls_ztor => this macro converts the output of a complex FFT to
|
||||
be the first half of the output of a real FFT of
|
||||
double the number of input points.
|
||||
|
||||
Other files are:
|
||||
|
||||
fft_mac.h => Macro's and register definitions shared by all radix
|
||||
implementations
|
||||
|
||||
fft_main.h => Main FFT macros drawing together the stage macros
|
||||
to produce a complete FFT
|
||||
|
||||
|
||||
Interfaces
|
||||
==========
|
||||
|
||||
The register interfaces for the different type of stage macros are described
|
||||
at the start of fft_mac.h
|
@ -1,695 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) ARM Limited 1998-2002. All rights reserved.
|
||||
*
|
||||
* t_01024_8.c
|
||||
*
|
||||
*/
|
||||
|
||||
extern const int s_Q14S_8;
|
||||
const int s_Q14S_8 = 1024;
|
||||
extern const unsigned short t_Q14S_8[2032];
|
||||
const unsigned short t_Q14S_8[2032] = {
|
||||
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
|
||||
0x22a3,0x187e ,0x3249,0x0c7c ,0x11a8,0x238e ,
|
||||
0x0000,0x2d41 ,0x22a3,0x187e ,0xdd5d,0x3b21 ,
|
||||
0xdd5d,0x3b21 ,0x11a8,0x238e ,0xb4be,0x3ec5 ,
|
||||
0xc000,0x4000 ,0x0000,0x2d41 ,0xa57e,0x2d41 ,
|
||||
0xac61,0x3b21 ,0xee58,0x3537 ,0xb4be,0x0c7c ,
|
||||
0xa57e,0x2d41 ,0xdd5d,0x3b21 ,0xdd5d,0xe782 ,
|
||||
0xac61,0x187e ,0xcdb7,0x3ec5 ,0x11a8,0xcac9 ,
|
||||
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
|
||||
0x396b,0x0646 ,0x3cc8,0x0324 ,0x35eb,0x0964 ,
|
||||
0x3249,0x0c7c ,0x396b,0x0646 ,0x2aaa,0x1294 ,
|
||||
0x2aaa,0x1294 ,0x35eb,0x0964 ,0x1e7e,0x1b5d ,
|
||||
0x22a3,0x187e ,0x3249,0x0c7c ,0x11a8,0x238e ,
|
||||
0x1a46,0x1e2b ,0x2e88,0x0f8d ,0x0471,0x2afb ,
|
||||
0x11a8,0x238e ,0x2aaa,0x1294 ,0xf721,0x3179 ,
|
||||
0x08df,0x289a ,0x26b3,0x1590 ,0xea02,0x36e5 ,
|
||||
0x0000,0x2d41 ,0x22a3,0x187e ,0xdd5d,0x3b21 ,
|
||||
0xf721,0x3179 ,0x1e7e,0x1b5d ,0xd178,0x3e15 ,
|
||||
0xee58,0x3537 ,0x1a46,0x1e2b ,0xc695,0x3fb1 ,
|
||||
0xe5ba,0x3871 ,0x15fe,0x20e7 ,0xbcf0,0x3fec ,
|
||||
0xdd5d,0x3b21 ,0x11a8,0x238e ,0xb4be,0x3ec5 ,
|
||||
0xd556,0x3d3f ,0x0d48,0x2620 ,0xae2e,0x3c42 ,
|
||||
0xcdb7,0x3ec5 ,0x08df,0x289a ,0xa963,0x3871 ,
|
||||
0xc695,0x3fb1 ,0x0471,0x2afb ,0xa678,0x3368 ,
|
||||
0xc000,0x4000 ,0x0000,0x2d41 ,0xa57e,0x2d41 ,
|
||||
0xba09,0x3fb1 ,0xfb8f,0x2f6c ,0xa678,0x2620 ,
|
||||
0xb4be,0x3ec5 ,0xf721,0x3179 ,0xa963,0x1e2b ,
|
||||
0xb02d,0x3d3f ,0xf2b8,0x3368 ,0xae2e,0x1590 ,
|
||||
0xac61,0x3b21 ,0xee58,0x3537 ,0xb4be,0x0c7c ,
|
||||
0xa963,0x3871 ,0xea02,0x36e5 ,0xbcf0,0x0324 ,
|
||||
0xa73b,0x3537 ,0xe5ba,0x3871 ,0xc695,0xf9ba ,
|
||||
0xa5ed,0x3179 ,0xe182,0x39db ,0xd178,0xf073 ,
|
||||
0xa57e,0x2d41 ,0xdd5d,0x3b21 ,0xdd5d,0xe782 ,
|
||||
0xa5ed,0x289a ,0xd94d,0x3c42 ,0xea02,0xdf19 ,
|
||||
0xa73b,0x238e ,0xd556,0x3d3f ,0xf721,0xd766 ,
|
||||
0xa963,0x1e2b ,0xd178,0x3e15 ,0x0471,0xd094 ,
|
||||
0xac61,0x187e ,0xcdb7,0x3ec5 ,0x11a8,0xcac9 ,
|
||||
0xb02d,0x1294 ,0xca15,0x3f4f ,0x1e7e,0xc625 ,
|
||||
0xb4be,0x0c7c ,0xc695,0x3fb1 ,0x2aaa,0xc2c1 ,
|
||||
0xba09,0x0646 ,0xc338,0x3fec ,0x35eb,0xc0b1 ,
|
||||
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
|
||||
0x3e69,0x0192 ,0x3f36,0x00c9 ,0x3d9a,0x025b ,
|
||||
0x3cc8,0x0324 ,0x3e69,0x0192 ,0x3b1e,0x04b5 ,
|
||||
0x3b1e,0x04b5 ,0x3d9a,0x025b ,0x388e,0x070e ,
|
||||
0x396b,0x0646 ,0x3cc8,0x0324 ,0x35eb,0x0964 ,
|
||||
0x37af,0x07d6 ,0x3bf4,0x03ed ,0x3334,0x0bb7 ,
|
||||
0x35eb,0x0964 ,0x3b1e,0x04b5 ,0x306c,0x0e06 ,
|
||||
0x341e,0x0af1 ,0x3a46,0x057e ,0x2d93,0x1050 ,
|
||||
0x3249,0x0c7c ,0x396b,0x0646 ,0x2aaa,0x1294 ,
|
||||
0x306c,0x0e06 ,0x388e,0x070e ,0x27b3,0x14d2 ,
|
||||
0x2e88,0x0f8d ,0x37af,0x07d6 ,0x24ae,0x1709 ,
|
||||
0x2c9d,0x1112 ,0x36ce,0x089d ,0x219c,0x1937 ,
|
||||
0x2aaa,0x1294 ,0x35eb,0x0964 ,0x1e7e,0x1b5d ,
|
||||
0x28b2,0x1413 ,0x3505,0x0a2b ,0x1b56,0x1d79 ,
|
||||
0x26b3,0x1590 ,0x341e,0x0af1 ,0x1824,0x1f8c ,
|
||||
0x24ae,0x1709 ,0x3334,0x0bb7 ,0x14ea,0x2193 ,
|
||||
0x22a3,0x187e ,0x3249,0x0c7c ,0x11a8,0x238e ,
|
||||
0x2093,0x19ef ,0x315b,0x0d41 ,0x0e61,0x257e ,
|
||||
0x1e7e,0x1b5d ,0x306c,0x0e06 ,0x0b14,0x2760 ,
|
||||
0x1c64,0x1cc6 ,0x2f7b,0x0eca ,0x07c4,0x2935 ,
|
||||
0x1a46,0x1e2b ,0x2e88,0x0f8d ,0x0471,0x2afb ,
|
||||
0x1824,0x1f8c ,0x2d93,0x1050 ,0x011c,0x2cb2 ,
|
||||
0x15fe,0x20e7 ,0x2c9d,0x1112 ,0xfdc7,0x2e5a ,
|
||||
0x13d5,0x223d ,0x2ba4,0x11d3 ,0xfa73,0x2ff2 ,
|
||||
0x11a8,0x238e ,0x2aaa,0x1294 ,0xf721,0x3179 ,
|
||||
0x0f79,0x24da ,0x29af,0x1354 ,0xf3d2,0x32ef ,
|
||||
0x0d48,0x2620 ,0x28b2,0x1413 ,0xf087,0x3453 ,
|
||||
0x0b14,0x2760 ,0x27b3,0x14d2 ,0xed41,0x35a5 ,
|
||||
0x08df,0x289a ,0x26b3,0x1590 ,0xea02,0x36e5 ,
|
||||
0x06a9,0x29ce ,0x25b1,0x164c ,0xe6cb,0x3812 ,
|
||||
0x0471,0x2afb ,0x24ae,0x1709 ,0xe39c,0x392b ,
|
||||
0x0239,0x2c21 ,0x23a9,0x17c4 ,0xe077,0x3a30 ,
|
||||
0x0000,0x2d41 ,0x22a3,0x187e ,0xdd5d,0x3b21 ,
|
||||
0xfdc7,0x2e5a ,0x219c,0x1937 ,0xda4f,0x3bfd ,
|
||||
0xfb8f,0x2f6c ,0x2093,0x19ef ,0xd74e,0x3cc5 ,
|
||||
0xf957,0x3076 ,0x1f89,0x1aa7 ,0xd45c,0x3d78 ,
|
||||
0xf721,0x3179 ,0x1e7e,0x1b5d ,0xd178,0x3e15 ,
|
||||
0xf4ec,0x3274 ,0x1d72,0x1c12 ,0xcea5,0x3e9d ,
|
||||
0xf2b8,0x3368 ,0x1c64,0x1cc6 ,0xcbe2,0x3f0f ,
|
||||
0xf087,0x3453 ,0x1b56,0x1d79 ,0xc932,0x3f6b ,
|
||||
0xee58,0x3537 ,0x1a46,0x1e2b ,0xc695,0x3fb1 ,
|
||||
0xec2b,0x3612 ,0x1935,0x1edc ,0xc40c,0x3fe1 ,
|
||||
0xea02,0x36e5 ,0x1824,0x1f8c ,0xc197,0x3ffb ,
|
||||
0xe7dc,0x37b0 ,0x1711,0x203a ,0xbf38,0x3fff ,
|
||||
0xe5ba,0x3871 ,0x15fe,0x20e7 ,0xbcf0,0x3fec ,
|
||||
0xe39c,0x392b ,0x14ea,0x2193 ,0xbabf,0x3fc4 ,
|
||||
0xe182,0x39db ,0x13d5,0x223d ,0xb8a6,0x3f85 ,
|
||||
0xdf6d,0x3a82 ,0x12bf,0x22e7 ,0xb6a5,0x3f30 ,
|
||||
0xdd5d,0x3b21 ,0x11a8,0x238e ,0xb4be,0x3ec5 ,
|
||||
0xdb52,0x3bb6 ,0x1091,0x2435 ,0xb2f2,0x3e45 ,
|
||||
0xd94d,0x3c42 ,0x0f79,0x24da ,0xb140,0x3daf ,
|
||||
0xd74e,0x3cc5 ,0x0e61,0x257e ,0xafa9,0x3d03 ,
|
||||
0xd556,0x3d3f ,0x0d48,0x2620 ,0xae2e,0x3c42 ,
|
||||
0xd363,0x3daf ,0x0c2e,0x26c1 ,0xacd0,0x3b6d ,
|
||||
0xd178,0x3e15 ,0x0b14,0x2760 ,0xab8e,0x3a82 ,
|
||||
0xcf94,0x3e72 ,0x09fa,0x27fe ,0xaa6a,0x3984 ,
|
||||
0xcdb7,0x3ec5 ,0x08df,0x289a ,0xa963,0x3871 ,
|
||||
0xcbe2,0x3f0f ,0x07c4,0x2935 ,0xa87b,0x374b ,
|
||||
0xca15,0x3f4f ,0x06a9,0x29ce ,0xa7b1,0x3612 ,
|
||||
