Revert r4146 "Revert 4104 "Refactor jitter buffer to use separate lists for de...""
TBR=tnakamura@webrtc.org Review URL: https://webrtc-codereview.appspot.com/1677004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@4232 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
parent
7262ad1385
commit
c8b29a2feb
@ -82,11 +82,21 @@ void VCMDecodingState::CopyFrom(const VCMDecodingState& state) {
|
||||
in_initial_state_ = state.in_initial_state_;
|
||||
}
|
||||
|
||||
void VCMDecodingState::UpdateEmptyFrame(const VCMFrameBuffer* frame) {
|
||||
if (ContinuousFrame(frame)) {
|
||||
time_stamp_ = frame->TimeStamp();
|
||||
sequence_num_ = frame->GetHighSeqNum();
|
||||
bool VCMDecodingState::UpdateEmptyFrame(const VCMFrameBuffer* frame) {
|
||||
bool empty_packet = frame->GetHighSeqNum() == frame->GetLowSeqNum();
|
||||
if (in_initial_state_ && empty_packet) {
|
||||
// Drop empty packets as long as we are in the initial state.
|
||||
return true;
|
||||
}
|
||||
if ((empty_packet && ContinuousSeqNum(frame->GetHighSeqNum())) ||
|
||||
ContinuousFrame(frame)) {
|
||||
// Continuous empty packets or continuous frames can be dropped if we
|
||||
// advance the sequence number.
|
||||
sequence_num_ = frame->GetHighSeqNum();
|
||||
time_stamp_ = frame->TimeStamp();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void VCMDecodingState::UpdateOldPacket(const VCMPacket* packet) {
|
||||
@ -139,11 +149,14 @@ bool VCMDecodingState::ContinuousFrame(const VCMFrameBuffer* frame) const {
|
||||
// Return true when in initial state.
|
||||
// Note that when a method is not applicable it will return false.
|
||||
assert(frame != NULL);
|
||||
if (in_initial_state_) {
|
||||
// Always start with a key frame.
|
||||
if (frame->FrameType() == kVideoFrameKey) return true;
|
||||
// A key frame is always considered continuous as it doesn't refer to any
|
||||
// frames and therefore won't introduce any errors even if prior frames are
|
||||
// missing.
|
||||
if (frame->FrameType() == kVideoFrameKey)
|
||||
return true;
|
||||
// When in the initial state we always require a key frame to start decoding.
|
||||
if (in_initial_state_)
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!ContinuousLayer(frame->TemporalId(), frame->Tl0PicId())) {
|
||||
// Base layers are not continuous or temporal layers are inactive.
|
||||
|
@ -32,7 +32,7 @@ class VCMDecodingState {
|
||||
bool ContinuousFrame(const VCMFrameBuffer* frame) const;
|
||||
void SetState(const VCMFrameBuffer* frame);
|
||||
void CopyFrom(const VCMDecodingState& state);
|
||||
void UpdateEmptyFrame(const VCMFrameBuffer* frame);
|
||||
bool UpdateEmptyFrame(const VCMFrameBuffer* frame);
|
||||
// Update the sequence number if the timestamp matches current state and the
|
||||
// sequence number is higher than the current one. This accounts for packets
|
||||
// arriving late.
|
||||
|
@ -73,6 +73,82 @@ bool HasNonEmptyState(VCMFrameBuffer* frame) {
|
||||
return frame->GetState() != kStateEmpty;
|
||||
}
|
||||
|
||||
void FrameList::InsertFrame(VCMFrameBuffer* frame) {
|
||||
reverse_iterator rit = std::find_if(
|
||||
rbegin(), rend(), FrameSmallerTimestamp(frame->TimeStamp()));
|
||||
insert(rit.base(), frame);
|
||||
}
|
||||
|
||||
VCMFrameBuffer* FrameList::FindFrame(uint32_t timestamp) const {
|
||||
FrameList::const_iterator it = std::find_if(begin(), end(),
|
||||
FrameEqualTimestamp(timestamp));
|
||||
if (it == end())
|
||||
return NULL;
|
||||
return *it;
|
||||
}
|
||||
|
||||
VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
|
||||
FrameList::iterator it = std::find_if(begin(), end(),
|
||||
FrameEqualTimestamp(timestamp));
|
||||
if (it == end())
|
||||
return NULL;
|
||||
VCMFrameBuffer* frame = *it;
|
||||
erase(it);
|
||||
return frame;
|
||||
}
|
||||
|
||||
int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it) {
|
||||
int drop_count = 0;
|
||||
*key_frame_it = begin();
|
||||
while (!empty()) {
|
||||
// Throw at least one frame.
|
||||
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding, -1,
|
||||
"Recycling: type=%s, low seqnum=%u",
|
||||
(**key_frame_it)->FrameType() == kVideoFrameKey ?
|
||||
"key" : "delta", (**key_frame_it)->GetLowSeqNum());
|
||||
if ((**key_frame_it)->GetState() != kStateDecoding) {
|
||||
(**key_frame_it)->SetState(kStateFree);
|
||||
}
|
||||
*key_frame_it = erase(*key_frame_it);
|
||||
++drop_count;
|
||||
if (*key_frame_it != end() &&
|
||||
(**key_frame_it)->FrameType() == kVideoFrameKey) {
|
||||
return drop_count;
|
||||
}
|
||||
}
|
||||
return drop_count;
|
||||
}
|
||||
|
||||
int FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state) {
|
||||
int drop_count = 0;
|
||||
while (!empty()) {
|
||||
VCMFrameBuffer* oldest_frame = front();
|
||||
bool remove_frame = false;
|
||||
if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
|
||||
// This frame is empty, try to update the last decoded state and drop it
|
||||
// if successful.
|
||||
remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
|
||||
} else {
|
||||
remove_frame = decoding_state->IsOldFrame(oldest_frame);
|
||||
}
|
||||
if (!remove_frame) {
|
||||
break;
|
||||
}
|
||||
if (front()->GetState() != kStateDecoding) {
|
||||
front()->SetState(kStateFree);
|
||||
}
|
||||
++drop_count;
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp",
|
||||
oldest_frame->TimeStamp());
|
||||
erase(begin());
|
||||
}
|
||||
if (empty()) {
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::FrameListEmptied",
|
||||
"type", "CleanUpOldOrEmptyFrames");
|
||||
}
|
||||
return drop_count;
|
||||
}
|
||||
|
||||
VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
|
||||
EventFactory* event_factory,
|
||||
int vcm_id,
|
||||
@ -88,7 +164,8 @@ VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
|
||||
packet_event_(event_factory->CreateEvent()),
|
||||
max_number_of_frames_(kStartNumberOfFrames),
|
||||
frame_buffers_(),
|
||||
frame_list_(),
|
||||
decodable_frames_(),
|
||||
incomplete_frames_(),
|
||||
last_decoded_state_(),
|
||||
first_packet_since_reset_(true),
|
||||
num_not_decodable_packets_(0),
|
||||
@ -172,15 +249,18 @@ void VCMJitterBuffer::CopyFrom(const VCMJitterBuffer& rhs) {
|
||||
frame_buffers_[i] = NULL;
|
||||
}
|
||||
}
|
||||
frame_list_.clear();
|
||||
for (int i = 0; i < max_number_of_frames_; i++) {
|
||||
frame_buffers_[i] = new VCMFrameBuffer(*(rhs.frame_buffers_[i]));
|
||||
if (frame_buffers_[i]->Length() > 0) {
|
||||
FrameList::reverse_iterator rit = std::find_if(
|
||||
frame_list_.rbegin(), frame_list_.rend(),
|
||||
FrameSmallerTimestamp(frame_buffers_[i]->TimeStamp()));
|
||||
frame_list_.insert(rit.base(), frame_buffers_[i]);
|
||||
}
|
||||
decodable_frames_.clear();
|
||||
incomplete_frames_.clear();
|
||||
int i = 0;
|
||||
for (FrameList::const_iterator it = rhs.decodable_frames_.begin();
|
||||
it != rhs.decodable_frames_.end(); ++it, ++i) {
|
||||
frame_buffers_[i] = new VCMFrameBuffer(**it);
|
||||
decodable_frames_.push_back(frame_buffers_[i]);
|
||||
}
|
||||
for (FrameList::const_iterator it = rhs.incomplete_frames_.begin();
|
||||
it != rhs.incomplete_frames_.end(); ++it, ++i) {
|
||||
frame_buffers_[i] = new VCMFrameBuffer(**it);
|
||||
incomplete_frames_.push_back(frame_buffers_[i]);
|
||||
}
|
||||
rhs.crit_sect_->Leave();
|
||||
crit_sect_->Leave();
|
||||
@ -221,7 +301,8 @@ void VCMJitterBuffer::Stop() {
|
||||
crit_sect_->Enter();
|
||||
running_ = false;
|
||||
last_decoded_state_.Reset();
|
||||
frame_list_.clear();
|
||||
decodable_frames_.clear();
|
||||
incomplete_frames_.clear();
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::FrameListEmptied", "type", "Stop");
|
||||
for (int i = 0; i < kMaxNumberOfFrames; i++) {
|
||||
if (frame_buffers_[i] != NULL) {
|
||||
@ -246,7 +327,8 @@ bool VCMJitterBuffer::Running() const {
|
||||
void VCMJitterBuffer::Flush() {
|
||||
CriticalSectionScoped cs(crit_sect_);
|
||||
// Erase all frames from the sorted list and set their state to free.
