audio_processing/aec: Ported NEON optimizations of SubbandCoherence() and its sub-functions to SSE2

These optimizations were originally committed in r6860, but reverted in r6861, since it broke a bitexactness test (ApmTest.Process) in modules_unittests. That test has now been updated in r7149, hence this CL now pass the test.

BUG=3767
TESTED=manually on linux and trybots
TBR=aluebs@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/25539004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7189 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
bjornv@webrtc.org 2014-09-16 05:01:42 +00:00
parent 6ae5a6d7fe
commit c75f607042

View File

@ -16,6 +16,7 @@
#include <math.h>
#include <string.h> // memset
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aec/aec_common.h"
#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
@ -419,9 +420,312 @@ static void OverdriveAndSuppressSSE2(AecCore* aec,
}
}
__inline static void _mm_add_ps_4x1(__m128 sum, float *dst) {
// A+B C+D
sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(0, 0, 3, 2)));
// A+B+C+D A+B+C+D
sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 1, 1, 1)));
_mm_store_ss(dst, sum);
}
static int PartitionDelay(const AecCore* aec) {
// Measures the energy in each filter partition and returns the partition with
// highest energy.
// TODO(bjornv): Spread computational cost by computing one partition per
// block?
float wfEnMax = 0;
int i;
int delay = 0;
for (i = 0; i < aec->num_partitions; i++) {
int j;
int pos = i * PART_LEN1;
float wfEn = 0;
__m128 vec_wfEn = _mm_set1_ps(0.0f);
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const __m128 vec_wfBuf0 = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
const __m128 vec_wfBuf1 = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf0, vec_wfBuf0));
vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf1, vec_wfBuf1));
}
_mm_add_ps_4x1(vec_wfEn, &wfEn);
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
}
if (wfEn > wfEnMax) {
wfEnMax = wfEn;
delay = i;
}
}
return delay;
}
// Updates the following smoothed Power Spectral Densities (PSD):
// - sd : near-end
// - se : residual echo
// - sx : far-end
// - sde : cross-PSD of near-end and residual echo
// - sxd : cross-PSD of near-end and far-end
//
// In addition to updating the PSDs, also the filter diverge state is determined
// upon actions are taken.
static void SmoothedPSD(AecCore* aec,
float efw[2][PART_LEN1],
float dfw[2][PART_LEN1],
float xfw[2][PART_LEN1]) {
// Power estimate smoothing coefficients.
const float* ptrGCoh = aec->extended_filter_enabled
? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1]
: WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1];
int i;
float sdSum = 0, seSum = 0;
const __m128 vec_15 = _mm_set1_ps(WebRtcAec_kMinFarendPSD);
const __m128 vec_GCoh0 = _mm_set1_ps(ptrGCoh[0]);
const __m128 vec_GCoh1 = _mm_set1_ps(ptrGCoh[1]);
__m128 vec_sdSum = _mm_set1_ps(0.0f);
__m128 vec_seSum = _mm_set1_ps(0.0f);
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const __m128 vec_dfw0 = _mm_loadu_ps(&dfw[0][i]);
const __m128 vec_dfw1 = _mm_loadu_ps(&dfw[1][i]);
const __m128 vec_efw0 = _mm_loadu_ps(&efw[0][i]);
const __m128 vec_efw1 = _mm_loadu_ps(&efw[1][i]);
const __m128 vec_xfw0 = _mm_loadu_ps(&xfw[0][i]);
const __m128 vec_xfw1 = _mm_loadu_ps(&xfw[1][i]);
__m128 vec_sd = _mm_mul_ps(_mm_loadu_ps(&aec->sd[i]), vec_GCoh0);
__m128 vec_se = _mm_mul_ps(_mm_loadu_ps(&aec->se[i]), vec_GCoh0);
__m128 vec_sx = _mm_mul_ps(_mm_loadu_ps(&aec->sx[i]), vec_GCoh0);
__m128 vec_dfw_sumsq = _mm_mul_ps(vec_dfw0, vec_dfw0);
__m128 vec_efw_sumsq = _mm_mul_ps(vec_efw0, vec_efw0);
__m128 vec_xfw_sumsq = _mm_mul_ps(vec_xfw0, vec_xfw0);
vec_dfw_sumsq = _mm_add_ps(vec_dfw_sumsq, _mm_mul_ps(vec_dfw1, vec_dfw1));
vec_efw_sumsq = _mm_add_ps(vec_efw_sumsq, _mm_mul_ps(vec_efw1, vec_efw1));
vec_xfw_sumsq = _mm_add_ps(vec_xfw_sumsq, _mm_mul_ps(vec_xfw1, vec_xfw1));
vec_xfw_sumsq = _mm_max_ps(vec_xfw_sumsq, vec_15);
vec_sd = _mm_add_ps(vec_sd, _mm_mul_ps(vec_dfw_sumsq, vec_GCoh1));
vec_se = _mm_add_ps(vec_se, _mm_mul_ps(vec_efw_sumsq, vec_GCoh1));
vec_sx = _mm_add_ps(vec_sx, _mm_mul_ps(vec_xfw_sumsq, vec_GCoh1));
_mm_storeu_ps(&aec->sd[i], vec_sd);
_mm_storeu_ps(&aec->se[i], vec_se);
_mm_storeu_ps(&aec->sx[i], vec_sx);