0xc851,0x3f85 ,0x058d,0x2a65 ,0xa705,0x34c6 ,
|
||||
0xc695,0x3fb1 ,0x0471,0x2afb ,0xa678,0x3368 ,
|
||||
0xc4e2,0x3fd4 ,0x0355,0x2b8f ,0xa60b,0x31f8 ,
|
||||
0xc338,0x3fec ,0x0239,0x2c21 ,0xa5bc,0x3076 ,
|
||||
0xc197,0x3ffb ,0x011c,0x2cb2 ,0xa58d,0x2ee4 ,
|
||||
0xc000,0x4000 ,0x0000,0x2d41 ,0xa57e,0x2d41 ,
|
||||
0xbe73,0x3ffb ,0xfee4,0x2dcf ,0xa58d,0x2b8f ,
|
||||
0xbcf0,0x3fec ,0xfdc7,0x2e5a ,0xa5bc,0x29ce ,
|
||||
0xbb77,0x3fd4 ,0xfcab,0x2ee4 ,0xa60b,0x27fe ,
|
||||
0xba09,0x3fb1 ,0xfb8f,0x2f6c ,0xa678,0x2620 ,
|
||||
0xb8a6,0x3f85 ,0xfa73,0x2ff2 ,0xa705,0x2435 ,
|
||||
0xb74d,0x3f4f ,0xf957,0x3076 ,0xa7b1,0x223d ,
|
||||
0xb600,0x3f0f ,0xf83c,0x30f9 ,0xa87b,0x203a ,
|
||||
0xb4be,0x3ec5 ,0xf721,0x3179 ,0xa963,0x1e2b ,
|
||||
0xb388,0x3e72 ,0xf606,0x31f8 ,0xaa6a,0x1c12 ,
|
||||
0xb25e,0x3e15 ,0xf4ec,0x3274 ,0xab8e,0x19ef ,
|
||||
0xb140,0x3daf ,0xf3d2,0x32ef ,0xacd0,0x17c4 ,
|
||||
0xb02d,0x3d3f ,0xf2b8,0x3368 ,0xae2e,0x1590 ,
|
||||
0xaf28,0x3cc5 ,0xf19f,0x33df ,0xafa9,0x1354 ,
|
||||
0xae2e,0x3c42 ,0xf087,0x3453 ,0xb140,0x1112 ,
|
||||
0xad41,0x3bb6 ,0xef6f,0x34c6 ,0xb2f2,0x0eca ,
|
||||
0xac61,0x3b21 ,0xee58,0x3537 ,0xb4be,0x0c7c ,
|
||||
0xab8e,0x3a82 ,0xed41,0x35a5 ,0xb6a5,0x0a2b ,
|
||||
0xaac8,0x39db ,0xec2b,0x3612 ,0xb8a6,0x07d6 ,
|
||||
0xaa0f,0x392b ,0xeb16,0x367d ,0xbabf,0x057e ,
|
||||
0xa963,0x3871 ,0xea02,0x36e5 ,0xbcf0,0x0324 ,
|
||||
0xa8c5,0x37b0 ,0xe8ef,0x374b ,0xbf38,0x00c9 ,
|
||||
0xa834,0x36e5 ,0xe7dc,0x37b0 ,0xc197,0xfe6e ,
|
||||
0xa7b1,0x3612 ,0xe6cb,0x3812 ,0xc40c,0xfc13 ,
|
||||
0xa73b,0x3537 ,0xe5ba,0x3871 ,0xc695,0xf9ba ,
|
||||
0xa6d3,0x3453 ,0xe4aa,0x38cf ,0xc932,0xf763 ,
|
||||
0xa678,0x3368 ,0xe39c,0x392b ,0xcbe2,0xf50f ,
|
||||
0xa62c,0x3274 ,0xe28e,0x3984 ,0xcea5,0xf2bf ,
|
||||
0xa5ed,0x3179 ,0xe182,0x39db ,0xd178,0xf073 ,
|
||||
0xa5bc,0x3076 ,0xe077,0x3a30 ,0xd45c,0xee2d ,
|
||||
0xa599,0x2f6c ,0xdf6d,0x3a82 ,0xd74e,0xebed ,
|
||||
0xa585,0x2e5a ,0xde64,0x3ad3 ,0xda4f,0xe9b4 ,
|
||||
0xa57e,0x2d41 ,0xdd5d,0x3b21 ,0xdd5d,0xe782 ,
|
||||
0xa585,0x2c21 ,0xdc57,0x3b6d ,0xe077,0xe559 ,
|
||||
0xa599,0x2afb ,0xdb52,0x3bb6 ,0xe39c,0xe33a ,
|
||||
0xa5bc,0x29ce ,0xda4f,0x3bfd ,0xe6cb,0xe124 ,
|
||||
0xa5ed,0x289a ,0xd94d,0x3c42 ,0xea02,0xdf19 ,
|
||||
0xa62c,0x2760 ,0xd84d,0x3c85 ,0xed41,0xdd19 ,
|
||||
0xa678,0x2620 ,0xd74e,0x3cc5 ,0xf087,0xdb26 ,
|
||||
0xa6d3,0x24da ,0xd651,0x3d03 ,0xf3d2,0xd93f ,
|
||||
0xa73b,0x238e ,0xd556,0x3d3f ,0xf721,0xd766 ,
|
||||
0xa7b1,0x223d ,0xd45c,0x3d78 ,0xfa73,0xd59b ,
|
||||
0xa834,0x20e7 ,0xd363,0x3daf ,0xfdc7,0xd3df ,
|
||||
0xa8c5,0x1f8c ,0xd26d,0x3de3 ,0x011c,0xd231 ,
|
||||
0xa963,0x1e2b ,0xd178,0x3e15 ,0x0471,0xd094 ,
|
||||
0xaa0f,0x1cc6 ,0xd085,0x3e45 ,0x07c4,0xcf07 ,
|
||||
0xaac8,0x1b5d ,0xcf94,0x3e72 ,0x0b14,0xcd8c ,
|
||||
0xab8e,0x19ef ,0xcea5,0x3e9d ,0x0e61,0xcc21 ,
|
||||
0xac61,0x187e ,0xcdb7,0x3ec5 ,0x11a8,0xcac9 ,
|
||||
0xad41,0x1709 ,0xcccc,0x3eeb ,0x14ea,0xc983 ,
|
||||
0xae2e,0x1590 ,0xcbe2,0x3f0f ,0x1824,0xc850 ,
|
||||
0xaf28,0x1413 ,0xcafb,0x3f30 ,0x1b56,0xc731 ,
|
||||
0xb02d,0x1294 ,0xca15,0x3f4f ,0x1e7e,0xc625 ,
|
||||
0xb140,0x1112 ,0xc932,0x3f6b ,0x219c,0xc52d ,
|
||||
0xb25e,0x0f8d ,0xc851,0x3f85 ,0x24ae,0xc44a ,
|
||||
0xb388,0x0e06 ,0xc772,0x3f9c ,0x27b3,0xc37b ,
|
||||
0xb4be,0x0c7c ,0xc695,0x3fb1 ,0x2aaa,0xc2c1 ,
|
||||
0xb600,0x0af1 ,0xc5ba,0x3fc4 ,0x2d93,0xc21d ,
|
||||
0xb74d,0x0964 ,0xc4e2,0x3fd4 ,0x306c,0xc18e ,
|
||||
0xb8a6,0x07d6 ,0xc40c,0x3fe1 ,0x3334,0xc115 ,
|
||||
0xba09,0x0646 ,0xc338,0x3fec ,0x35eb,0xc0b1 ,
|
||||
0xbb77,0x04b5 ,0xc266,0x3ff5 ,0x388e,0xc064 ,
|
||||
0xbcf0,0x0324 ,0xc197,0x3ffb ,0x3b1e,0xc02c ,
|
||||
0xbe73,0x0192 ,0xc0ca,0x3fff ,0x3d9a,0xc00b ,
|
||||
0x4000,0x0000 ,0x3f9b,0x0065 ,0x3f36,0x00c9 ,
|
||||
0x3ed0,0x012e ,0x3e69,0x0192 ,0x3e02,0x01f7 ,
|
||||
0x3d9a,0x025b ,0x3d31,0x02c0 ,0x3cc8,0x0324 ,
|
||||
0x3c5f,0x0388 ,0x3bf4,0x03ed ,0x3b8a,0x0451 ,
|
||||
0x3b1e,0x04b5 ,0x3ab2,0x051a ,0x3a46,0x057e ,
|
||||
0x39d9,0x05e2 ,0x396b,0x0646 ,0x38fd,0x06aa ,
|
||||
0x388e,0x070e ,0x381f,0x0772 ,0x37af,0x07d6 ,
|
||||
0x373f,0x0839 ,0x36ce,0x089d ,0x365d,0x0901 ,
|
||||
0x35eb,0x0964 ,0x3578,0x09c7 ,0x3505,0x0a2b ,
|
||||
0x3492,0x0a8e ,0x341e,0x0af1 ,0x33a9,0x0b54 ,
|
||||
0x3334,0x0bb7 ,0x32bf,0x0c1a ,0x3249,0x0c7c ,
|
||||
0x31d2,0x0cdf ,0x315b,0x0d41 ,0x30e4,0x0da4 ,
|
||||
0x306c,0x0e06 ,0x2ff4,0x0e68 ,0x2f7b,0x0eca ,
|
||||
0x2f02,0x0f2b ,0x2e88,0x0f8d ,0x2e0e,0x0fee ,
|
||||
0x2d93,0x1050 ,0x2d18,0x10b1 ,0x2c9d,0x1112 ,
|
||||
0x2c21,0x1173 ,0x2ba4,0x11d3 ,0x2b28,0x1234 ,
|
||||
0x2aaa,0x1294 ,0x2a2d,0x12f4 ,0x29af,0x1354 ,
|
||||
0x2931,0x13b4 ,0x28b2,0x1413 ,0x2833,0x1473 ,
|
||||
0x27b3,0x14d2 ,0x2733,0x1531 ,0x26b3,0x1590 ,
|
||||
0x2632,0x15ee ,0x25b1,0x164c ,0x252f,0x16ab ,
|
||||
0x24ae,0x1709 ,0x242b,0x1766 ,0x23a9,0x17c4 ,
|
||||
0x2326,0x1821 ,0x22a3,0x187e ,0x221f,0x18db ,
|
||||
0x219c,0x1937 ,0x2117,0x1993 ,0x2093,0x19ef ,
|
||||
0x200e,0x1a4b ,0x1f89,0x1aa7 ,0x1f04,0x1b02 ,
|
||||
0x1e7e,0x1b5d ,0x1df8,0x1bb8 ,0x1d72,0x1c12 ,
|
||||
0x1ceb,0x1c6c ,0x1c64,0x1cc6 ,0x1bdd,0x1d20 ,
|
||||
0x1b56,0x1d79 ,0x1ace,0x1dd3 ,0x1a46,0x1e2b ,
|
||||
0x19be,0x1e84 ,0x1935,0x1edc ,0x18ad,0x1f34 ,
|
||||
0x1824,0x1f8c ,0x179b,0x1fe3 ,0x1711,0x203a ,
|
||||
0x1688,0x2091 ,0x15fe,0x20e7 ,0x1574,0x213d ,
|
||||
0x14ea,0x2193 ,0x145f,0x21e8 ,0x13d5,0x223d ,
|
||||
0x134a,0x2292 ,0x12bf,0x22e7 ,0x1234,0x233b ,
|
||||
0x11a8,0x238e ,0x111d,0x23e2 ,0x1091,0x2435 ,
|
||||
0x1005,0x2488 ,0x0f79,0x24da ,0x0eed,0x252c ,
|
||||
0x0e61,0x257e ,0x0dd4,0x25cf ,0x0d48,0x2620 ,
|
||||
0x0cbb,0x2671 ,0x0c2e,0x26c1 ,0x0ba1,0x2711 ,
|
||||
0x0b14,0x2760 ,0x0a87,0x27af ,0x09fa,0x27fe ,
|
||||
0x096d,0x284c ,0x08df,0x289a ,0x0852,0x28e7 ,
|
||||
0x07c4,0x2935 ,0x0736,0x2981 ,0x06a9,0x29ce ,
|
||||
0x061b,0x2a1a ,0x058d,0x2a65 ,0x04ff,0x2ab0 ,
|
||||
0x0471,0x2afb ,0x03e3,0x2b45 ,0x0355,0x2b8f ,
|
||||
0x02c7,0x2bd8 ,0x0239,0x2c21 ,0x01aa,0x2c6a ,
|
||||
0x011c,0x2cb2 ,0x008e,0x2cfa ,0x0000,0x2d41 ,
|
||||
0xff72,0x2d88 ,0xfee4,0x2dcf ,0xfe56,0x2e15 ,
|
||||
0xfdc7,0x2e5a ,0xfd39,0x2e9f ,0xfcab,0x2ee4 ,
|
||||
0xfc1d,0x2f28 ,0xfb8f,0x2f6c ,0xfb01,0x2faf ,
|
||||
0xfa73,0x2ff2 ,0xf9e5,0x3034 ,0xf957,0x3076 ,
|
||||
0xf8ca,0x30b8 ,0xf83c,0x30f9 ,0xf7ae,0x3139 ,
|