|
||||
frame_list_.clear();
|
||||
decodable_frames_.clear();
|
||||
incomplete_frames_.clear();
|
||||
TRACE_EVENT_INSTANT2("webrtc", "JB::FrameListEmptied", "type", "Flush",
|
||||
"frames", max_number_of_frames_);
|
||||
for (int i = 0; i < max_number_of_frames_; i++) {
|
||||
@ -361,32 +443,13 @@ bool VCMJitterBuffer::CompleteSequenceWithNextFrame() {
|
||||
CriticalSectionScoped cs(crit_sect_);
|
||||
// Finding oldest frame ready for decoder, check sequence number and size
|
||||
CleanUpOldOrEmptyFrames();
|
||||
|
||||
if (frame_list_.empty())
|
||||
if (!decodable_frames_.empty())
|
||||
return true;
|
||||
|
||||
VCMFrameBuffer* oldest_frame = frame_list_.front();
|
||||
if (frame_list_.size() <= 1 &&
|
||||
oldest_frame->GetState() != kStateComplete) {
|
||||
if (incomplete_frames_.size() <= 1) {
|
||||
// Frame not ready to be decoded.
|
||||
return true;
|
||||
}
|
||||
if (oldest_frame->GetState() != kStateComplete) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// See if we have lost a frame before this one.
|
||||
if (last_decoded_state_.in_initial_state()) {
|
||||
// Following start, reset or flush -> check for key frame.
|
||||
if (oldest_frame->FrameType() != kVideoFrameKey) {
|
||||
return false;
|
||||
}
|
||||
} else if (oldest_frame->GetLowSeqNum() == -1) {
|
||||
return false;
|
||||
} else if (!last_decoded_state_.ContinuousFrame(oldest_frame)) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
|
||||
@ -396,13 +459,12 @@ bool VCMJitterBuffer::NextCompleteTimestamp(
|
||||
TRACE_EVENT0("webrtc", "JB::NextCompleteTimestamp");
|
||||
crit_sect_->Enter();
|
||||
if (!running_) {
|
||||
crit_sect_->Leave();
|
||||
return false;
|
||||
}
|
||||
CleanUpOldOrEmptyFrames();
|
||||
|
||||
FrameList::iterator it = FindOldestCompleteContinuousFrame(
|
||||
frame_list_.begin(), &last_decoded_state_);
|
||||
if (it == frame_list_.end()) {
|
||||
if (decodable_frames_.empty()) {
|
||||
const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() +
|
||||
max_wait_time_ms;
|
||||
int64_t wait_time_ms = max_wait_time_ms;
|
||||
@ -412,7 +474,7 @@ bool VCMJitterBuffer::NextCompleteTimestamp(
|
||||
frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
|
||||
crit_sect_->Enter();
|
||||
if (ret == kEventSignaled) {
|
||||
// Are we closing down the Jitter buffer?
|
||||
// Are we shutting down the jitter buffer?
|
||||
if (!running_) {
|
||||
crit_sect_->Leave();
|
||||
return false;
|
||||
@ -420,9 +482,7 @@ bool VCMJitterBuffer::NextCompleteTimestamp(
|
||||
// Finding oldest frame ready for decoder, but check
|
||||
// sequence number and size
|
||||
CleanUpOldOrEmptyFrames();
|
||||
it = FindOldestCompleteContinuousFrame(
|
||||
frame_list_.begin(), &last_decoded_state_);
|
||||
if (it == frame_list_.end()) {
|
||||
if (decodable_frames_.empty()) {
|
||||
wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
|
||||
} else {
|
||||
break;
|
||||
@ -433,31 +493,19 @@ bool VCMJitterBuffer::NextCompleteTimestamp(
|
||||
}
|
||||
// Inside |crit_sect_|.
|
||||
} else {
|
||||
// We already have a frame reset the event.
|
||||
// We already have a frame, reset the event.
|
||||
frame_event_->Reset();
|
||||
}
|
||||
|
||||
if (!decode_with_errors_ && it == frame_list_.end()) {
|
||||
// We're still missing a complete continuous frame.
|
||||
// Look for a complete key frame if we're not decoding with errors.
|
||||
it = find_if(frame_list_.begin(), frame_list_.end(),
|
||||
CompleteKeyFrameCriteria());
|
||||
if (decodable_frames_.empty()) {
|
||||
crit_sect_->Leave();
|
||||
return false;
|
||||
}
|
||||
|
||||
if (it == frame_list_.end()) {
|
||||
crit_sect_->Leave();
|
||||
return false;
|
||||
}
|
||||
|
||||
VCMFrameBuffer* oldest_frame = *it;
|
||||
|
||||
*timestamp = oldest_frame->TimeStamp();
|
||||
*timestamp = decodable_frames_.front()->TimeStamp();
|
||||
crit_sect_->Leave();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(
|
||||
uint32_t* timestamp) {
|
||||
bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) {
|
||||
TRACE_EVENT0("webrtc", "JB::NextMaybeIncompleteTimestamp");
|
||||
CriticalSectionScoped cs(crit_sect_);
|
||||
if (!running_) {
|
||||
@ -470,17 +518,17 @@ bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(
|
||||
|
||||
CleanUpOldOrEmptyFrames();
|
||||
|
||||
if (frame_list_.empty()) {
|
||||
VCMFrameBuffer* oldest_frame = NextFrame();
|
||||
if (!oldest_frame) {
|
||||
return false;
|
||||
}
|
||||
|
||||
VCMFrameBuffer* oldest_frame = frame_list_.front();
|
||||
// If we have only one frame in the buffer, release it only if it is complete.
|
||||
if (frame_list_.size() <= 1 && oldest_frame->GetState() != kStateComplete) {
|
||||
if (decodable_frames_.empty() && incomplete_frames_.size() <= 1 &&
|
||||
oldest_frame->GetState() == kStateIncomplete) {
|
||||
// If we have only one frame in the buffer, release it only if it is
|
||||
// complete.
|
||||
return false;
|
||||
}
|
||||
|
||||
// Always start with a key frame.
|
||||
// Always start with a complete key frame.
|
||||
if (last_decoded_state_.in_initial_state() &&
|
||||
oldest_frame->FrameType() != kVideoFrameKey) {
|
||||
return false;
|
||||
@ -498,18 +546,13 @@ VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
|
||||
return NULL;
|
||||
}
|
||||
// Extract the frame with the desired timestamp.