||||
0xf721,0x3179 ,0xf693,0x31b9 ,0xf606,0x31f8 ,
|
||||
0xf579,0x3236 ,0xf4ec,0x3274 ,0xf45f,0x32b2 ,
|
||||
0xf3d2,0x32ef ,0xf345,0x332c ,0xf2b8,0x3368 ,
|
||||
0xf22c,0x33a3 ,0xf19f,0x33df ,0xf113,0x3419 ,
|
||||
0xf087,0x3453 ,0xeffb,0x348d ,0xef6f,0x34c6 ,
|
||||
0xeee3,0x34ff ,0xee58,0x3537 ,0xedcc,0x356e ,
|
||||
0xed41,0x35a5 ,0xecb6,0x35dc ,0xec2b,0x3612 ,
|
||||
0xeba1,0x3648 ,0xeb16,0x367d ,0xea8c,0x36b1 ,
|
||||
0xea02,0x36e5 ,0xe978,0x3718 ,0xe8ef,0x374b ,
|
||||
0xe865,0x377e ,0xe7dc,0x37b0 ,0xe753,0x37e1 ,
|
||||
0xe6cb,0x3812 ,0xe642,0x3842 ,0xe5ba,0x3871 ,
|
||||
0xe532,0x38a1 ,0xe4aa,0x38cf ,0xe423,0x38fd ,
|
||||
0xe39c,0x392b ,0xe315,0x3958 ,0xe28e,0x3984 ,
|
||||
0xe208,0x39b0 ,0xe182,0x39db ,0xe0fc,0x3a06 ,
|
||||
0xe077,0x3a30 ,0xdff2,0x3a59 ,0xdf6d,0x3a82 ,
|
||||
0xdee9,0x3aab ,0xde64,0x3ad3 ,0xdde1,0x3afa ,
|
||||
0xdd5d,0x3b21 ,0xdcda,0x3b47 ,0xdc57,0x3b6d ,
|
||||
0xdbd5,0x3b92 ,0xdb52,0x3bb6 ,0xdad1,0x3bda ,
|
||||
0xda4f,0x3bfd ,0xd9ce,0x3c20 ,0xd94d,0x3c42 ,
|
||||
0xd8cd,0x3c64 ,0xd84d,0x3c85 ,0xd7cd,0x3ca5 ,
|
||||
0xd74e,0x3cc5 ,0xd6cf,0x3ce4 ,0xd651,0x3d03 ,
|
||||
0xd5d3,0x3d21 ,0xd556,0x3d3f ,0xd4d8,0x3d5b ,
|
||||
0xd45c,0x3d78 ,0xd3df,0x3d93 ,0xd363,0x3daf ,
|
||||
0xd2e8,0x3dc9 ,0xd26d,0x3de3 ,0xd1f2,0x3dfc ,
|
||||
0xd178,0x3e15 ,0xd0fe,0x3e2d ,0xd085,0x3e45 ,
|
||||
0xd00c,0x3e5c ,0xcf94,0x3e72 ,0xcf1c,0x3e88 ,
|
||||
0xcea5,0x3e9d ,0xce2e,0x3eb1 ,0xcdb7,0x3ec5 ,
|
||||
0xcd41,0x3ed8 ,0xcccc,0x3eeb ,0xcc57,0x3efd ,
|
||||
0xcbe2,0x3f0f ,0xcb6e,0x3f20 ,0xcafb,0x3f30 ,
|
||||
0xca88,0x3f40 ,0xca15,0x3f4f ,0xc9a3,0x3f5d ,
|
||||
0xc932,0x3f6b ,0xc8c1,0x3f78 ,0xc851,0x3f85 ,
|
||||
0xc7e1,0x3f91 ,0xc772,0x3f9c ,0xc703,0x3fa7 ,
|
||||
0xc695,0x3fb1 ,0xc627,0x3fbb ,0xc5ba,0x3fc4 ,
|
||||
0xc54e,0x3fcc ,0xc4e2,0x3fd4 ,0xc476,0x3fdb ,
|
||||
0xc40c,0x3fe1 ,0xc3a1,0x3fe7 ,0xc338,0x3fec ,
|
||||
0xc2cf,0x3ff1 ,0xc266,0x3ff5 ,0xc1fe,0x3ff8 ,
|
||||
0xc197,0x3ffb ,0xc130,0x3ffd ,0xc0ca,0x3fff ,
|
||||
0xc065,0x4000 ,0xc000,0x4000 ,0xbf9c,0x4000 ,
|
||||
0xbf38,0x3fff ,0xbed5,0x3ffd ,0xbe73,0x3ffb ,
|
||||
0xbe11,0x3ff8 ,0xbdb0,0x3ff5 ,0xbd50,0x3ff1 ,
|
||||
0xbcf0,0x3fec ,0xbc91,0x3fe7 ,0xbc32,0x3fe1 ,
|
||||
0xbbd4,0x3fdb ,0xbb77,0x3fd4 ,0xbb1b,0x3fcc ,
|
||||
0xbabf,0x3fc4 ,0xba64,0x3fbb ,0xba09,0x3fb1 ,
|
||||
0xb9af,0x3fa7 ,0xb956,0x3f9c ,0xb8fd,0x3f91 ,
|
||||
0xb8a6,0x3f85 ,0xb84f,0x3f78 ,0xb7f8,0x3f6b ,
|
||||
0xb7a2,0x3f5d ,0xb74d,0x3f4f ,0xb6f9,0x3f40 ,
|
||||
0xb6a5,0x3f30 ,0xb652,0x3f20 ,0xb600,0x3f0f ,
|
||||
0xb5af,0x3efd ,0xb55e,0x3eeb ,0xb50e,0x3ed8 ,
|
||||
0xb4be,0x3ec5 ,0xb470,0x3eb1 ,0xb422,0x3e9d ,
|
||||
0xb3d5,0x3e88 ,0xb388,0x3e72 ,0xb33d,0x3e5c ,
|
||||
0xb2f2,0x3e45 ,0xb2a7,0x3e2d ,0xb25e,0x3e15 ,
|
||||
0xb215,0x3dfc ,0xb1cd,0x3de3 ,0xb186,0x3dc9 ,
|
||||
0xb140,0x3daf ,0xb0fa,0x3d93 ,0xb0b5,0x3d78 ,
|
||||
0xb071,0x3d5b ,0xb02d,0x3d3f ,0xafeb,0x3d21 ,
|
||||
0xafa9,0x3d03 ,0xaf68,0x3ce4 ,0xaf28,0x3cc5 ,
|
||||
0xaee8,0x3ca5 ,0xaea9,0x3c85 ,0xae6b,0x3c64 ,
|
||||
0xae2e,0x3c42 ,0xadf2,0x3c20 ,0xadb6,0x3bfd ,
|
||||
0xad7b,0x3bda ,0xad41,0x3bb6 ,0xad08,0x3b92 ,
|
||||
0xacd0,0x3b6d ,0xac98,0x3b47 ,0xac61,0x3b21 ,
|
||||
0xac2b,0x3afa ,0xabf6,0x3ad3 ,0xabc2,0x3aab ,
|
||||
0xab8e,0x3a82 ,0xab5b,0x3a59 ,0xab29,0x3a30 ,
|
||||
0xaaf8,0x3a06 ,0xaac8,0x39db ,0xaa98,0x39b0 ,
|
||||
0xaa6a,0x3984 ,0xaa3c,0x3958 ,0xaa0f,0x392b ,
|
||||
0xa9e3,0x38fd ,0xa9b7,0x38cf ,0xa98d,0x38a1 ,
|
||||
0xa963,0x3871 ,0xa93a,0x3842 ,0xa912,0x3812 ,
|
||||
0xa8eb,0x37e1 ,0xa8c5,0x37b0 ,0xa89f,0x377e ,
|
||||
0xa87b,0x374b ,0xa857,0x3718 ,0xa834,0x36e5 ,
|
||||
0xa812,0x36b1 ,0xa7f1,0x367d ,0xa7d0,0x3648 ,
|
||||
0xa7b1,0x3612 ,0xa792,0x35dc ,0xa774,0x35a5 ,
|
||||
0xa757,0x356e ,0xa73b,0x3537 ,0xa71f,0x34ff ,
|
||||
0xa705,0x34c6 ,0xa6eb,0x348d ,0xa6d3,0x3453 ,
|
||||
0xa6bb,0x3419 ,0xa6a4,0x33df ,0xa68e,0x33a3 ,
|
||||
0xa678,0x3368 ,0xa664,0x332c ,0xa650,0x32ef ,
|
||||
0xa63e,0x32b2 ,0xa62c,0x3274 ,0xa61b,0x3236 ,
|
||||
0xa60b,0x31f8 ,0xa5fb,0x31b9 ,0xa5ed,0x3179 ,
|
||||
0xa5e0,0x3139 ,0xa5d3,0x30f9 ,0xa5c7,0x30b8 ,
|
||||
0xa5bc,0x3076 ,0xa5b2,0x3034 ,0xa5a9,0x2ff2 ,
|
||||
0xa5a1,0x2faf ,0xa599,0x2f6c ,0xa593,0x2f28 ,
|
||||
0xa58d,0x2ee4 ,0xa588,0x2e9f ,0xa585,0x2e5a ,
|
||||
0xa581,0x2e15 ,0xa57f,0x2dcf ,0xa57e,0x2d88 ,
|
||||
0xa57e,0x2d41 ,0xa57e,0x2cfa ,0xa57f,0x2cb2 ,
|
||||
0xa581,0x2c6a ,0xa585,0x2c21 ,0xa588,0x2bd8 ,
|
||||
0xa58d,0x2b8f ,0xa593,0x2b45 ,0xa599,0x2afb ,
|
||||
0xa5a1,0x2ab0 ,0xa5a9,0x2a65 ,0xa5b2,0x2a1a ,
|
||||
0xa5bc,0x29ce ,0xa5c7,0x2981 ,0xa5d3,0x2935 ,
|
||||
0xa5e0,0x28e7 ,0xa5ed,0x289a ,0xa5fb,0x284c ,
|
||||
0xa60b,0x27fe ,0xa61b,0x27af ,0xa62c,0x2760 ,
|
||||
0xa63e,0x2711 ,0xa650,0x26c1 ,0xa664,0x2671 ,
|
||||
0xa678,0x2620 ,0xa68e,0x25cf ,0xa6a4,0x257e ,
|
||||
0xa6bb,0x252c ,0xa6d3,0x24da ,0xa6eb,0x2488 ,
|
||||
0xa705,0x2435 ,0xa71f,0x23e2 ,0xa73b,0x238e ,
|
||||
0xa757,0x233b ,0xa774,0x22e7 ,0xa792,0x2292 ,
|
||||
0xa7b1,0x223d ,0xa7d0,0x21e8 ,0xa7f1,0x2193 ,
|
||||
0xa812,0x213d ,0xa834,0x20e7 ,0xa857,0x2091 ,
|
||||
0xa87b,0x203a ,0xa89f,0x1fe3 ,0xa8c5,0x1f8c ,
|
||||
0xa8eb,0x1f34 ,0xa912,0x1edc ,0xa93a,0x1e84 ,
|
||||
0xa963,0x1e2b ,0xa98d,0x1dd3 ,0xa9b7,0x1d79 ,
|
||||
0xa9e3,0x1d20 ,0xaa0f,0x1cc6 ,0xaa3c,0x1c6c ,
|
||||
0xaa6a,0x1c12 ,0xaa98,0x1bb8 ,0xaac8,0x1b5d ,
|
||||
0xaaf8,0x1b02 ,0xab29,0x1aa7 ,0xab5b,0x1a4b ,
|
||||
0xab8e,0x19ef ,0xabc2,0x1993 ,0xabf6,0x1937 ,
|
||||
0xac2b,0x18db ,0xac61,0x187e ,0xac98,0x1821 ,
|
||||
0xacd0,0x17c4 ,0xad08,0x1766 ,0xad41,0x1709 ,
|
||||
0xad7b,0x16ab ,0xadb6,0x164c ,0xadf2,0x15ee ,
|
||||
0xae2e,0x1590 ,0xae6b,0x1531 ,0xaea9,0x14d2 ,
|
||||
0xaee8,0x1473 ,0xaf28,0x1413 ,0xaf68,0x13b4 ,
|
||||
0xafa9,0x1354 ,0xafeb,0x12f4 ,0xb02d,0x1294 ,
|
||||
0xb071,0x1234 ,0xb0b5,0x11d3 ,0xb0fa,0x1173 ,
|
||||
0xb140,0x1112 ,0xb186,0x10b1 ,0xb1cd,0x1050 ,
|
||||
0xb215,0x0fee ,0xb25e,0x0f8d ,0xb2a7,0x0f2b ,
|
||||
0xb2f2,0x0eca ,0xb33d,0x0e68 ,0xb388,0x0e06 ,
|
||||
0xb3d5,0x0da4 ,0xb422,0x0d41 ,0xb470,0x0cdf ,
|
||||
0xb4be,0x0c7c ,0xb50e,0x0c1a ,0xb55e,0x0bb7 ,
|
||||
0xb5af,0x0b54 ,0xb600,0x0af1 ,0xb652,0x0a8e ,
|
||||
0xb6a5,0x0a2b ,0xb6f9,0x09c7 ,0xb74d,0x0964 ,
|
||||
0xb7a2,0x0901 ,0xb7f8,0x089d ,0xb84f,0x0839 ,
|
||||
0xb8a6,0x07d6 ,0xb8fd,0x0772 ,0xb956,0x070e ,
|
||||
0xb9af,0x06aa ,0xba09,0x0646 ,0xba64,0x05e2 ,
|
||||
0xbabf,0x057e ,0xbb1b,0x051a ,0xbb77,0x04b5 ,
|
||||
0xbbd4,0x0451 ,0xbc32,0x03ed ,0xbc91,0x0388 ,
|
||||
0xbcf0,0x0324 ,0xbd50,0x02c0 ,0xbdb0,0x025b ,
|
||||
0xbe11,0x01f7 ,0xbe73,0x0192 ,0xbed5,0x012e ,
|
||||
0xbf38,0x00c9 ,0xbf9c,0x0065 };
|
||||
|
||||
|
||||
extern const int s_Q14R_8;
|
||||
const int s_Q14R_8 = 1024;
|
||||
extern const unsigned short t_Q14R_8[2032];
|
||||
const unsigned short t_Q14R_8[2032] = {
|
||||
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
|
||||
0x3b21,0x187e ,0x3ec5,0x0c7c ,0x3537,0x238e ,
|
||||
0x2d41,0x2d41 ,0x3b21,0x187e ,0x187e,0x3b21 ,
|
||||
0x187e,0x3b21 ,0x3537,0x238e ,0xf384,0x3ec5 ,
|
||||
0x0000,0x4000 ,0x2d41,0x2d41 ,0xd2bf,0x2d41 ,
|
||||
0xe782,0x3b21 ,0x238e,0x3537 ,0xc13b,0x0c7c ,
|
||||
0xd2bf,0x2d41 ,0x187e,0x3b21 ,0xc4df,0xe782 ,
|
||||
0xc4df,0x187e ,0x0c7c,0x3ec5 ,0xdc72,0xcac9 ,
|
||||
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
|
||||
0x3fb1,0x0646 ,0x3fec,0x0324 ,0x3f4f,0x0964 ,
|
||||
0x3ec5,0x0c7c ,0x3fb1,0x0646 ,0x3d3f,0x1294 ,
|
||||
0x3d3f,0x1294 ,0x3f4f,0x0964 ,0x39db,0x1b5d ,
|
||||
0x3b21,0x187e ,0x3ec5,0x0c7c ,0x3537,0x238e ,
|
||||
0x3871,0x1e2b ,0x3e15,0x0f8d ,0x2f6c,0x2afb ,
|
||||
0x3537,0x238e ,0x3d3f,0x1294 ,0x289a,0x3179 ,
|
||||
0x3179,0x289a ,0x3c42,0x1590 ,0x20e7,0x36e5 ,
|
||||
0x2d41,0x2d41 ,0x3b21,0x187e ,0x187e,0x3b21 ,
|
||||
0x289a,0x3179 ,0x39db,0x1b5d ,0x0f8d,0x3e15 ,
|
||||
0x238e,0x3537 ,0x3871,0x1e2b ,0x0646,0x3fb1 ,
|
||||
0x1e2b,0x3871 ,0x36e5,0x20e7 ,0xfcdc,0x3fec ,
|
||||
0x187e,0x3b21 ,0x3537,0x238e ,0xf384,0x3ec5 ,
|
||||
0x1294,0x3d3f ,0x3368,0x2620 ,0xea70,0x3c42 ,
|
||||
0x0c7c,0x3ec5 ,0x3179,0x289a ,0xe1d5,0x3871 ,
|
||||
0x0646,0x3fb1 ,0x2f6c,0x2afb ,0xd9e0,0x3368 ,
|
||||
0x0000,0x4000 ,0x2d41,0x2d41 ,0xd2bf,0x2d41 ,
|
||||
0xf9ba,0x3fb1 ,0x2afb,0x2f6c ,0xcc98,0x2620 ,
|
||||
0xf384,0x3ec5 ,0x289a,0x3179 ,0xc78f,0x1e2b ,
|
||||
0xed6c,0x3d3f ,0x2620,0x3368 ,0xc3be,0x1590 ,
|
||||
0xe782,0x3b21 ,0x238e,0x3537 ,0xc13b,0x0c7c ,
|
||||
0xe1d5,0x3871 ,0x20e7,0x36e5 ,0xc014,0x0324 ,
|
||||
0xdc72,0x3537 ,0x1e2b,0x3871 ,0xc04f,0xf9ba ,
|
||||
0xd766,0x3179 ,0x1b5d,0x39db ,0xc1eb,0xf073 ,
|
||||
0xd2bf,0x2d41 ,0x187e,0x3b21 ,0xc4df,0xe782 ,
|
||||
0xce87,0x289a ,0x1590,0x3c42 ,0xc91b,0xdf19 ,
|
||||
0xcac9,0x238e ,0x1294,0x3d3f ,0xce87,0xd766 ,
|
||||
0xc78f,0x1e2b ,0x0f8d,0x3e15 ,0xd505,0xd094 ,
|
||||
0xc4df,0x187e ,0x0c7c,0x3ec5 ,0xdc72,0xcac9 ,
|
||||
0xc2c1,0x1294 ,0x0964,0x3f4f ,0xe4a3,0xc625 ,
|
||||
0xc13b,0x0c7c ,0x0646,0x3fb1 ,0xed6c,0xc2c1 ,
|
||||
0xc04f,0x0646 ,0x0324,0x3fec ,0xf69c,0xc0b1 ,
|
||||
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
|
||||
0x3ffb,0x0192 ,0x3fff,0x00c9 ,0x3ff5,0x025b ,
|
||||
0x3fec,0x0324 ,0x3ffb,0x0192 ,0x3fd4,0x04b5 ,
|
||||
0x3fd4,0x04b5 ,0x3ff5,0x025b ,0x3f9c,0x070e ,
|
||||
0x3fb1,0x0646 ,0x3fec,0x0324 ,0x3f4f,0x0964 ,
|
||||
0x3f85,0x07d6 ,0x3fe1,0x03ed ,0x3eeb,0x0bb7 ,
|
||||
0x3f4f,0x0964 ,0x3fd4,0x04b5 ,0x3e72,0x0e06 ,
|
||||
0x3f0f,0x0af1 ,0x3fc4,0x057e ,0x3de3,0x1050 ,
|
||||
0x3ec5,0x0c7c ,0x3fb1,0x0646 ,0x3d3f,0x1294 ,
|
||||
0x3e72,0x0e06 ,0x3f9c,0x070e ,0x3c85,0x14d2 ,
|
||||
0x3e15,0x0f8d ,0x3f85,0x07d6 ,0x3bb6,0x1709 ,
|
||||
0x3daf,0x1112 ,0x3f6b,0x089d ,0x3ad3,0x1937 ,
|
||||
0x3d3f,0x1294 ,0x3f4f,0x0964 ,0x39db,0x1b5d ,
|
||||
0x3cc5,0x1413 ,0x3f30,0x0a2b ,0x38cf,0x1d79 ,
|
||||
0x3c42,0x1590 ,0x3f0f,0x0af1 ,0x37b0,0x1f8c ,
|
||||
0x3bb6,0x1709 ,0x3eeb,0x0bb7 ,0x367d,0x2193 ,
|
||||
0x3b21,0x187e ,0x3ec5,0x0c7c ,0x3537,0x238e ,
|
||||
0x3a82,0x19ef ,0x3e9d,0x0d41 ,0x33df,0x257e ,
|
||||
0x39db,0x1b5d ,0x3e72,0x0e06 ,0x3274,0x2760 ,
|
||||
0x392b,0x1cc6 ,0x3e45,0x0eca ,0x30f9,0x2935 ,
|
||||
0x3871,0x1e2b ,0x3e15,0x0f8d ,0x2f6c,0x2afb ,
|
||||
0x37b0,0x1f8c ,0x3de3,0x1050 ,0x2dcf,0x2cb2 ,
|
||||
0x36e5,0x20e7 ,0x3daf,0x1112 ,0x2c21,0x2e5a ,
|
||||
0x3612,0x223d ,0x3d78,0x11d3 ,0x2a65,0x2ff2 ,
|
||||
0x3537,0x238e ,0x3d3f,0x1294 ,0x289a,0x3179 ,
|
||||
0x3453,0x24da ,0x3d03,0x1354 ,0x26c1,0x32ef ,
|
||||
0x3368,0x2620 ,0x3cc5,0x1413 ,0x24da,0x3453 ,
|
||||
0x3274,0x2760 ,0x3c85,0x14d2 ,0x22e7,0x35a5 ,
|
||||
0x3179,0x289a ,0x3c42,0x1590 ,0x20e7,0x36e5 ,
|
||||
0x3076,0x29ce ,0x3bfd,0x164c ,0x1edc,0x3812 ,
|
||||
0x2f6c,0x2afb ,0x3bb6,0x1709 ,0x1cc6,0x392b ,
|
||||
0x2e5a,0x2c21 ,0x3b6d,0x17c4 ,0x1aa7,0x3a30 ,
|
||||
0x2d41,0x2d41 ,0x3b21,0x187e ,0x187e,0x3b21 ,
|
||||
0x2c21,0x2e5a ,0x3ad3,0x1937 ,0x164c,0x3bfd ,
|
||||
0x2afb,0x2f6c ,0x3a82,0x19ef ,0x1413,0x3cc5 ,
|
||||
0x29ce,0x3076 ,0x3a30,0x1aa7 ,0x11d3,0x3d78 ,
|
||||
0x289a,0x3179 ,0x39db,0x1b5d ,0x0f8d,0x3e15 ,
|
||||
0x2760,0x3274 ,0x3984,0x1c12 ,0x0d41,0x3e9d ,
|
||||
0x2620,0x3368 ,0x392b,0x1cc6 ,0x0af1,0x3f0f ,
|
||||
0x24da,0x3453 ,0x38cf,0x1d79 ,0x089d,0x3f6b ,
|
||||
0x238e,0x3537 ,0x3871,0x1e2b ,0x0646,0x3fb1 ,
|
||||
0x223d,0x3612 ,0x3812,0x1edc ,0x03ed,0x3fe1 ,
|
||||
0x20e7,0x36e5 ,0x37b0,0x1f8c ,0x0192,0x3ffb ,
|
||||
0x1f8c,0x37b0 ,0x374b,0x203a ,0xff37,0x3fff ,
|
||||
0x1e2b,0x3871 ,0x36e5,0x20e7 ,0xfcdc,0x3fec ,
|
||||
0x1cc6,0x392b ,0x367d,0x2193 ,0xfa82,0x3fc4 ,
|
||||
0x1b5d,0x39db ,0x3612,0x223d ,0xf82a,0x3f85 ,
|
||||
0x19ef,0x3a82 ,0x35a5,0x22e7 ,0xf5d5,0x3f30 ,
|
||||
0x187e,0x3b21 ,0x3537,0x238e ,0xf384,0x3ec5 ,
|
||||
0x1709,0x3bb6 ,0x34c6,0x2435 ,0xf136,0x3e45 ,
|
||||
0x1590,0x3c42 ,0x3453,0x24da ,0xeeee,0x3daf ,
|
||||
0x1413,0x3cc5 ,0x33df,0x257e ,0xecac,0x3d03 ,
|
||||
0x1294,0x3d3f ,0x3368,0x2620 ,0xea70,0x3c42 ,
|
||||
0x1112,0x3daf ,0x32ef,0x26c1 ,0xe83c,0x3b6d ,
|
||||
0x0f8d,0x3e15 ,0x3274,0x2760 ,0xe611,0x3a82 ,
|
||||
0x0e06,0x3e72 ,0x31f8,0x27fe ,0xe3ee,0x3984 ,
|
||||
0x0c7c,0x3ec5 ,0x3179,0x289a ,0xe1d5,0x3871 ,
|
||||
0x0af1,0x3f0f ,0x30f9,0x2935 ,0xdfc6,0x374b ,
|
||||
0x0964,0x3f4f ,0x3076,0x29ce ,0xddc3,0x3612 ,
|
||||
0x07d6,0x3f85 ,0x2ff2,0x2a65 ,0xdbcb,0x34c6 ,
|
||||
0x0646,0x3fb1 ,0x2f6c,0x2afb ,0xd9e0,0x3368 ,
|
||||
0x04b5,0x3fd4 ,0x2ee4,0x2b8f ,0xd802,0x31f8 ,
|
||||
0x0324,0x3fec ,0x2e5a,0x2c21 ,0xd632,0x3076 ,
|
||||
0x0192,0x3ffb ,0x2dcf,0x2cb2 ,0xd471,0x2ee4 ,
|
||||
0x0000,0x4000 ,0x2d41,0x2d41 ,0xd2bf,0x2d41 ,
|
||||
0xfe6e,0x3ffb ,0x2cb2,0x2dcf ,0xd11c,0x2b8f ,
|
||||
0xfcdc,0x3fec ,0x2c21,0x2e5a ,0xcf8a,0x29ce ,
|
||||