|
||||
FrameList::iterator it = std::find_if(
|
||||
frame_list_.begin(),
|
||||
frame_list_.end(),
|
||||
FrameEqualTimestamp(timestamp));
|
||||
|
||||
if (it == frame_list_.end()) {
|
||||
return NULL;
|
||||
VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
|
||||
if (!frame) {
|
||||
frame = incomplete_frames_.PopFrame(timestamp);
|
||||
if (!frame)
|
||||
return NULL;
|
||||
}
|
||||
// We got the frame.
|
||||
VCMFrameBuffer* frame = *it;
|
||||
frame_list_.erase(it);
|
||||
if (frame_list_.empty()) {
|
||||
if (!NextFrame()) {
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::FrameListEmptied",
|
||||
"type", "ExtractAndSetDecode");
|
||||
}
|
||||
@ -585,16 +628,14 @@ VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
|
||||
}
|
||||
num_consecutive_old_packets_ = 0;
|
||||
|
||||
FrameList::iterator it = std::find_if(
|
||||
frame_list_.begin(),
|
||||
frame_list_.end(),
|
||||
FrameEqualTimestamp(packet.timestamp));
|
||||
|
||||
if (it != frame_list_.end()) {
|
||||
*frame = *it;
|
||||
*frame = incomplete_frames_.FindFrame(packet.timestamp);
|
||||
if (*frame) {
|
||||
return kNoError;
|
||||
}
|
||||
*frame = decodable_frames_.FindFrame(packet.timestamp);
|
||||
if (*frame) {
|
||||
return kNoError;
|
||||
}
|
||||
|
||||
// No match, return empty frame.
|
||||
*frame = GetEmptyFrame();
|
||||
if (*frame != NULL) {
|
||||
@ -640,6 +681,23 @@ VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
|
||||
// reset the delay estimate.
|
||||
inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
|
||||
}
|
||||
if (last_decoded_state_.IsOldPacket(&packet)) {
|
||||
// This packet belongs to an old, already decoded frame, we want to update
|
||||
// the last decoded sequence number.
|
||||
last_decoded_state_.UpdateOldPacket(&packet);
|
||||
frame->SetState(kStateFree);
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::DropLateFrame",
|
||||
"timestamp", frame->TimeStamp());
|
||||
drop_count_++;
|
||||
// Flush() if this happens consistently.
|
||||
num_consecutive_old_frames_++;
|
||||
if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) {
|
||||
Flush();
|
||||
return kFlushIndicator;
|
||||
}
|
||||
return kNoError;
|
||||
}
|
||||
num_consecutive_old_frames_ = 0;
|
||||
|
||||
// Empty packets may bias the jitter estimate (lacking size component),
|
||||
// therefore don't let empty packet trigger the following updates:
|
||||
@ -659,7 +717,7 @@ VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
|
||||
}
|
||||
}
|
||||
|
||||
VCMFrameBufferStateEnum state = frame->GetState();
|
||||
VCMFrameBufferStateEnum previous_state = frame->GetState();
|
||||
// Insert packet.
|
||||
// Check for first packet. High sequence number will be -1 if neither an empty
|
||||
// packet nor a media packet has been inserted.
|
||||
@ -674,17 +732,6 @@ VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
|
||||
ret = buffer_return;
|
||||
if (buffer_return > 0) {
|
||||
incoming_bit_count_ += packet.sizeBytes << 3;
|
||||
|
||||
// Insert each frame once on the arrival of the first packet
|
||||
// belonging to that frame (media or empty).
|
||||
if (state == kStateEmpty && first) {
|
||||
ret = kFirstPacket;
|
||||
FrameList::reverse_iterator rit = std::find_if(
|
||||
frame_list_.rbegin(),
|
||||
frame_list_.rend(),
|
||||
FrameSmallerTimestamp(frame->TimeStamp()));
|
||||
frame_list_.insert(rit.base(), frame);
|
||||
}
|
||||
if (first_packet_since_reset_) {
|
||||
latest_received_sequence_number_ = packet.seqNum;
|
||||
first_packet_since_reset_ = false;
|
||||
@ -705,9 +752,8 @@ VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
|
||||
case kTimeStampError:
|
||||
case kSizeError: {
|
||||
if (frame != NULL) {
|
||||
// Will be released when it gets old.
|
||||
frame->Reset();
|
||||
frame->SetState(kStateEmpty);
|
||||
frame->SetState(kStateFree);
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -715,17 +761,36 @@ VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
|
||||
// Don't let the first packet be overridden by a complete session.
|
||||
ret = kCompleteSession;
|
||||
// Only update return value for a JB flush indicator.
|
||||
if (UpdateFrameState(frame) == kFlushIndicator)
|
||||
ret = kFlushIndicator;
|
||||
UpdateFrameState(frame);
|
||||
*retransmitted = (frame->GetNackCount() > 0);
|
||||
if (IsContinuous(*frame) && previous_state != kStateComplete) {
|
||||
if (!first) {
|
||||
incomplete_frames_.PopFrame(packet.timestamp);
|
||||
}
|
||||
decodable_frames_.InsertFrame(frame);
|
||||
FindAndInsertContinuousFrames(*frame);
|
||||
// Signal that we have a decodable frame.
|
||||
frame_event_->Set();
|
||||
} else if (first) {
|
||||
incomplete_frames_.InsertFrame(frame);
|
||||
}
|
||||
// Signal that we have a received packet.
|
||||
packet_event_->Set();
|
||||
break;
|
||||
}
|
||||
case kDecodableSession:
|
||||
case kIncomplete: {
|
||||
// Signal that we have a received packet.
|
||||
packet_event_->Set();
|
||||
// No point in storing empty continuous frames.
|
||||
if (frame->GetState() == kStateEmpty &&
|
||||
last_decoded_state_.UpdateEmptyFrame(frame)) {
|
||||
frame->SetState(kStateFree);
|
||||
ret = kNoError;
|
||||
} else if (first) {
|
||||
ret = kFirstPacket;
|
||||
incomplete_frames_.InsertFrame(frame);
|
||||
// Signal that we have received a packet.
|
||||
packet_event_->Set();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case kNoError:
|
||||
@ -742,6 +807,66 @@ VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame,
|
||||
const VCMDecodingState& decoding_state) const {
|
||||
// Is this frame complete or decodable and continuous?
|
||||
if ((frame.GetState() == kStateComplete ||
|
||||
(decode_with_errors_ && frame.GetState() == kStateDecodable)) &&
|
||||
decoding_state.ContinuousFrame(&frame)) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
|
||||
if (IsContinuousInState(frame, last_decoded_state_)) {
|
||||
return true;
|
||||
}
|
||||
VCMDecodingState decoding_state;
|
||||
decoding_state.CopyFrom(last_decoded_state_);
|
||||
for (FrameList::const_iterator it = decodable_frames_.begin();
|
||||
it != decodable_frames_.end(); ++it) {
|
||||
VCMFrameBuffer* decodable_frame = *it;
|
||||
if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
|
||||
break;
|
||||
}
|
||||
decoding_state.SetState(decodable_frame);
|
||||
if (IsContinuousInState(frame, decoding_state)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void VCMJitterBuffer::FindAndInsertContinuousFrames(
|
||||
const VCMFrameBuffer& new_frame) {
|
||||
VCMDecodingState decoding_state;
|
||||
decoding_state.CopyFrom(last_decoded_state_);
|
||||
decoding_state.SetState(&new_frame);
|
||||
// When temporal layers are available, we search for a complete or decodable
|
||||
// frame until we hit one of the following:
|
||||
// 1. Continuous base or sync layer.
|
||||
// 2. The end of the list was reached.
|
||||
for (FrameList::iterator it = incomplete_frames_.begin();
|
||||
it != incomplete_frames_.end();) {
|
||||
VCMFrameBuffer* frame = *it;
|
||||
if (IsNewerTimestamp(new_frame.TimeStamp(), frame->TimeStamp())) {
|
||||
++it;
|
||||
continue;
|
||||
}
|
||||
if (IsContinuousInState(*frame, decoding_state)) {
|
||||
decodable_frames_.InsertFrame(frame);
|
||||
it = incomplete_frames_.erase(it);
|
||||
decoding_state.SetState(frame);
|
||||
} else if (frame->TemporalId() <= 0) {
|
||||
break;
|
||||
} else {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void VCMJitterBuffer::SetMaxJitterEstimate(bool enable) {
|
||||
CriticalSectionScoped cs(crit_sect_);
|
||||
jitter_estimate_.SetMaxJitterEstimate(enable);
|
||||
@ -809,16 +934,14 @@ VCMNackMode VCMJitterBuffer::nack_mode() const {
|
||||
}
|
||||
|
||||
int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
|
||||
if (frame_list_.empty()) {
|
||||
if (incomplete_frames_.empty()) {
|
||||
return 0;
|
||||
}
|
||||
FrameList::iterator start_it;
|
||||
FrameList::iterator end_it;
|
||||
RenderBuffer(&start_it, &end_it);
|
||||
if (end_it == frame_list_.end())
|
||||
end_it = frame_list_.begin();
|
||||
return frame_list_.back()->TimeStamp() -
|
||||
(*end_it)->TimeStamp();
|
||||
uint32_t start_timestamp = incomplete_frames_.front()->TimeStamp();
|
||||
if (!decodable_frames_.empty()) {
|
||||
start_timestamp = decodable_frames_.back()->TimeStamp();
|
||||
}
|
||||
return incomplete_frames_.back()->TimeStamp() - start_timestamp;
|
||||
}
|
||||
|
||||
uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
|
||||
@ -841,12 +964,18 @@ uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size,
|
||||
return NULL;
|
||||
}
|
||||
if (last_decoded_state_.in_initial_state()) {
|
||||
bool first_frame_is_key = !frame_list_.empty() &&
|
||||
frame_list_.front()->FrameType() == kVideoFrameKey &&
|
||||
frame_list_.front()->HaveFirstPacket();
|
||||
const bool first_frame_is_key = NextFrame() &&
|
||||
NextFrame()->FrameType() == kVideoFrameKey &&
|
||||
NextFrame()->HaveFirstPacket();
|
||||
if (!first_frame_is_key) {
|
||||
const bool have_non_empty_frame = frame_list_.end() != find_if(
|
||||
frame_list_.begin(), frame_list_.end(), HasNonEmptyState);
|
||||
bool have_non_empty_frame = decodable_frames_.end() != find_if(
|
||||
decodable_frames_.begin(), decodable_frames_.end(),
|
||||
HasNonEmptyState);
|
||||
if (!have_non_empty_frame) {
|
||||
have_non_empty_frame = incomplete_frames_.end() != find_if(
|
||||
incomplete_frames_.begin(), incomplete_frames_.end(),
|
||||
HasNonEmptyState);
|
||||
}
|
||||
if (have_non_empty_frame) {
|
||||
LOG_F(LS_INFO) << "First frame is not key; Recycling.";
|
||||
}
|
||||
@ -872,10 +1001,9 @@ uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size,
|
||||
LOG_F(LS_INFO) << "Too long non-decodable duration: " <<
|
||||
non_continuous_incomplete_duration << " > " <<
|
||||
90 * max_incomplete_time_ms_;
|
||||
FrameList::reverse_iterator rit = find_if(frame_list_.rbegin(),
|
||||
frame_list_.rend(),
|
||||
KeyFrameCriteria());
|
||||
if (rit == frame_list_.rend()) {
|
||||
FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(),
|
||||
incomplete_frames_.rend(), KeyFrameCriteria());
|
||||
if (rit == incomplete_frames_.rend()) {
|
||||
// Request a key frame if we don't have one already.
|
||||
*request_key_frame = true;
|
||||
*nack_list_size = 0;
|
||||
@ -899,6 +1027,14 @@ uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size,
|
||||
return &nack_seq_nums_[0];
|
||||
}
|
||||
|
||||
VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
|
||||
if (!decodable_frames_.empty())
|
||||
return decodable_frames_.front();
|
||||
if (!incomplete_frames_.empty())
|
||||
return incomplete_frames_.front();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
|
||||
if (nack_mode_ == kNoNack) {
|
||||
return true;
|
||||
@ -987,73 +1123,17 @@ int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
|
||||
return last_decoded_state_.time_stamp();
|
||||
}
|
||||
|
||||
FrameList::iterator VCMJitterBuffer::FindLastContinuousAndComplete(
|
||||
FrameList::iterator start_it) {
|
||||
// Search for a complete and continuous sequence (starting from the last
|
||||
// decoded state or current frame if in initial state).
|
||||
VCMDecodingState previous_state;
|
||||
previous_state.SetState(*start_it);
|
||||
FrameList::iterator previous_it = start_it;
|
||||
++start_it;
|
||||
while (start_it != frame_list_.end()) {
|
||||
start_it = FindOldestCompleteContinuousFrame(start_it, &previous_state);
|
||||
if (start_it == frame_list_.end())
|
||||
break;
|
||||
previous_state.SetState(*start_it);
|
||||
previous_it = start_it;
|
||||
++start_it;
|
||||
}
|
||||
// Desired frame is the previous one.
|
||||
return previous_it;
|
||||
}
|
||||
|
||||
void VCMJitterBuffer::RenderBuffer(FrameList::iterator* start_it,
|
||||
FrameList::iterator* end_it) {
|
||||
*start_it = FindOldestCompleteContinuousFrame(
|
||||
frame_list_.begin(), &last_decoded_state_);
|
||||
if (!decode_with_errors_ && *start_it == frame_list_.end()) {
|
||||
// No complete continuous frame found.
|
||||
// Look for a complete key frame if we're not decoding with errors.
|
||||
*start_it = find_if(frame_list_.begin(), frame_list_.end(),
|
||||
CompleteKeyFrameCriteria());
|
||||
}
|
||||
if (*start_it == frame_list_.end()) {
|
||||
*end_it = *start_it;
|
||||
} else {
|
||||
*end_it = *start_it;
|
||||
// Look for the last complete key frame and use that as the end of the
|
||||
// render buffer it's later than the last complete continuous frame.
|
||||
FrameList::reverse_iterator rend(*end_it);
|
||||
FrameList::reverse_iterator rit = find_if(frame_list_.rbegin(),
|
||||
rend,
|
||||
CompleteKeyFrameCriteria());
|
||||
if (rit != rend) {
|
||||
// A key frame was found. The reverse iterator base points to the
|
||||
// frame after it, so subtracting 1.
|
||||
*end_it = rit.base();
|
||||
--*end_it;
|
||||
}
|
||||
*end_it = FindLastContinuousAndComplete(*end_it);
|
||||
}
|
||||
}
|
||||
|
||||
void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start,
|
||||
uint32_t* timestamp_end) {
|
||||
CriticalSectionScoped cs(crit_sect_);
|
||||
CleanUpOldOrEmptyFrames();
|
||||
*timestamp_start = 0;
|
||||
*timestamp_end = 0;
|
||||
if (frame_list_.empty()) {
|
||||
if (decodable_frames_.empty()) {
|
||||
return;
|
||||
}
|
||||
FrameList::iterator start_it;
|
||||
FrameList::iterator end_it;
|
||||
RenderBuffer(&start_it, &end_it);
|
||||
if (start_it == frame_list_.end()) {
|
||||
return;
|
||||
}
|
||||
*timestamp_start = (*start_it)->TimeStamp();
|
||||
*timestamp_end = (*end_it)->TimeStamp();
|
||||
*timestamp_start = decodable_frames_.front()->TimeStamp();
|
||||
*timestamp_end = decodable_frames_.back()->TimeStamp();
|
||||
}
|
||||
|
||||
// Set the frame state to free and remove it from the sorted
|
||||
@ -1095,48 +1175,42 @@ VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
|
||||
// Recycle oldest frames up to a key frame, used if jitter buffer is completely
|
||||
// full.
|
||||
bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
|
||||
// Remove up to oldest key frame
|
||||
while (!frame_list_.empty()) {
|
||||
// Throw at least one frame.