0xfb4b,0x3fd4 ,0x2b8f,0x2ee4 ,0xce08,0x27fe ,
|
||||
0xf9ba,0x3fb1 ,0x2afb,0x2f6c ,0xcc98,0x2620 ,
|
||||
0xf82a,0x3f85 ,0x2a65,0x2ff2 ,0xcb3a,0x2435 ,
|
||||
0xf69c,0x3f4f ,0x29ce,0x3076 ,0xc9ee,0x223d ,
|
||||
0xf50f,0x3f0f ,0x2935,0x30f9 ,0xc8b5,0x203a ,
|
||||
0xf384,0x3ec5 ,0x289a,0x3179 ,0xc78f,0x1e2b ,
|
||||
0xf1fa,0x3e72 ,0x27fe,0x31f8 ,0xc67c,0x1c12 ,
|
||||
0xf073,0x3e15 ,0x2760,0x3274 ,0xc57e,0x19ef ,
|
||||
0xeeee,0x3daf ,0x26c1,0x32ef ,0xc493,0x17c4 ,
|
||||
0xed6c,0x3d3f ,0x2620,0x3368 ,0xc3be,0x1590 ,
|
||||
0xebed,0x3cc5 ,0x257e,0x33df ,0xc2fd,0x1354 ,
|
||||
0xea70,0x3c42 ,0x24da,0x3453 ,0xc251,0x1112 ,
|
||||
0xe8f7,0x3bb6 ,0x2435,0x34c6 ,0xc1bb,0x0eca ,
|
||||
0xe782,0x3b21 ,0x238e,0x3537 ,0xc13b,0x0c7c ,
|
||||
0xe611,0x3a82 ,0x22e7,0x35a5 ,0xc0d0,0x0a2b ,
|
||||
0xe4a3,0x39db ,0x223d,0x3612 ,0xc07b,0x07d6 ,
|
||||
0xe33a,0x392b ,0x2193,0x367d ,0xc03c,0x057e ,
|
||||
0xe1d5,0x3871 ,0x20e7,0x36e5 ,0xc014,0x0324 ,
|
||||
0xe074,0x37b0 ,0x203a,0x374b ,0xc001,0x00c9 ,
|
||||
0xdf19,0x36e5 ,0x1f8c,0x37b0 ,0xc005,0xfe6e ,
|
||||
0xddc3,0x3612 ,0x1edc,0x3812 ,0xc01f,0xfc13 ,
|
||||
0xdc72,0x3537 ,0x1e2b,0x3871 ,0xc04f,0xf9ba ,
|
||||
0xdb26,0x3453 ,0x1d79,0x38cf ,0xc095,0xf763 ,
|
||||
0xd9e0,0x3368 ,0x1cc6,0x392b ,0xc0f1,0xf50f ,
|
||||
0xd8a0,0x3274 ,0x1c12,0x3984 ,0xc163,0xf2bf ,
|
||||
0xd766,0x3179 ,0x1b5d,0x39db ,0xc1eb,0xf073 ,
|
||||
0xd632,0x3076 ,0x1aa7,0x3a30 ,0xc288,0xee2d ,
|
||||
0xd505,0x2f6c ,0x19ef,0x3a82 ,0xc33b,0xebed ,
|
||||
0xd3df,0x2e5a ,0x1937,0x3ad3 ,0xc403,0xe9b4 ,
|
||||
0xd2bf,0x2d41 ,0x187e,0x3b21 ,0xc4df,0xe782 ,
|
||||
0xd1a6,0x2c21 ,0x17c4,0x3b6d ,0xc5d0,0xe559 ,
|
||||
0xd094,0x2afb ,0x1709,0x3bb6 ,0xc6d5,0xe33a ,
|
||||
0xcf8a,0x29ce ,0x164c,0x3bfd ,0xc7ee,0xe124 ,
|
||||
0xce87,0x289a ,0x1590,0x3c42 ,0xc91b,0xdf19 ,
|
||||
0xcd8c,0x2760 ,0x14d2,0x3c85 ,0xca5b,0xdd19 ,
|
||||
0xcc98,0x2620 ,0x1413,0x3cc5 ,0xcbad,0xdb26 ,
|
||||
0xcbad,0x24da ,0x1354,0x3d03 ,0xcd11,0xd93f ,
|
||||
0xcac9,0x238e ,0x1294,0x3d3f ,0xce87,0xd766 ,
|
||||
0xc9ee,0x223d ,0x11d3,0x3d78 ,0xd00e,0xd59b ,
|
||||
0xc91b,0x20e7 ,0x1112,0x3daf ,0xd1a6,0xd3df ,
|
||||
0xc850,0x1f8c ,0x1050,0x3de3 ,0xd34e,0xd231 ,
|
||||
0xc78f,0x1e2b ,0x0f8d,0x3e15 ,0xd505,0xd094 ,
|
||||
0xc6d5,0x1cc6 ,0x0eca,0x3e45 ,0xd6cb,0xcf07 ,
|
||||
0xc625,0x1b5d ,0x0e06,0x3e72 ,0xd8a0,0xcd8c ,
|
||||
0xc57e,0x19ef ,0x0d41,0x3e9d ,0xda82,0xcc21 ,
|
||||
0xc4df,0x187e ,0x0c7c,0x3ec5 ,0xdc72,0xcac9 ,
|
||||
0xc44a,0x1709 ,0x0bb7,0x3eeb ,0xde6d,0xc983 ,
|
||||
0xc3be,0x1590 ,0x0af1,0x3f0f ,0xe074,0xc850 ,
|
||||
0xc33b,0x1413 ,0x0a2b,0x3f30 ,0xe287,0xc731 ,
|
||||
0xc2c1,0x1294 ,0x0964,0x3f4f ,0xe4a3,0xc625 ,
|
||||
0xc251,0x1112 ,0x089d,0x3f6b ,0xe6c9,0xc52d ,
|
||||
0xc1eb,0x0f8d ,0x07d6,0x3f85 ,0xe8f7,0xc44a ,
|
||||
0xc18e,0x0e06 ,0x070e,0x3f9c ,0xeb2e,0xc37b ,
|
||||
0xc13b,0x0c7c ,0x0646,0x3fb1 ,0xed6c,0xc2c1 ,
|
||||
0xc0f1,0x0af1 ,0x057e,0x3fc4 ,0xefb0,0xc21d ,
|
||||
0xc0b1,0x0964 ,0x04b5,0x3fd4 ,0xf1fa,0xc18e ,
|
||||
0xc07b,0x07d6 ,0x03ed,0x3fe1 ,0xf449,0xc115 ,
|
||||
0xc04f,0x0646 ,0x0324,0x3fec ,0xf69c,0xc0b1 ,
|
||||
0xc02c,0x04b5 ,0x025b,0x3ff5 ,0xf8f2,0xc064 ,
|
||||
0xc014,0x0324 ,0x0192,0x3ffb ,0xfb4b,0xc02c ,
|
||||
0xc005,0x0192 ,0x00c9,0x3fff ,0xfda5,0xc00b ,
|
||||
0x4000,0x0000 ,0x4000,0x0065 ,0x3fff,0x00c9 ,
|
||||
0x3ffd,0x012e ,0x3ffb,0x0192 ,0x3ff8,0x01f7 ,
|
||||
0x3ff5,0x025b ,0x3ff1,0x02c0 ,0x3fec,0x0324 ,
|
||||
0x3fe7,0x0388 ,0x3fe1,0x03ed ,0x3fdb,0x0451 ,
|
||||
0x3fd4,0x04b5 ,0x3fcc,0x051a ,0x3fc4,0x057e ,
|
||||
0x3fbb,0x05e2 ,0x3fb1,0x0646 ,0x3fa7,0x06aa ,
|
||||
0x3f9c,0x070e ,0x3f91,0x0772 ,0x3f85,0x07d6 ,
|
||||
0x3f78,0x0839 ,0x3f6b,0x089d ,0x3f5d,0x0901 ,
|
||||
0x3f4f,0x0964 ,0x3f40,0x09c7 ,0x3f30,0x0a2b ,
|
||||
0x3f20,0x0a8e ,0x3f0f,0x0af1 ,0x3efd,0x0b54 ,
|
||||
0x3eeb,0x0bb7 ,0x3ed8,0x0c1a ,0x3ec5,0x0c7c ,
|
||||
0x3eb1,0x0cdf ,0x3e9d,0x0d41 ,0x3e88,0x0da4 ,
|
||||
0x3e72,0x0e06 ,0x3e5c,0x0e68 ,0x3e45,0x0eca ,
|
||||
0x3e2d,0x0f2b ,0x3e15,0x0f8d ,0x3dfc,0x0fee ,
|
||||
0x3de3,0x1050 ,0x3dc9,0x10b1 ,0x3daf,0x1112 ,
|
||||
0x3d93,0x1173 ,0x3d78,0x11d3 ,0x3d5b,0x1234 ,
|
||||
0x3d3f,0x1294 ,0x3d21,0x12f4 ,0x3d03,0x1354 ,
|
||||
0x3ce4,0x13b4 ,0x3cc5,0x1413 ,0x3ca5,0x1473 ,
|
||||
0x3c85,0x14d2 ,0x3c64,0x1531 ,0x3c42,0x1590 ,
|
||||
0x3c20,0x15ee ,0x3bfd,0x164c ,0x3bda,0x16ab ,
|
||||
0x3bb6,0x1709 ,0x3b92,0x1766 ,0x3b6d,0x17c4 ,
|
||||
0x3b47,0x1821 ,0x3b21,0x187e ,0x3afa,0x18db ,
|
||||
0x3ad3,0x1937 ,0x3aab,0x1993 ,0x3a82,0x19ef ,
|
||||
0x3a59,0x1a4b ,0x3a30,0x1aa7 ,0x3a06,0x1b02 ,
|
||||
0x39db,0x1b5d ,0x39b0,0x1bb8 ,0x3984,0x1c12 ,
|
||||
0x3958,0x1c6c ,0x392b,0x1cc6 ,0x38fd,0x1d20 ,
|
||||
0x38cf,0x1d79 ,0x38a1,0x1dd3 ,0x3871,0x1e2b ,
|
||||
0x3842,0x1e84 ,0x3812,0x1edc ,0x37e1,0x1f34 ,
|
||||
0x37b0,0x1f8c ,0x377e,0x1fe3 ,0x374b,0x203a ,
|
||||
0x3718,0x2091 ,0x36e5,0x20e7 ,0x36b1,0x213d ,
|
||||
0x367d,0x2193 ,0x3648,0x21e8 ,0x3612,0x223d ,
|
||||
0x35dc,0x2292 ,0x35a5,0x22e7 ,0x356e,0x233b ,
|
||||
0x3537,0x238e ,0x34ff,0x23e2 ,0x34c6,0x2435 ,
|
||||
0x348d,0x2488 ,0x3453,0x24da ,0x3419,0x252c ,
|
||||
0x33df,0x257e ,0x33a3,0x25cf ,0x3368,0x2620 ,
|
||||
0x332c,0x2671 ,0x32ef,0x26c1 ,0x32b2,0x2711 ,
|
||||
0x3274,0x2760 ,0x3236,0x27af ,0x31f8,0x27fe ,
|
||||
0x31b9,0x284c ,0x3179,0x289a ,0x3139,0x28e7 ,
|
||||
0x30f9,0x2935 ,0x30b8,0x2981 ,0x3076,0x29ce ,
|
||||
0x3034,0x2a1a ,0x2ff2,0x2a65 ,0x2faf,0x2ab0 ,
|
||||
0x2f6c,0x2afb ,0x2f28,0x2b45 ,0x2ee4,0x2b8f ,
|
||||
0x2e9f,0x2bd8 ,0x2e5a,0x2c21 ,0x2e15,0x2c6a ,
|
||||
0x2dcf,0x2cb2 ,0x2d88,0x2cfa ,0x2d41,0x2d41 ,
|
||||
0x2cfa,0x2d88 ,0x2cb2,0x2dcf ,0x2c6a,0x2e15 ,
|
||||
0x2c21,0x2e5a ,0x2bd8,0x2e9f ,0x2b8f,0x2ee4 ,
|
||||
0x2b45,0x2f28 ,0x2afb,0x2f6c ,0x2ab0,0x2faf ,
|
||||
0x2a65,0x2ff2 ,0x2a1a,0x3034 ,0x29ce,0x3076 ,
|
||||
0x2981,0x30b8 ,0x2935,0x30f9 ,0x28e7,0x3139 ,
|
||||
0x289a,0x3179 ,0x284c,0x31b9 ,0x27fe,0x31f8 ,
|
||||
0x27af,0x3236 ,0x2760,0x3274 ,0x2711,0x32b2 ,
|
||||
0x26c1,0x32ef ,0x2671,0x332c ,0x2620,0x3368 ,
|
||||
0x25cf,0x33a3 ,0x257e,0x33df ,0x252c,0x3419 ,
|
||||
0x24da,0x3453 ,0x2488,0x348d ,0x2435,0x34c6 ,
|
||||
0x23e2,0x34ff ,0x238e,0x3537 ,0x233b,0x356e ,
|
||||
0x22e7,0x35a5 ,0x2292,0x35dc ,0x223d,0x3612 ,
|
||||
0x21e8,0x3648 ,0x2193,0x367d ,0x213d,0x36b1 ,