|
||||
drop_count_++;
|
||||
FrameList::iterator it = frame_list_.begin();
|
||||
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
|
||||
VCMId(vcm_id_, receiver_id_),
|
||||
"Jitter buffer drop count:%d, low_seq %d, frame type: %s",
|
||||
drop_count_, (*it)->GetLowSeqNum(),
|
||||
(*it)->FrameType() == kVideoFrameKey ? "key" : "delta");
|
||||
TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
|
||||
ReleaseFrameIfNotDecoding(*it);
|
||||
it = frame_list_.erase(it);
|
||||
if (it != frame_list_.end() && (*it)->FrameType() == kVideoFrameKey) {
|
||||
// Reset last decoded state to make sure the next frame decoded is a key
|
||||
// frame, and start NACKing from here.
|
||||
// Note that the estimated low sequence number is correct for VP8
|
||||
// streams because only the first packet of a key frame is marked.
|
||||
last_decoded_state_.Reset();
|
||||
DropPacketsFromNackList(EstimatedLowSequenceNumber(**it));
|
||||
return true;
|
||||
// First release incomplete frames, and only release decodable frames if there
|
||||
// are no incomplete ones.
|
||||
FrameList::iterator key_frame_it;
|
||||
bool key_frame_found = false;
|
||||
int dropped_frames = 0;
|
||||
dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
|
||||
&key_frame_it);
|
||||
key_frame_found = key_frame_it != incomplete_frames_.end();
|
||||
if (dropped_frames == 0) {
|
||||
dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
|
||||
&key_frame_it);
|
||||
key_frame_found = key_frame_it != decodable_frames_.end();
|
||||
if (!key_frame_found) {
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::FrameListEmptied", "type",
|
||||
"RecycleFramesUntilKeyFrame");
|
||||
}
|
||||
}
|
||||
if (frame_list_.empty()) {
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::FrameListEmptied",
|
||||
"type", "RecycleFramesUntilKeyFrame");
|
||||
drop_count_ += dropped_frames;
|
||||
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
|
||||
VCMId(vcm_id_, receiver_id_),
|
||||
"Jitter buffer drop count:%u", drop_count_);
|
||||
TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
|
||||
if (key_frame_found) {
|
||||
// Reset last decoded state to make sure the next frame decoded is a key
|
||||
// frame, and start NACKing from here.
|
||||
last_decoded_state_.Reset();
|
||||
DropPacketsFromNackList(EstimatedLowSequenceNumber(**key_frame_it));
|
||||
} else if (decodable_frames_.empty()) {
|
||||
last_decoded_state_.Reset(); // TODO(mikhal): No sync.
|
||||
missing_sequence_numbers_.clear();
|
||||
}
|
||||
last_decoded_state_.Reset(); // TODO(mikhal): No sync.
|
||||
missing_sequence_numbers_.clear();
|
||||
return false;
|
||||
return key_frame_found;
|
||||
}
|
||||
|
||||
// Must be called under the critical section |crit_sect_|.
|
||||
VCMFrameBufferEnum VCMJitterBuffer::UpdateFrameState(VCMFrameBuffer* frame) {
|
||||
if (frame == NULL) {
|
||||
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
|
||||
VCMId(vcm_id_, receiver_id_), "JB(0x%x) FB(0x%x): "
|
||||
"UpdateFrameState NULL frame pointer", this, frame);
|
||||
return kNoError;
|
||||
}
|
||||
|
||||
int length = frame->Length();
|
||||
void VCMJitterBuffer::UpdateFrameState(VCMFrameBuffer* frame) {
|
||||
if (master_) {
|
||||
// Only trace the primary jitter buffer to make it possible to parse
|
||||
// and plot the trace file.
|
||||
@ -1144,43 +1218,17 @@ VCMFrameBufferEnum VCMJitterBuffer::UpdateFrameState(VCMFrameBuffer* frame) {
|
||||
VCMId(vcm_id_, receiver_id_),
|
||||
"JB(0x%x) FB(0x%x): Complete frame added to jitter buffer,"
|
||||
" size:%d type %d",
|
||||
this, frame, length, frame->FrameType());
|
||||
this, frame, frame->Length(), frame->FrameType());
|
||||
}
|
||||
|
||||
bool frame_counted = false;
|
||||
if (length != 0 && !frame->GetCountedFrame()) {
|
||||
if (!frame->GetCountedFrame()) {
|
||||
// Ignore ACK frames.
|
||||
incoming_frame_count_++;
|
||||
frame->SetCountedFrame(true);
|
||||
frame_counted = true;
|
||||
}
|
||||
|
||||
// Check if we should drop the frame. A complete frame can arrive too late.
|
||||
if (last_decoded_state_.IsOldFrame(frame)) {
|
||||
// Frame is older than the latest decoded frame, drop it. Will be
|
||||
// released by CleanUpOldFrames later.
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::DropLateFrame",
|
||||
"timestamp", frame->TimeStamp());
|
||||
frame->Reset();
|
||||
frame->SetState(kStateEmpty);
|
||||
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
|
||||
VCMId(vcm_id_, receiver_id_),
|
||||
"JB(0x%x) FB(0x%x): Dropping old frame in Jitter buffer",
|
||||
this, frame);
|
||||
drop_count_++;
|
||||
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
|
||||
VCMId(vcm_id_, receiver_id_),
|
||||
"Jitter buffer drop count: %d, consecutive drops: %u",
|
||||
drop_count_, num_consecutive_old_frames_);
|
||||
// Flush() if this happens consistently.
|
||||
num_consecutive_old_frames_++;
|
||||
if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) {
|
||||
Flush();
|
||||
return kFlushIndicator;
|
||||
}
|
||||
return kNoError;
|
||||
}
|
||||
num_consecutive_old_frames_ = 0;
|
||||
frame->SetState(kStateComplete);
|
||||
if (frame->FrameType() == kVideoFrameKey) {
|
||||
TRACE_EVENT_INSTANT2("webrtc", "JB::AddKeyFrame",
|
||||
@ -1216,83 +1264,15 @@ VCMFrameBufferEnum VCMJitterBuffer::UpdateFrameState(VCMFrameBuffer* frame) {
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
const FrameList::iterator it = FindOldestCompleteContinuousFrame(
|
||||
frame_list_.begin(), &last_decoded_state_);
|
||||
VCMFrameBuffer* old_frame = NULL;
|
||||
if (it != frame_list_.end()) {
|
||||
old_frame = *it;
|
||||
}
|
||||
|
||||
// Only signal if this is the oldest frame.
|
||||
// Not necessarily the case due to packet reordering or NACK.
|
||||
if (!WaitForRetransmissions() || (old_frame != NULL && old_frame == frame)) {
|
||||
frame_event_->Set();
|
||||
}
|
||||
return kNoError;
|
||||
}
|
||||
|
||||
// Find oldest complete frame used for getting next frame to decode
|
||||
// Must be called under critical section
|
||||
FrameList::iterator VCMJitterBuffer::FindOldestCompleteContinuousFrame(
|
||||
FrameList::iterator start_it,
|
||||
const VCMDecodingState* decoding_state) {
|
||||
// If we have more than one frame done since last time, pick oldest.
|
||||
VCMFrameBuffer* oldest_frame = NULL;
|
||||
|
||||
// When temporal layers are available, we search for a complete or decodable
|
||||
// frame until we hit one of the following:
|
||||
// 1. Continuous base or sync layer.
|
||||
// 2. The end of the list was reached.
|
||||
for (; start_it != frame_list_.end(); ++start_it) {
|
||||
oldest_frame = *start_it;
|
||||
VCMFrameBufferStateEnum state = oldest_frame->GetState();
|
||||
// Is this frame complete or decodable and continuous?
|
||||
if ((state == kStateComplete ||
|
||||
(decode_with_errors_ && state == kStateDecodable)) &&
|
||||
decoding_state->ContinuousFrame(oldest_frame)) {
|
||||
break;
|
||||
} else {
|
||||
int temporal_id = oldest_frame->TemporalId();
|
||||
oldest_frame = NULL;
|
||||
if (temporal_id <= 0) {
|
||||
// When temporal layers are disabled or we have hit a base layer
|
||||
// we break (regardless of continuity and completeness).