|
||||
0x20e7,0x36e5 ,0x2091,0x3718 ,0x203a,0x374b ,
|
||||
0x1fe3,0x377e ,0x1f8c,0x37b0 ,0x1f34,0x37e1 ,
|
||||
0x1edc,0x3812 ,0x1e84,0x3842 ,0x1e2b,0x3871 ,
|
||||
0x1dd3,0x38a1 ,0x1d79,0x38cf ,0x1d20,0x38fd ,
|
||||
0x1cc6,0x392b ,0x1c6c,0x3958 ,0x1c12,0x3984 ,
|
||||
0x1bb8,0x39b0 ,0x1b5d,0x39db ,0x1b02,0x3a06 ,
|
||||
0x1aa7,0x3a30 ,0x1a4b,0x3a59 ,0x19ef,0x3a82 ,
|
||||
0x1993,0x3aab ,0x1937,0x3ad3 ,0x18db,0x3afa ,
|
||||
0x187e,0x3b21 ,0x1821,0x3b47 ,0x17c4,0x3b6d ,
|
||||
0x1766,0x3b92 ,0x1709,0x3bb6 ,0x16ab,0x3bda ,
|
||||
0x164c,0x3bfd ,0x15ee,0x3c20 ,0x1590,0x3c42 ,
|
||||
0x1531,0x3c64 ,0x14d2,0x3c85 ,0x1473,0x3ca5 ,
|
||||
0x1413,0x3cc5 ,0x13b4,0x3ce4 ,0x1354,0x3d03 ,
|
||||
0x12f4,0x3d21 ,0x1294,0x3d3f ,0x1234,0x3d5b ,
|
||||
0x11d3,0x3d78 ,0x1173,0x3d93 ,0x1112,0x3daf ,
|
||||
0x10b1,0x3dc9 ,0x1050,0x3de3 ,0x0fee,0x3dfc ,
|
||||
0x0f8d,0x3e15 ,0x0f2b,0x3e2d ,0x0eca,0x3e45 ,
|
||||
0x0e68,0x3e5c ,0x0e06,0x3e72 ,0x0da4,0x3e88 ,
|
||||
0x0d41,0x3e9d ,0x0cdf,0x3eb1 ,0x0c7c,0x3ec5 ,
|
||||
0x0c1a,0x3ed8 ,0x0bb7,0x3eeb ,0x0b54,0x3efd ,
|
||||
0x0af1,0x3f0f ,0x0a8e,0x3f20 ,0x0a2b,0x3f30 ,
|
||||
0x09c7,0x3f40 ,0x0964,0x3f4f ,0x0901,0x3f5d ,
|
||||
0x089d,0x3f6b ,0x0839,0x3f78 ,0x07d6,0x3f85 ,
|
||||
0x0772,0x3f91 ,0x070e,0x3f9c ,0x06aa,0x3fa7 ,
|
||||
0x0646,0x3fb1 ,0x05e2,0x3fbb ,0x057e,0x3fc4 ,
|
||||
0x051a,0x3fcc ,0x04b5,0x3fd4 ,0x0451,0x3fdb ,
|
||||
0x03ed,0x3fe1 ,0x0388,0x3fe7 ,0x0324,0x3fec ,
|
||||
0x02c0,0x3ff1 ,0x025b,0x3ff5 ,0x01f7,0x3ff8 ,
|
||||
0x0192,0x3ffb ,0x012e,0x3ffd ,0x00c9,0x3fff ,
|
||||
0x0065,0x4000 ,0x0000,0x4000 ,0xff9b,0x4000 ,
|
||||
0xff37,0x3fff ,0xfed2,0x3ffd ,0xfe6e,0x3ffb ,
|
||||
0xfe09,0x3ff8 ,0xfda5,0x3ff5 ,0xfd40,0x3ff1 ,
|
||||
0xfcdc,0x3fec ,0xfc78,0x3fe7 ,0xfc13,0x3fe1 ,
|
||||
0xfbaf,0x3fdb ,0xfb4b,0x3fd4 ,0xfae6,0x3fcc ,
|
||||
0xfa82,0x3fc4 ,0xfa1e,0x3fbb ,0xf9ba,0x3fb1 ,
|
||||
0xf956,0x3fa7 ,0xf8f2,0x3f9c ,0xf88e,0x3f91 ,
|
||||
0xf82a,0x3f85 ,0xf7c7,0x3f78 ,0xf763,0x3f6b ,
|
||||
0xf6ff,0x3f5d ,0xf69c,0x3f4f ,0xf639,0x3f40 ,
|
||||
0xf5d5,0x3f30 ,0xf572,0x3f20 ,0xf50f,0x3f0f ,
|
||||
0xf4ac,0x3efd ,0xf449,0x3eeb ,0xf3e6,0x3ed8 ,
|
||||
0xf384,0x3ec5 ,0xf321,0x3eb1 ,0xf2bf,0x3e9d ,
|
||||
0xf25c,0x3e88 ,0xf1fa,0x3e72 ,0xf198,0x3e5c ,
|
||||
0xf136,0x3e45 ,0xf0d5,0x3e2d ,0xf073,0x3e15 ,
|
||||
0xf012,0x3dfc ,0xefb0,0x3de3 ,0xef4f,0x3dc9 ,
|
||||
0xeeee,0x3daf ,0xee8d,0x3d93 ,0xee2d,0x3d78 ,
|
||||
0xedcc,0x3d5b ,0xed6c,0x3d3f ,0xed0c,0x3d21 ,
|
||||
0xecac,0x3d03 ,0xec4c,0x3ce4 ,0xebed,0x3cc5 ,
|
||||
0xeb8d,0x3ca5 ,0xeb2e,0x3c85 ,0xeacf,0x3c64 ,
|
||||
0xea70,0x3c42 ,0xea12,0x3c20 ,0xe9b4,0x3bfd ,
|
||||
0xe955,0x3bda ,0xe8f7,0x3bb6 ,0xe89a,0x3b92 ,
|
||||
0xe83c,0x3b6d ,0xe7df,0x3b47 ,0xe782,0x3b21 ,
|
||||
0xe725,0x3afa ,0xe6c9,0x3ad3 ,0xe66d,0x3aab ,
|
||||
0xe611,0x3a82 ,0xe5b5,0x3a59 ,0xe559,0x3a30 ,
|
||||
0xe4fe,0x3a06 ,0xe4a3,0x39db ,0xe448,0x39b0 ,
|
||||
0xe3ee,0x3984 ,0xe394,0x3958 ,0xe33a,0x392b ,
|
||||
0xe2e0,0x38fd ,0xe287,0x38cf ,0xe22d,0x38a1 ,
|
||||
0xe1d5,0x3871 ,0xe17c,0x3842 ,0xe124,0x3812 ,
|
||||
0xe0cc,0x37e1 ,0xe074,0x37b0 ,0xe01d,0x377e ,
|
||||
0xdfc6,0x374b ,0xdf6f,0x3718 ,0xdf19,0x36e5 ,
|
||||
0xdec3,0x36b1 ,0xde6d,0x367d ,0xde18,0x3648 ,
|
||||
0xddc3,0x3612 ,0xdd6e,0x35dc ,0xdd19,0x35a5 ,
|
||||
0xdcc5,0x356e ,0xdc72,0x3537 ,0xdc1e,0x34ff ,
|
||||
0xdbcb,0x34c6 ,0xdb78,0x348d ,0xdb26,0x3453 ,
|
||||
0xdad4,0x3419 ,0xda82,0x33df ,0xda31,0x33a3 ,
|
||||
0xd9e0,0x3368 ,0xd98f,0x332c ,0xd93f,0x32ef ,
|
||||
0xd8ef,0x32b2 ,0xd8a0,0x3274 ,0xd851,0x3236 ,
|
||||
0xd802,0x31f8 ,0xd7b4,0x31b9 ,0xd766,0x3179 ,
|
||||
0xd719,0x3139 ,0xd6cb,0x30f9 ,0xd67f,0x30b8 ,
|
||||
0xd632,0x3076 ,0xd5e6,0x3034 ,0xd59b,0x2ff2 ,
|
||||
0xd550,0x2faf ,0xd505,0x2f6c ,0xd4bb,0x2f28 ,
|
||||
0xd471,0x2ee4 ,0xd428,0x2e9f ,0xd3df,0x2e5a ,
|
||||
0xd396,0x2e15 ,0xd34e,0x2dcf ,0xd306,0x2d88 ,
|
||||
0xd2bf,0x2d41 ,0xd278,0x2cfa ,0xd231,0x2cb2 ,
|
||||
0xd1eb,0x2c6a ,0xd1a6,0x2c21 ,0xd161,0x2bd8 ,
|
||||
0xd11c,0x2b8f ,0xd0d8,0x2b45 ,0xd094,0x2afb ,
|
||||
0xd051,0x2ab0 ,0xd00e,0x2a65 ,0xcfcc,0x2a1a ,
|
||||
0xcf8a,0x29ce ,0xcf48,0x2981 ,0xcf07,0x2935 ,
|
||||
0xcec7,0x28e7 ,0xce87,0x289a ,0xce47,0x284c ,
|
||||
0xce08,0x27fe ,0xcdca,0x27af ,0xcd8c,0x2760 ,
|
||||
0xcd4e,0x2711 ,0xcd11,0x26c1 ,0xccd4,0x2671 ,
|
||||
0xcc98,0x2620 ,0xcc5d,0x25cf ,0xcc21,0x257e ,
|
||||
0xcbe7,0x252c ,0xcbad,0x24da ,0xcb73,0x2488 ,
|
||||
0xcb3a,0x2435 ,0xcb01,0x23e2 ,0xcac9,0x238e ,
|
||||
0xca92,0x233b ,0xca5b,0x22e7 ,0xca24,0x2292 ,
|
||||
0xc9ee,0x223d ,0xc9b8,0x21e8 ,0xc983,0x2193 ,
|
||||
0xc94f,0x213d ,0xc91b,0x20e7 ,0xc8e8,0x2091 ,
|
||||
0xc8b5,0x203a ,0xc882,0x1fe3 ,0xc850,0x1f8c ,
|
||||
0xc81f,0x1f34 ,0xc7ee,0x1edc ,0xc7be,0x1e84 ,
|
||||
0xc78f,0x1e2b ,0xc75f,0x1dd3 ,0xc731,0x1d79 ,
|
||||
0xc703,0x1d20 ,0xc6d5,0x1cc6 ,0xc6a8,0x1c6c ,
|
||||
0xc67c,0x1c12 ,0xc650,0x1bb8 ,0xc625,0x1b5d ,
|
||||
0xc5fa,0x1b02 ,0xc5d0,0x1aa7 ,0xc5a7,0x1a4b ,
|
||||
0xc57e,0x19ef ,0xc555,0x1993 ,0xc52d,0x1937 ,
|
||||
0xc506,0x18db ,0xc4df,0x187e ,0xc4b9,0x1821 ,
|
||||
0xc493,0x17c4 ,0xc46e,0x1766 ,0xc44a,0x1709 ,
|
||||
0xc426,0x16ab ,0xc403,0x164c ,0xc3e0,0x15ee ,
|
||||
0xc3be,0x1590 ,0xc39c,0x1531 ,0xc37b,0x14d2 ,
|
||||
0xc35b,0x1473 ,0xc33b,0x1413 ,0xc31c,0x13b4 ,
|
||||
0xc2fd,0x1354 ,0xc2df,0x12f4 ,0xc2c1,0x1294 ,
|
||||
0xc2a5,0x1234 ,0xc288,0x11d3 ,0xc26d,0x1173 ,
|
||||
0xc251,0x1112 ,0xc237,0x10b1 ,0xc21d,0x1050 ,
|
||||
0xc204,0x0fee ,0xc1eb,0x0f8d ,0xc1d3,0x0f2b ,
|
||||
0xc1bb,0x0eca ,0xc1a4,0x0e68 ,0xc18e,0x0e06 ,
|
||||
0xc178,0x0da4 ,0xc163,0x0d41 ,0xc14f,0x0cdf ,
|
||||
0xc13b,0x0c7c ,0xc128,0x0c1a ,0xc115,0x0bb7 ,
|
||||
0xc103,0x0b54 ,0xc0f1,0x0af1 ,0xc0e0,0x0a8e ,
|
||||
0xc0d0,0x0a2b ,0xc0c0,0x09c7 ,0xc0b1,0x0964 ,
|
||||
0xc0a3,0x0901 ,0xc095,0x089d ,0xc088,0x0839 ,
|
||||
0xc07b,0x07d6 ,0xc06f,0x0772 ,0xc064,0x070e ,
|
||||
0xc059,0x06aa ,0xc04f,0x0646 ,0xc045,0x05e2 ,
|
||||
0xc03c,0x057e ,0xc034,0x051a ,0xc02c,0x04b5 ,
|
||||
0xc025,0x0451 ,0xc01f,0x03ed ,0xc019,0x0388 ,
|
||||
0xc014,0x0324 ,0xc00f,0x02c0 ,0xc00b,0x025b ,
|
||||
0xc008,0x01f7 ,0xc005,0x0192 ,0xc003,0x012e ,
|
||||
0xc001,0x00c9 ,0xc000,0x0065 };
|
@ -1,19 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) ARM Limited 1998-2000. All rights reserved.