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (oldest_frame == NULL) {
|
||||
// No complete frame no point to continue.
|
||||
return frame_list_.end();
|
||||
}
|
||||
|
||||
// We have a complete continuous frame.
|
||||
return start_it;
|
||||
}
|
||||
|
||||
// Must be called under the critical section |crit_sect_|.
|
||||
void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
|
||||
while (frame_list_.size() > 0) {
|
||||
VCMFrameBuffer* oldest_frame = frame_list_.front();
|
||||
if (oldest_frame->GetState() == kStateEmpty && frame_list_.size() > 1) {
|
||||
// This frame is empty, mark it as decoded, thereby making it old.
|
||||
last_decoded_state_.UpdateEmptyFrame(oldest_frame);
|
||||
}
|
||||
if (last_decoded_state_.IsOldFrame(oldest_frame)) {
|
||||
ReleaseFrameIfNotDecoding(frame_list_.front());
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::OldFrameDropped",
|
||||
"timestamp", oldest_frame->TimeStamp());
|
||||
TRACE_COUNTER1("webrtc", "JBDroppedLateFrames", drop_count_);
|
||||
frame_list_.erase(frame_list_.begin());
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (frame_list_.empty()) {
|
||||
TRACE_EVENT_INSTANT1("webrtc", "JB::FrameListEmptied",
|
||||
"type", "CleanUpOldOrEmptyFrames");
|
||||
}
|
||||
drop_count_ +=
|
||||
decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_);
|
||||
drop_count_ +=
|
||||
incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_);
|
||||
TRACE_COUNTER1("webrtc", "JBDroppedLateFrames", drop_count_);
|
||||
if (!last_decoded_state_.in_initial_state()) {
|
||||
DropPacketsFromNackList(last_decoded_state_.sequence_num());
|
||||
}
|
||||
|
@ -32,8 +32,6 @@ enum VCMNackMode {
|
||||
kNoNack
|
||||
};
|
||||
|
||||
typedef std::list<VCMFrameBuffer*> FrameList;
|
||||
|
||||
// forward declarations
|
||||
class Clock;
|
||||
class EventFactory;
|
||||
@ -49,6 +47,15 @@ struct VCMJitterSample {
|
||||
int64_t latest_packet_time;
|
||||
};
|
||||
|
||||
class FrameList : public std::list<VCMFrameBuffer*> {
|
||||
public:
|
||||
void InsertFrame(VCMFrameBuffer* frame);
|
||||
VCMFrameBuffer* FindFrame(uint32_t timestamp) const;
|
||||
VCMFrameBuffer* PopFrame(uint32_t timestamp);
|
||||
int RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it);
|
||||
int CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state);
|
||||
};
|
||||
|
||||
class VCMJitterBuffer {
|
||||
public:
|
||||
VCMJitterBuffer(Clock* clock,
|
||||
@ -120,6 +127,8 @@ class VCMJitterBuffer {
|
||||
bool* retransmitted) const;
|
||||
|
||||
// Inserts a packet into a frame returned from GetFrame().
|
||||
// If the return value is <= 0, |frame| is invalidated and the pointer must
|
||||
// be dropped after this function returns.
|
||||
VCMFrameBufferEnum InsertPacket(const VCMPacket& packet,
|
||||
bool* retransmitted);
|
||||
|
||||
@ -175,6 +184,18 @@ class VCMJitterBuffer {
|
||||
// existing frames if no free frames are available. Returns an error code if
|
||||
// failing, or kNoError on success.
|
||||
VCMFrameBufferEnum GetFrame(const VCMPacket& packet, VCMFrameBuffer** frame);
|
||||
// Returns true if |frame| is continuous in |decoding_state|, not taking
|
||||
// decodable frames into account.
|
||||
bool IsContinuousInState(const VCMFrameBuffer& frame,
|
||||
const VCMDecodingState& decoding_state) const;
|
||||
// Returns true if |frame| is continuous in the |last_decoded_state_|, taking
|
||||
// all decodable frames into account.
|
||||
bool IsContinuous(const VCMFrameBuffer& frame) const;
|
||||
// Looks for frames in |incomplete_frames_| which are continuous in
|
||||
// |last_decoded_state_| taking all decodable frames into account. Starts
|
||||
// the search from |new_frame|.
|
||||
void FindAndInsertContinuousFrames(const VCMFrameBuffer& new_frame);
|
||||
VCMFrameBuffer* NextFrame() const;
|
||||
// Returns true if the NACK list was updated to cover sequence numbers up to
|
||||
// |sequence_number|. If false a key frame is needed to get into a state where
|
||||
// we can continue decoding.
|
||||
@ -202,19 +223,8 @@ class VCMJitterBuffer {
|
||||
bool RecycleFramesUntilKeyFrame();
|
||||
|
||||
// Sets the state of |frame| to complete if it's not too old to be decoded.
|
||||
// Also updates the frame statistics. Signals the |frame_event| if this is
|
||||
// the next frame to be decoded.
|
||||
VCMFrameBufferEnum UpdateFrameState(VCMFrameBuffer* frame);
|
||||
|
||||
// Finds the oldest complete frame, used for getting next frame to decode.
|
||||
// Can return a decodable, incomplete frame when enabled.
|
||||
FrameList::iterator FindOldestCompleteContinuousFrame(
|
||||
FrameList::iterator start_it,
|
||||
const VCMDecodingState* decoding_state);
|
||||
FrameList::iterator FindLastContinuousAndComplete(
|
||||
FrameList::iterator start_it);
|
||||
void RenderBuffer(FrameList::iterator* start_it,
|
||||
FrameList::iterator* end_it);
|
||||
// Also updates the frame statistics.
|
||||
void UpdateFrameState(VCMFrameBuffer* frame);
|
||||
|
||||
// Cleans the frame list in the JB from old/empty frames.
|
||||
// Should only be called prior to actual use.
|
||||
@ -263,7 +273,8 @@ class VCMJitterBuffer {
|
||||
int max_number_of_frames_;
|
||||
// Array of pointers to the frames in jitter buffer.
|
||||
VCMFrameBuffer* frame_buffers_[kMaxNumberOfFrames];
|
||||
FrameList frame_list_;
|
||||
FrameList decodable_frames_;
|
||||
FrameList incomplete_frames_;
|
||||
VCMDecodingState last_decoded_state_;
|
||||
bool first_packet_since_reset_;
|
||||
|
||||
|
@ -69,10 +69,10 @@ class TestBasicJitterBuffer : public ::testing::Test {
|
||||
VCMEncodedFrame* frame = jitter_buffer_->ExtractAndSetDecode(timestamp);
|
||||
return frame;
|
||||
}
|
||||
int CheckOutFrame(VCMEncodedFrame* frame_out,
|
||||
void CheckOutFrame(VCMEncodedFrame* frame_out,
|
||||
unsigned int size,
|
||||
bool startCode) {
|
||||
EXPECT_FALSE(frame_out == NULL);
|
||||
ASSERT_TRUE(frame_out);
|
||||
|
||||
const uint8_t* outData = frame_out->Buffer();
|
||||
unsigned int i = 0;
|
||||
@ -104,7 +104,6 @@ class TestBasicJitterBuffer : public ::testing::Test {
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint16_t seq_num_;
|
||||
@ -188,7 +187,9 @@ class TestRunningJitterBuffer : public ::testing::Test {
|
||||
|
||||
void DropFrame(int num_packets) {
|
||||
stream_generator_->GenerateFrame(kVideoFrameDelta, num_packets, 0,
|
||||
clock_->TimeInMilliseconds());
|
||||
clock_->TimeInMilliseconds());
|
||||
for (int i = 0; i < num_packets; ++i)
|
||||
stream_generator_->DropLastPacket();
|
||||
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
|
||||
}
|
||||
|
||||
@ -261,7 +262,7 @@ TEST_F(TestBasicJitterBuffer, SinglePacketFrame) {
|
||||
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_,
|
||||
&retransmitted));
|
||||
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, size_, false));
|
||||
CheckOutFrame(frame_out, size_, false);
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
|
||||
@ -286,7 +287,7 @@ TEST_F(TestBasicJitterBuffer, DualPacketFrame) {
|
||||
&retransmitted));
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 2 * size_, false));
|
||||
CheckOutFrame(frame_out, 2 * size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
@ -329,7 +330,7 @@ TEST_F(TestBasicJitterBuffer, 100PacketKeyFrame) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 100 * size_, false));
|
||||
CheckOutFrame(frame_out, 100 * size_, false);
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
|
||||
@ -383,7 +384,7 @@ TEST_F(TestBasicJitterBuffer, 100PacketDeltaFrame) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 100 * size_, false));
|
||||
CheckOutFrame(frame_out, 100 * size_, false);
|
||||
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
|
||||
}
|
||||
|
||||
@ -428,7 +429,7 @@ TEST_F(TestBasicJitterBuffer, PacketReorderingReverseOrder) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();;
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 100 * size_, false));
|
||||
CheckOutFrame(frame_out, 100 * size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
@ -484,7 +485,7 @@ TEST_F(TestBasicJitterBuffer, FrameReordering2Frames2PacketsEach) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 2 * size_, false));
|
||||
CheckOutFrame(frame_out, 2 * size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
|
||||
@ -492,7 +493,7 @@ TEST_F(TestBasicJitterBuffer, FrameReordering2Frames2PacketsEach) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 2 * size_, false));
|
||||
CheckOutFrame(frame_out, 2 * size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
|
||||
}
|
||||
@ -527,7 +528,7 @@ TEST_F(TestBasicJitterBuffer, DuplicatePackets) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 2 * size_, false));
|
||||
CheckOutFrame(frame_out, 2 * size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
@ -559,7 +560,7 @@ TEST_F(TestBasicJitterBuffer, H264InsertStartCode) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, size_ * 2 + 4 * 2, true));
|
||||
CheckOutFrame(frame_out, size_ * 2 + 4 * 2, true);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
@ -631,7 +632,7 @@ TEST_F(TestBasicJitterBuffer, PacketLoss) {
|
||||
// One of the packets has been discarded by the jitter buffer.
|
||||
// Last frame can't be extracted yet.
|
||||
if (i < 10) {
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, size_, false));
|
||||
CheckOutFrame(frame_out, size_, false);
|
||||
|
||||
if (i == 0) {
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
@ -716,7 +717,7 @@ TEST_F(TestBasicJitterBuffer, DeltaFrame100PacketsWithSeqNumWrap) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 100 * size_, false));
|
||||
CheckOutFrame(frame_out, 100 * size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
@ -765,7 +766,7 @@ TEST_F(TestBasicJitterBuffer, PacketReorderingReverseWithNegSeqNumWrap) {
|
||||
&retransmitted));
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 100 * size_, false));
|
||||
CheckOutFrame(frame_out, 100 * size_, false);
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
|
||||
@ -789,7 +790,7 @@ TEST_F(TestBasicJitterBuffer, TestInsertOldFrame) {
|
||||
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
|
||||
EXPECT_EQ(3000u, frame_out->TimeStamp());
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, size_, false));
|
||||
CheckOutFrame(frame_out, size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
|
||||
@ -828,7 +829,7 @@ TEST_F(TestBasicJitterBuffer, TestInsertOldFrameWithSeqNumWrap) {
|
||||
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
|
||||
EXPECT_EQ(timestamp_, frame_out->TimeStamp());
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, size_, false));
|
||||
CheckOutFrame(frame_out, size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
|
||||
@ -879,7 +880,7 @@ TEST_F(TestBasicJitterBuffer, TimestampWrap) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 2 * size_, false));
|
||||
CheckOutFrame(frame_out, 2 * size_, false);
|
||||
|
||||
jitter_buffer_->ReleaseFrame(frame_out);
|
||||
|
||||
@ -908,7 +909,7 @@ TEST_F(TestBasicJitterBuffer, TimestampWrap) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, 2 * size_, false));
|
||||
CheckOutFrame(frame_out, 2 * size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
|
||||
}
|
||||
@ -945,14 +946,14 @@ TEST_F(TestBasicJitterBuffer, 2FrameWithTimestampWrap) {
|
||||
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
|
||||
EXPECT_EQ(0xffffff00, frame_out->TimeStamp());
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, size_, false));
|
||||
CheckOutFrame(frame_out, size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
|
||||
VCMEncodedFrame* frame_out2 = DecodeCompleteFrame();
|
||||
EXPECT_EQ(2700u, frame_out2->TimeStamp());
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out2, size_, false));
|
||||
CheckOutFrame(frame_out2, size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameDelta, frame_out2->FrameType());
|
||||
}
|
||||
@ -990,14 +991,14 @@ TEST_F(TestBasicJitterBuffer, Insert2FramesReOrderedWithTimestampWrap) {
|
||||
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
|
||||
EXPECT_EQ(0xffffff00, frame_out->TimeStamp());
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, size_, false));
|
||||
CheckOutFrame(frame_out, size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
|
||||
VCMEncodedFrame* frame_out2 = DecodeCompleteFrame();
|
||||
EXPECT_EQ(2700u, frame_out2->TimeStamp());
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out2, size_, false));
|
||||
CheckOutFrame(frame_out2, size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameDelta, frame_out2->FrameType());
|
||||
}
|
||||
@ -1090,7 +1091,7 @@ TEST_F(TestBasicJitterBuffer, ExceedNumOfFrameWithSeqNumWrap) {
|
||||
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
|
||||
EXPECT_EQ(first_key_frame_timestamp, frame_out->TimeStamp());
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, size_, false));
|
||||
CheckOutFrame(frame_out, size_, false);
|
||||
|
||||
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
|
||||
}
|
||||
@ -1111,8 +1112,8 @@ TEST_F(TestBasicJitterBuffer, EmptyLastFrame) {
|
||||
packet_->timestamp = timestamp_;
|
||||
packet_->frameType = kFrameEmpty;
|
||||
|
||||
EXPECT_EQ(kFirstPacket, jitter_buffer_->InsertPacket(*packet_,
|
||||
&retransmitted));
|
||||
EXPECT_EQ(kNoError, jitter_buffer_->InsertPacket(*packet_,
|
||||
&retransmitted));
|
||||
VCMEncodedFrame* testFrame = DecodeIncompleteFrame();
|
||||
// Timestamp should never be the last TS inserted.
|
||||
if (testFrame != NULL) {
|
||||
@ -1184,7 +1185,7 @@ TEST_F(TestBasicJitterBuffer, H264IncompleteNalu) {
|
||||
// We can decode everything from a NALU until a packet has been lost.
|
||||
// Thus we can decode the first packet of the first NALU and the second NALU
|
||||
// which consists of one packet.
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, packet_->sizeBytes * 2, false));
|
||||
CheckOutFrame(frame_out, packet_->sizeBytes * 2, false);
|
||||
jitter_buffer_->ReleaseFrame(frame_out);
|
||||
|
||||
// Test reordered start frame + 1 lost.
|
||||
@ -1251,7 +1252,7 @@ TEST_F(TestBasicJitterBuffer, H264IncompleteNalu) {
|
||||
// is the last.
|
||||
frame_out = DecodeIncompleteFrame();
|
||||
// Only last NALU is complete.