|
||||
*
|
||||
* t_rad.c
|
||||
*
|
||||
*/
|
||||
|
||||
extern const unsigned short t_Q14S_rad8[2];
|
||||
const unsigned short t_Q14S_rad8[2] = { 0x0000,0x2d41 };
|
||||
/*
|
||||
extern const int t_Q30S_rad8[2];
|
||||
const int t_Q30S_rad8[2] = { 0x00000000,0x2d413ccd };
|
||||
*/
|
||||
extern const unsigned short t_Q14R_rad8[2];
|
||||
const unsigned short t_Q14R_rad8[2] = { 0x2d41,0x2d41 };
|
||||
/*
|
||||
extern const int t_Q30R_rad8[2];
|
||||
const int t_Q30R_rad8[2] = { 0x2d413ccd,0x2d413ccd };
|
||||
*/
|
@ -1,227 +0,0 @@
|
||||
.globl FFT_4OFQ14
|
||||
|
||||
FFT_4OFQ14:
|
||||
stmdb sp!, {r4 - r11, lr}
|
||||
ldr lr, =s_Q14S_8
|
||||
ldr lr, [lr]
|
||||
cmp r2, lr
|
||||
movgt r0, #1
|
||||
ldmgtia sp!, {r4 - r11, pc}
|
||||
stmdb sp!, {r1, r2}
|
||||
mov r3, #0
|
||||
mov r2, r2
|
||||
|
||||
LBL1:
|
||||
add r12, r0, r3, lsl #2
|
||||
add r12, r12, r2, lsr #1
|
||||
ldrsh r5, [r12, #2]
|
||||
ldrsh r4, [r12], +r2
|
||||
ldrsh r9, [r12, #2]
|
||||
ldrsh r8, [r12], +r2
|
||||
ldrsh r7, [r12, #2]
|
||||
ldrsh r6, [r12], +r2
|
||||
ldrsh r11, [r12, #2]
|
||||
ldrsh r10, [r12], +r2
|
||||
add r4, r4, r6
|
||||
add r5, r5, r7
|
||||
sub r6, r4, r6, lsl #1
|
||||
sub r7, r5, r7, lsl #1
|
||||
sub r12, r8, r10
|
||||
sub lr, r9, r11
|
||||
add r10, r8, r10
|
||||
add r11, r9, r11
|
||||
sub r9, r4, r10
|
||||
sub r8, r5, r11
|
||||
add r4, r4, r10
|
||||
add r5, r5, r11
|
||||
sub r10, r6, lr
|
||||
add r11, r7, r12
|
||||
add r6, r6, lr
|
||||
sub r7, r7, r12
|
||||
ldr lr, =t_Q14R_rad8
|
||||
ldrsh lr, [lr]
|
||||
stmdb sp!, {r2}
|
||||
add r12, r6, r7
|
||||
mul r6, r12, lr
|
||||
rsb r12, r12, r7, lsl #1
|
||||
mul r7, r12, lr
|
||||
sub r12, r11, r10
|
||||
mul r10, r12, lr
|
||||
sub r12, r12, r11, lsl #1
|
||||
mul r11, r12, lr
|
||||
ldmia sp!, {r2}
|
||||
stmdb sp!, {r4 - r11}
|
||||
add r4, r0, r3, lsl #2
|
||||
ldrsh r7, [r4, #2]
|
||||
ldrsh r6, [r4], +r2
|
||||
ldrsh r11, [r4, #2]
|
||||
ldrsh r10, [r4], +r2
|
||||
ldrsh r9, [r4, #2]
|
||||
ldrsh r8, [r4], +r2
|
||||
ldrsh lr, [r4, #2]
|
||||
ldrsh r12, [r4], +r2
|
||||
mov r7, r7, asr #3
|
||||
mov r6, r6, asr #3
|
||||
add r6, r6, r8, asr #3
|
||||
add r7, r7, r9, asr #3
|
||||
sub r8, r6, r8, asr #2
|
||||
sub r9, r7, r9, asr #2
|
||||
sub r4, r10, r12
|
||||
sub r5, r11, lr
|
||||
add r10, r10, r12
|
||||
add r11, r11, lr
|
||||
add r6, r6, r10, asr #3
|
||||
add r7, r7, r11, asr #3
|
||||
sub r10, r6, r10, asr #2
|
||||
sub r11, r7, r11, asr #2
|
||||
sub r12, r8, r5, asr #3
|
||||
add lr, r9, r4, asr #3
|
||||
add r8, r8, r5, asr #3
|
||||
sub r9, r9, r4, asr #3
|
||||
ldmia sp!, {r4, r5}
|
||||
add r6, r6, r4, asr #3
|
||||
add r7, r7, r5, asr #3
|
||||
sub r4, r6, r4, asr #2
|
||||
sub r5, r7, r5, asr #2
|
||||
strh r7, [r1, #2]
|
||||
strh r6, [r1], #4
|
||||
ldmia sp!, {r6, r7}
|
||||
add r8, r8, r6, asr #17
|
||||
add r9, r9, r7, asr #17
|
||||
sub r6, r8, r6, asr #16
|
||||
sub r7, r9, r7, asr #16
|
||||
strh r9, [r1, #2]
|
||||
strh r8, [r1], #4
|
||||
ldmia sp!, {r8, r9}
|
||||
add r10, r10, r8, asr #3
|
||||
sub r11, r11, r9, asr #3
|
||||
sub r8, r10, r8, asr #2
|
||||
add r9, r11, r9, asr #2
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], #4
|
||||
ldmia sp!, {r10, r11}
|
||||
add r12, r12, r10, asr #17
|
||||
add lr, lr, r11, asr #17
|
||||
sub r10, r12, r10, asr #16
|
||||
sub r11, lr, r11, asr #16
|
||||
strh lr, [r1, #2]
|
||||
strh r12, [r1], #4
|
||||
strh r5, [r1, #2]
|
||||
strh r4, [r1], #4
|
||||
strh r7, [r1, #2]
|
||||
strh r6, [r1], #4
|
||||
strh r9, [r1, #2]
|
||||
strh r8, [r1], #4
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], #4
|
||||
eor r3, r3, r2, lsr #4
|
||||
tst r3, r2, lsr #4
|
||||
bne LBL1
|
||||
|
||||
eor r3, r3, r2, lsr #5
|
||||
tst r3, r2, lsr #5
|
||||
bne LBL1
|
||||
|
||||
mov r12, r2, lsr #6
|
||||
|
||||
LBL2:
|
||||
eor r3, r3, r12
|
||||
tst r3, r12
|
||||
bne LBL1
|
||||
|
||||
movs r12, r12, lsr #1
|
||||
bne LBL2
|
||||
|
||||
ldmia sp!, {r1, r2}
|
||||
mov r3, r2, lsr #3
|
||||
mov r2, #0x20
|
||||
ldr r0, =t_Q14S_8
|
||||
cmp r3, #1
|
||||
beq LBL3
|
||||
|
||||
LBL6:
|
||||
mov r3, r3, lsr #2
|
||||
stmdb sp!, {r1, r3}
|
||||
add r12, r2, r2, lsl #1
|
||||
add r1, r1, r12
|
||||
sub r3, r3, #1, 16
|
||||
|
||||
LBL5:
|
||||
add r3, r3, r2, lsl #14
|
||||
|
||||
LBL4:
|
||||
ldrsh r6, [r0], #2
|
||||
ldrsh r7, [r0], #2
|
||||
ldrsh r8, [r0], #2
|
||||
ldrsh r9, [r0], #2
|
||||
ldrsh r10, [r0], #2
|
||||
ldrsh r11, [r0], #2
|
||||
ldrsh r5, [r1, #2]
|
||||
ldrsh r4, [r1], -r2
|
||||
sub lr, r5, r4
|
||||
mul r12, lr, r11
|
||||
add lr, r10, r11, lsl #1
|
||||
mla r11, r5, r10, r12
|
||||
mla r10, r4, lr, r12
|
||||
ldrsh r5, [r1, #2]
|
||||
ldrsh r4, [r1], -r2
|
||||
sub lr, r5, r4
|
||||
mul r12, lr, r9
|
||||
add lr, r8, r9, lsl #1
|
||||
mla r9, r5, r8, r12
|
||||
mla r8, r4, lr, r12
|
||||
ldrsh r5, [r1, #2]
|
||||
ldrsh r4, [r1], -r2
|
||||
sub lr, r5, r4
|
||||
mul r12, lr, r7
|
||||
add lr, r6, r7, lsl #1
|
||||
mla r7, r5, r6, r12
|
||||
mla r6, r4, lr, r12
|
||||
ldrsh r5, [r1, #2]
|
||||
ldrsh r4, [r1]
|
||||
mov r5, r5, asr #2
|
||||
mov r4, r4, asr #2
|
||||
add r12, r4, r6, asr #16
|
||||
add lr, r5, r7, asr #16
|
||||
sub r4, r4, r6, asr #16
|
||||
sub r5, r5, r7, asr #16
|
||||
add r6, r8, r10
|
||||
add r7, r9, r11
|
||||
sub r8, r8, r10
|
||||
sub r9, r9, r11
|
||||
add r10, r12, r6, asr #16
|
||||
add r11, lr, r7, asr #16
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], +r2
|
||||
add r10, r4, r9, asr #16
|
||||
sub r11, r5, r8, asr #16
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], +r2
|
||||
sub r10, r12, r6, asr #16
|
||||
sub r11, lr, r7, asr #16
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], +r2
|
||||
sub r10, r4, r9, asr #16
|
||||
add r11, r5, r8, asr #16
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], #4
|
||||
subs r3, r3, #1, 16
|
||||
bge LBL4
|
||||
add r12, r2, r2, lsl #1
|
||||
add r1, r1, r12
|
||||
sub r0, r0, r12
|
||||
sub r3, r3, #1
|
||||
movs lr, r3, lsl #16
|
||||
bne LBL5
|
||||
add r0, r0, r12
|
||||
ldmia sp!, {r1, r3}
|
||||
mov r2, r2, lsl #2
|
||||
cmp r3, #2
|
||||
bgt LBL6
|
||||
|
||||
LBL3:
|
||||
mov r0, #0
|
||||
ldmia sp!, {r4 - r11, pc}
|
||||
andeq r3, r1, r0, lsr #32
|
||||
andeq r10, r1, r12, ror #31
|
||||
andeq r3, r1, r8, lsr #32
|
@ -1,221 +0,0 @@
|
||||
.globl FFT_4OIQ14
|
||||
|
||||
FFT_4OIQ14:
|
||||
stmdb sp!, {r4 - r11, lr}
|
||||
ldr lr, =s_Q14S_8
|
||||
ldr lr, [lr]
|
||||
cmp r2, lr
|
||||
movgt r0, #1
|
||||
ldmgtia sp!, {r4 - r11, pc}
|
||||
stmdb sp!, {r1, r2}
|
||||
mov r3, #0
|
||||
mov r2, r2
|
||||
|
||||
LBL1:
|
||||
add r12, r0, r3, lsl #2
|
||||
add r12, r12, r2, lsr #1
|
||||
ldrsh r5, [r12, #2]
|
||||
ldrsh r4, [r12], +r2
|
||||
ldrsh r9, [r12, #2]
|
||||
ldrsh r8, [r12], +r2
|
||||
ldrsh r7, [r12, #2]
|
||||
ldrsh r6, [r12], +r2
|
||||
ldrsh r11, [r12, #2]
|
||||
ldrsh r10, [r12], +r2
|
||||
add r4, r4, r6
|
||||
add r5, r5, r7
|
||||
sub r6, r4, r6, lsl #1
|
||||
sub r7, r5, r7, lsl #1
|
||||
sub r12, r8, r10
|
||||
sub lr, r9, r11
|
||||
add r10, r8, r10
|
||||
add r11, r9, r11
|
||||
sub r9, r4, r10
|
||||
sub r8, r5, r11
|
||||
add r4, r4, r10
|
||||
add r5, r5, r11
|
||||
add r10, r6, lr
|
||||
sub r11, r7, r12
|
||||
sub r6, r6, lr
|
||||
add r7, r7, r12
|
||||
ldr lr, =t_Q14R_rad8
|
||||
ldrsh lr, [lr]
|
||||
stmdb sp!, {r2}
|
||||
sub r12, r6, r7
|
||||
mul r6, r12, lr
|
||||
add r12, r12, r7, lsl #1
|
||||
mul r7, r12, lr
|
||||
sub r12, r10, r11
|
||||
mul r11, r12, lr
|
||||
sub r12, r12, r10, lsl #1
|
||||
mul r10, r12, lr
|
||||
ldmia sp!, {r2}
|
||||
stmdb sp!, {r4 - r11}
|
||||
add r4, r0, r3, lsl #2
|
||||
ldrsh r7, [r4, #2]
|
||||
ldrsh r6, [r4], +r2
|
||||
ldrsh r11, [r4, #2]
|
||||
ldrsh r10, [r4], +r2
|
||||
ldrsh r9, [r4, #2]
|
||||
ldrsh r8, [r4], +r2
|
||||
ldrsh lr, [r4, #2]
|
||||
ldrsh r12, [r4], +r2
|
||||
add r6, r6, r8
|
||||
add r7, r7, r9
|
||||
sub r8, r6, r8, lsl #1
|
||||
sub r9, r7, r9, lsl #1
|
||||
sub r4, r10, r12
|
||||
sub r5, r11, lr
|
||||
add r10, r10, r12
|
||||
add r11, r11, lr
|
||||
add r6, r6, r10
|
||||
add r7, r7, r11
|
||||
sub r10, r6, r10, lsl #1
|
||||
sub r11, r7, r11, lsl #1
|
||||
add r12, r8, r5
|
||||
sub lr, r9, r4
|
||||
sub r8, r8, r5
|
||||
add r9, r9, r4
|
||||
ldmia sp!, {r4, r5}
|
||||
add r6, r6, r4
|
||||
add r7, r7, r5
|
||||
sub r4, r6, r4, lsl #1
|
||||
sub r5, r7, r5, lsl #1
|
||||
strh r7, [r1, #2]
|
||||
strh r6, [r1], #4
|
||||
ldmia sp!, {r6, r7}
|
||||
add r8, r8, r6, asr #14
|
||||
add r9, r9, r7, asr #14
|
||||
sub r6, r8, r6, asr #13
|
||||
sub r7, r9, r7, asr #13
|
||||
strh r9, [r1, #2]
|
||||
strh r8, [r1], #4
|
||||
ldmia sp!, {r8, r9}
|
||||
sub r10, r10, r8
|
||||
add r11, r11, r9
|
||||
add r8, r10, r8, lsl #1
|
||||
sub r9, r11, r9, lsl #1