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, insertedLength, false));
|
||||
CheckOutFrame(frame_out, insertedLength, false);
|
||||
jitter_buffer_->ReleaseFrame(frame_out);
|
||||
|
||||
|
||||
@ -1302,7 +1303,7 @@ TEST_F(TestBasicJitterBuffer, H264IncompleteNalu) {
|
||||
|
||||
frame_out = DecodeCompleteFrame();
|
||||
// Only last NALU is complete
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, packet_->sizeBytes, false));
|
||||
CheckOutFrame(frame_out, packet_->sizeBytes, false);
|
||||
}
|
||||
|
||||
TEST_F(TestBasicJitterBuffer, NextFrameWhenIncomplete) {
|
||||
@ -1344,7 +1345,7 @@ TEST_F(TestBasicJitterBuffer, NextFrameWhenIncomplete) {
|
||||
|
||||
frame_out = DecodeIncompleteFrame();
|
||||
|
||||
EXPECT_EQ(0, CheckOutFrame(frame_out, packet_->sizeBytes, false));
|
||||
CheckOutFrame(frame_out, packet_->sizeBytes, false);
|
||||
}
|
||||
|
||||
TEST_F(TestRunningJitterBuffer, Full) {
|
||||
@ -1366,16 +1367,19 @@ TEST_F(TestRunningJitterBuffer, Full) {
|
||||
TEST_F(TestRunningJitterBuffer, EmptyPackets) {
|
||||
// Make sure a frame can get complete even though empty packets are missing.
|
||||
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 3,
|
||||
clock_->TimeInMilliseconds());
|
||||
clock_->TimeInMilliseconds());
|
||||
bool request_key_frame = false;
|
||||
EXPECT_EQ(kFirstPacket, InsertPacketAndPop(4));
|
||||
// Insert empty packet.
|
||||
EXPECT_EQ(kNoError, InsertPacketAndPop(4));
|
||||
EXPECT_FALSE(request_key_frame);
|
||||
EXPECT_EQ(kIncomplete, InsertPacketAndPop(4));
|
||||
// Insert 3 media packets.
|
||||
EXPECT_EQ(kFirstPacket, InsertPacketAndPop(0));
|
||||
EXPECT_FALSE(request_key_frame);
|
||||
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
|
||||
EXPECT_FALSE(request_key_frame);
|
||||
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
|
||||
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
|
||||
EXPECT_FALSE(request_key_frame);
|
||||
// Insert empty packet.
|
||||
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
|
||||
EXPECT_FALSE(request_key_frame);
|
||||
}
|
||||
@ -1482,6 +1486,22 @@ TEST_F(TestRunningJitterBuffer, KeyDeltaKeyDelta) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(TestRunningJitterBuffer, TwoPacketsNonContinuous) {
|
||||
InsertFrame(kVideoFrameKey);
|
||||
EXPECT_TRUE(DecodeCompleteFrame());
|
||||
stream_generator_->GenerateFrame(kVideoFrameDelta, 1, 0,
|
||||
clock_->TimeInMilliseconds());
|
||||
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
|
||||
stream_generator_->GenerateFrame(kVideoFrameDelta, 2, 0,
|
||||
clock_->TimeInMilliseconds());
|
||||
EXPECT_EQ(kFirstPacket, InsertPacketAndPop(1));
|
||||
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(1));
|
||||
EXPECT_FALSE(DecodeCompleteFrame());
|
||||
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
|
||||
EXPECT_TRUE(DecodeCompleteFrame());
|
||||
EXPECT_TRUE(DecodeCompleteFrame());
|
||||
}
|
||||
|
||||
TEST_F(TestJitterBufferNack, EmptyPackets) {
|
||||
// Make sure empty packets doesn't clog the jitter buffer.
|
||||
jitter_buffer_->SetNackMode(kNack, media_optimization::kLowRttNackMs, -1);
|
||||
@ -1499,7 +1519,7 @@ TEST_F(TestJitterBufferNack, NackTooOldPackets) {
|
||||
// old packet.
|
||||
DropFrame(1);
|
||||
// Insert a frame which should trigger a recycle until the next key frame.
|
||||
EXPECT_EQ(kFlushIndicator, InsertFrames(oldest_packet_to_nack_,
|
||||
EXPECT_EQ(kFlushIndicator, InsertFrames(oldest_packet_to_nack_ + 1,
|
||||
kVideoFrameDelta));
|
||||
EXPECT_FALSE(DecodeCompleteFrame());
|
||||
|
||||
@ -1555,7 +1575,7 @@ TEST_F(TestJitterBufferNack, NackListFull) {
|
||||
EXPECT_TRUE(DecodeCompleteFrame());
|
||||
|
||||
// Generate and drop |kNackHistoryLength| packets to fill the NACK list.
|
||||
DropFrame(max_nack_list_size_);
|
||||
DropFrame(max_nack_list_size_ + 1);
|
||||
// Insert a frame which should trigger a recycle until the next key frame.
|
||||
EXPECT_EQ(kFlushIndicator, InsertFrame(kVideoFrameDelta));
|
||||
EXPECT_FALSE(DecodeCompleteFrame());
|
||||
@ -1612,6 +1632,33 @@ TEST_F(TestJitterBufferNack, NackListBuiltBeforeFirstDecode) {
|
||||
EXPECT_TRUE(list != NULL);
|
||||
}
|
||||
|
||||
TEST_F(TestJitterBufferNack, VerifyRetransmittedFlag) {
|
||||
stream_generator_->Init(0, 0, clock_->TimeInMilliseconds());
|
||||
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 0,
|
||||
clock_->TimeInMilliseconds());
|
||||
VCMPacket packet;
|
||||
stream_generator_->PopPacket(&packet, 0);
|
||||
bool retransmitted = false;
|
||||
EXPECT_EQ(kFirstPacket, jitter_buffer_->InsertPacket(packet, &retransmitted));
|
||||
EXPECT_FALSE(retransmitted);
|
||||
// Drop second packet.
|
||||
stream_generator_->PopPacket(&packet, 1);
|
||||
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(packet, &retransmitted));
|
||||
EXPECT_FALSE(retransmitted);
|
||||
EXPECT_FALSE(DecodeCompleteFrame());
|
||||
uint16_t nack_list_size = 0;
|
||||
bool extended = false;
|
||||
uint16_t* list = jitter_buffer_->GetNackList(&nack_list_size, &extended);
|
||||
EXPECT_EQ(1, nack_list_size);
|
||||
ASSERT_TRUE(list != NULL);
|
||||
stream_generator_->PopPacket(&packet, 0);
|
||||
EXPECT_EQ(packet.seqNum, list[0]);
|
||||
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(packet,
|
||||
&retransmitted));
|
||||
EXPECT_TRUE(retransmitted);
|
||||
EXPECT_TRUE(DecodeCompleteFrame());
|
||||
}
|
||||
|
||||
TEST_F(TestJitterBufferNack, UseNackToRecoverFirstKeyFrame) {
|
||||
stream_generator_->Init(0, 0, clock_->TimeInMilliseconds());
|
||||
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 0,
|
||||
|
@ -44,10 +44,6 @@ void StreamGenerator::GenerateFrame(FrameType type,
|
||||
int num_empty_packets,
|
||||
int64_t current_time) {
|
||||
timestamp_ = 90 * (current_time - start_time_);
|
||||
// Move the sequence number counter if all packets from the previous frame
|
||||
// wasn't collected.
|
||||
sequence_number_ += packets_.size();
|
||||
packets_.clear();
|
||||
for (int i = 0; i < num_media_packets; ++i) {
|
||||
const int packet_size = (kFrameSize + num_media_packets / 2) /
|
||||
num_media_packets;
|
||||
@ -123,6 +119,10 @@ bool StreamGenerator::NextPacket(VCMPacket* packet) {
|
||||
return true;
|
||||
}
|
||||
|
||||
void StreamGenerator::DropLastPacket() {
|
||||
packets_.pop_back();
|
||||
}
|
||||
|
||||
uint16_t StreamGenerator::NextSequenceNumber() const {
|
||||
if (packets_.empty())
|
||||
return sequence_number_;
|
||||
|
@ -46,6 +46,7 @@ class StreamGenerator {
|
||||
FrameType type);
|
||||
|
||||
bool PopPacket(VCMPacket* packet, int index);
|
||||
void DropLastPacket();
|
||||
|
||||
bool GetPacket(VCMPacket* packet, int index);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user