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], #4
|
||||
ldmia sp!, {r10, r11}
|
||||
add r12, r12, r10, asr #14
|
||||
add lr, lr, r11, asr #14
|
||||
sub r10, r12, r10, asr #13
|
||||
sub r11, lr, r11, asr #13
|
||||
strh lr, [r1, #2]
|
||||
strh r12, [r1], #4
|
||||
strh r5, [r1, #2]
|
||||
strh r4, [r1], #4
|
||||
strh r7, [r1, #2]
|
||||
strh r6, [r1], #4
|
||||
strh r9, [r1, #2]
|
||||
strh r8, [r1], #4
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], #4
|
||||
eor r3, r3, r2, lsr #4
|
||||
tst r3, r2, lsr #4
|
||||
bne LBL1
|
||||
eor r3, r3, r2, lsr #5
|
||||
tst r3, r2, lsr #5
|
||||
bne LBL1
|
||||
mov r12, r2, lsr #6
|
||||
|
||||
|
||||
LBL2:
|
||||
eor r3, r3, r12
|
||||
tst r3, r12
|
||||
bne LBL1
|
||||
movs r12, r12, lsr #1
|
||||
bne LBL2
|
||||
ldmia sp!, {r1, r2}
|
||||
mov r3, r2, lsr #3
|
||||
mov r2, #0x20
|
||||
ldr r0, =t_Q14S_8
|
||||
cmp r3, #1
|
||||
beq LBL3
|
||||
|
||||
LBL6:
|
||||
mov r3, r3, lsr #2
|
||||
stmdb sp!, {r1, r3}
|
||||
add r12, r2, r2, lsl #1
|
||||
add r1, r1, r12
|
||||
sub r3, r3, #1, 16
|
||||
|
||||
LBL5:
|
||||
add r3, r3, r2, lsl #14
|
||||
|
||||
LBL4:
|
||||
ldrsh r6, [r0], #2
|
||||
ldrsh r7, [r0], #2
|
||||
ldrsh r8, [r0], #2
|
||||
ldrsh r9, [r0], #2
|
||||
ldrsh r10, [r0], #2
|
||||
ldrsh r11, [r0], #2
|
||||
ldrsh r5, [r1, #2]
|
||||
ldrsh r4, [r1], -r2
|
||||
sub lr, r4, r5
|
||||
mul r12, lr, r11
|
||||
add r11, r10, r11, lsl #1
|
||||
mla r10, r4, r10, r12
|
||||
mla r11, r5, r11, r12
|
||||
ldrsh r5, [r1, #2]
|
||||
ldrsh r4, [r1], -r2
|
||||
sub lr, r4, r5
|
||||
mul r12, lr, r9
|
||||
add r9, r8, r9, lsl #1
|
||||
mla r8, r4, r8, r12
|
||||
mla r9, r5, r9, r12
|
||||
ldrsh r5, [r1, #2]
|
||||
ldrsh r4, [r1], -r2
|
||||
sub lr, r4, r5
|
||||
mul r12, lr, r7
|
||||
add r7, r6, r7, lsl #1
|
||||
mla r6, r4, r6, r12
|
||||
mla r7, r5, r7, r12
|
||||
ldrsh r5, [r1, #2]
|
||||
ldrsh r4, [r1]
|
||||
add r12, r4, r6, asr #14
|
||||
add lr, r5, r7, asr #14
|
||||
sub r4, r4, r6, asr #14
|
||||
sub r5, r5, r7, asr #14
|
||||
add r6, r8, r10
|
||||
add r7, r9, r11
|
||||
sub r8, r8, r10
|
||||
sub r9, r9, r11
|
||||
add r10, r12, r6, asr #14
|
||||
add r11, lr, r7, asr #14
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], +r2
|
||||
sub r10, r4, r9, asr #14
|
||||
add r11, r5, r8, asr #14
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], +r2
|
||||
sub r10, r12, r6, asr #14
|
||||
sub r11, lr, r7, asr #14
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], +r2
|
||||
add r10, r4, r9, asr #14
|
||||
sub r11, r5, r8, asr #14
|
||||
strh r11, [r1, #2]
|
||||
strh r10, [r1], #4
|
||||
subs r3, r3, #1, 16
|
||||
bge LBL4
|
||||
add r12, r2, r2, lsl #1
|
||||
add r1, r1, r12
|
||||
sub r0, r0, r12
|
||||
sub r3, r3, #1
|
||||
movs lr, r3, lsl #16
|
||||
bne LBL5
|
||||
add r0, r0, r12
|
||||
ldmia sp!, {r1, r3}
|
||||
mov r2, r2, lsl #2
|
||||
cmp r3, #2
|
||||
bgt LBL6
|
||||
|
||||
LBL3:
|
||||
mov r0, #0
|
||||
ldmia sp!, {r4 - r11, pc}
|
||||
andeq r3, r1, r0, lsr #32
|
||||
andeq r10, r1, r12, ror #31
|
||||
andeq r3, r1, r8, lsr #32
|
||||
|
@ -1517,11 +1517,7 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
int outCFFT;
|
||||
|
||||
WebRtc_Word16 fft[PART_LEN4];
|
||||
#if (defined ARM_WINM) || (defined ARM9E_GCC) || (defined ANDROID_AECOPT)
|
||||
WebRtc_Word16 postFft[PART_LEN4];
|
||||
#else
|
||||
WebRtc_Word16 postFft[PART_LEN2];
|
||||
#endif
|
||||
WebRtc_Word16 dfwReal[PART_LEN1];
|
||||
WebRtc_Word16 dfwImag[PART_LEN1];
|
||||
WebRtc_Word16 xfwReal[PART_LEN1];
|
||||
@ -1635,18 +1631,6 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
// Fourier transformation of near end signal.
|
||||
// The result is scaled with 1/PART_LEN2, that is, the result is in Q(-6) for PART_LEN = 32
|
||||
|
||||
#if (defined ARM_WINM) || (defined ARM9E_GCC) || (defined ANDROID_AECOPT)
|
||||
outCFFT = WebRtcSpl_ComplexFFT2(fft, postFft, PART_LEN_SHIFT, 1);
|
||||
|
||||
// The imaginary part has to switch sign
|
||||
for(i = 1; i < PART_LEN2-1;)
|
||||
{
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
}
|
||||
#else
|
||||
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
|
||||
outCFFT = WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
|
||||
|
||||
@ -1661,17 +1645,12 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Extract imaginary and real part, calculate the magnitude for all frequency bins
|
||||
dfwImag[0] = 0;
|
||||
dfwImag[PART_LEN] = 0;
|
||||
dfwReal[0] = postFft[0];
|
||||
#if (defined ARM_WINM) || (defined ARM9E_GCC) || (defined ANDROID_AECOPT)
|
||||
dfwReal[PART_LEN] = postFft[PART_LEN2];
|
||||
#else
|
||||
dfwReal[PART_LEN] = fft[PART_LEN2];
|
||||
#endif
|
||||
dfaNoisy[0] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(dfwReal[0]);
|
||||
dfaNoisy[PART_LEN] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(dfwReal[PART_LEN]);
|
||||
dfaNoisySum = (WebRtc_UWord32)(dfaNoisy[0]);
|
||||
@ -1758,19 +1737,6 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
|
||||
// Fourier transformation of near end signal.
|
||||
// The result is scaled with 1/PART_LEN2, that is, in Q(-6) for PART_LEN = 32
|
||||
|
||||
#if (defined ARM_WINM) || (defined ARM9E_GCC) || (defined ANDROID_AECOPT)
|
||||
outCFFT = WebRtcSpl_ComplexFFT2(fft, postFft, PART_LEN_SHIFT, 1);
|
||||
|
||||
// The imaginary part has to switch sign
|
||||
for(i = 1; i < PART_LEN2-1;)
|
||||
{
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
}
|
||||
#else
|
||||
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
|
||||
outCFFT = WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
|
||||
|
||||
@ -1785,17 +1751,12 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Extract imaginary and real part, calculate the magnitude for all frequency bins
|
||||
dfwImag[0] = 0;
|
||||
dfwImag[PART_LEN] = 0;
|
||||
dfwReal[0] = postFft[0];
|
||||
#if (defined ARM_WINM) || (defined ARM9E_GCC) || (defined ANDROID_AECOPT)
|
||||
dfwReal[PART_LEN] = postFft[PART_LEN2];
|
||||
#else
|
||||
dfwReal[PART_LEN] = fft[PART_LEN2];
|
||||
#endif
|
||||
dfaClean[0] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(dfwReal[0]);
|
||||
dfaClean[PART_LEN] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(dfwReal[PART_LEN]);
|
||||
|
||||
@ -1874,18 +1835,6 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
}
|
||||
// Fourier transformation of far end signal.
|
||||
// The result is scaled with 1/PART_LEN2, that is the result is in Q(-6) for PART_LEN = 32
|
||||
#if (defined ARM_WINM) || (defined ARM9E_GCC) || (defined ANDROID_AECOPT)
|
||||
outCFFT = WebRtcSpl_ComplexFFT2(fft, postFft, PART_LEN_SHIFT, 1);
|
||||
|
||||
// The imaginary part has to switch sign
|
||||
for(i = 1; i < PART_LEN2-1;)
|
||||
{
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
}
|
||||
#else
|
||||
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
|
||||
outCFFT = WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
|
||||
|
||||
@ -1900,17 +1849,12 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
postFft[i] = -postFft[i];
|
||||
i += 2;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Extract imaginary and real part, calculate the magnitude for all frequency bins
|
||||
xfwImag[0] = 0;
|
||||
xfwImag[PART_LEN] = 0;
|
||||
xfwReal[0] = postFft[0];
|
||||
#if (defined ARM_WINM) || (defined ARM9E_GCC) || (defined ANDROID_AECOPT)
|
||||
xfwReal[PART_LEN] = postFft[PART_LEN2];
|
||||
#else
|
||||
xfwReal[PART_LEN] = fft[PART_LEN2];
|
||||
#endif
|
||||
xfa[0] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(xfwReal[0]);
|
||||
xfa[PART_LEN] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(xfwReal[PART_LEN]);
|
||||
xfaSum = (WebRtc_UWord32)(xfa[0]) + (WebRtc_UWord32)(xfa[PART_LEN]);
|
||||
@ -2296,7 +2240,6 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
fft[PART_LEN2] = efwReal[PART_LEN];
|
||||
fft[PART_LEN2 + 1] = -efwImag[PART_LEN];
|
||||
|
||||
#if (!defined ARM_WINM) && (!defined ARM9E_GCC) && (!defined ANDROID_AECOPT)
|
||||
// inverse FFT, result should be scaled with outCFFT
|
||||
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
|
||||
outCFFT = WebRtcSpl_ComplexIFFT(fft, PART_LEN_SHIFT, 1);
|
||||
@ -2307,20 +2250,6 @@ void WebRtcAecm_ProcessBlock(AecmCore_t * const aecm, const WebRtc_Word16 * cons
|
||||
j = WEBRTC_SPL_LSHIFT_W32(i, 1);
|
||||
fft[i] = fft[j];
|
||||
}
|
||||
#else
|
||||
outCFFT = WebRtcSpl_ComplexIFFT2(fft, postFft, PART_LEN_SHIFT, 1);
|
||||
|
||||
//take only the real values and scale with outCFFT
|
||||
for(i = 0, j = 0; i < PART_LEN2;)
|
||||
{
|
||||
fft[i] = postFft[j];
|
||||
i += 1;
|
||||
j += 2;
|
||||
fft[i] = postFft[j];
|
||||
i += 1;
|
||||
j += 2;
|
||||
}
|
||||
#endif
|
||||
|
||||
for (i = 0; i < PART_LEN; i++)
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user