{
const __m128 vec_3210 = _mm_loadu_ps(&aec->sde[i][0]);
const __m128 vec_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]);
__m128 vec_a = _mm_shuffle_ps(vec_3210, vec_7654,
_MM_SHUFFLE(2, 0, 2, 0));
__m128 vec_b = _mm_shuffle_ps(vec_3210, vec_7654,
_MM_SHUFFLE(3, 1, 3, 1));
__m128 vec_dfwefw0011 = _mm_mul_ps(vec_dfw0, vec_efw0);
__m128 vec_dfwefw0110 = _mm_mul_ps(vec_dfw0, vec_efw1);
vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
vec_dfwefw0011 = _mm_add_ps(vec_dfwefw0011,
_mm_mul_ps(vec_dfw1, vec_efw1));
vec_dfwefw0110 = _mm_sub_ps(vec_dfwefw0110,
_mm_mul_ps(vec_dfw1, vec_efw0));
vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwefw0011, vec_GCoh1));
vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwefw0110, vec_GCoh1));
_mm_storeu_ps(&aec->sde[i][0], _mm_unpacklo_ps(vec_a, vec_b));
_mm_storeu_ps(&aec->sde[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b));
}
{
const __m128 vec_3210 = _mm_loadu_ps(&aec->sxd[i][0]);
const __m128 vec_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]);
__m128 vec_a = _mm_shuffle_ps(vec_3210, vec_7654,
_MM_SHUFFLE(2, 0, 2, 0));
__m128 vec_b = _mm_shuffle_ps(vec_3210, vec_7654,
_MM_SHUFFLE(3, 1, 3, 1));
__m128 vec_dfwxfw0011 = _mm_mul_ps(vec_dfw0, vec_xfw0);
__m128 vec_dfwxfw0110 = _mm_mul_ps(vec_dfw0, vec_xfw1);
vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
vec_dfwxfw0011 = _mm_add_ps(vec_dfwxfw0011,
_mm_mul_ps(vec_dfw1, vec_xfw1));
vec_dfwxfw0110 = _mm_sub_ps(vec_dfwxfw0110,
_mm_mul_ps(vec_dfw1, vec_xfw0));
vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwxfw0011, vec_GCoh1));
vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwxfw0110, vec_GCoh1));
_mm_storeu_ps(&aec->sxd[i][0], _mm_unpacklo_ps(vec_a, vec_b));
_mm_storeu_ps(&aec->sxd[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b));
}
vec_sdSum = _mm_add_ps(vec_sdSum, vec_sd);
vec_seSum = _mm_add_ps(vec_seSum, vec_se);
}
_mm_add_ps_4x1(vec_sdSum, &sdSum);
_mm_add_ps_4x1(vec_seSum, &seSum);
for (; i < PART_LEN1; i++) {
aec->sd[i] = ptrGCoh[0] * aec->sd[i] +
ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
aec->se[i] = ptrGCoh[0] * aec->se[i] +
ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
// We threshold here to protect against the ill-effects of a zero farend.
// The threshold is not arbitrarily chosen, but balances protection and
// adverse interaction with the algorithm's tuning.
// TODO(bjornv): investigate further why this is so sensitive.
aec->sx[i] =
ptrGCoh[0] * aec->sx[i] +
ptrGCoh[1] * WEBRTC_SPL_MAX(
xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
WebRtcAec_kMinFarendPSD);
aec->sde[i][0] =
ptrGCoh[0] * aec->sde[i][0] +
ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
aec->sde[i][1] =
ptrGCoh[0] * aec->sde[i][1] +
ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
aec->sxd[i][0] =
ptrGCoh[0] * aec->sxd[i][0] +
ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
aec->sxd[i][1] =
ptrGCoh[0] * aec->sxd[i][1] +
ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
sdSum += aec->sd[i];
seSum += aec->se[i];
}
// Divergent filter safeguard.
aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum;
if (aec->divergeState)
memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1);
// Reset if error is significantly larger than nearend (13 dB).
if (!aec->extended_filter_enabled && seSum > (19.95f * sdSum))
memset(aec->wfBuf, 0, sizeof(aec->wfBuf));
}
// Window time domain data to be used by the fft.
__inline static void WindowData(float* x_windowed, const float* x) {
int i;
for (i = 0; i < PART_LEN; i += 4) {
const __m128 vec_Buf1 = _mm_loadu_ps(&x[i]);
const __m128 vec_Buf2 = _mm_loadu_ps(&x[PART_LEN + i]);
const __m128 vec_sqrtHanning = _mm_load_ps(&WebRtcAec_sqrtHanning[i]);
// A B C D
__m128 vec_sqrtHanning_rev =
_mm_loadu_ps(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
// D C B A
vec_sqrtHanning_rev =
_mm_shuffle_ps(vec_sqrtHanning_rev, vec_sqrtHanning_rev,
_MM_SHUFFLE(0, 1, 2, 3));
_mm_storeu_ps(&x_windowed[i], _mm_mul_ps(vec_Buf1, vec_sqrtHanning));
_mm_storeu_ps(&x_windowed[PART_LEN + i],
_mm_mul_ps(vec_Buf2, vec_sqrtHanning_rev));
}
}
// Puts fft output data into a complex valued array.
__inline static void StoreAsComplex(const float* data,
float data_complex[2][PART_LEN1]) {
int i;
for (i = 0; i < PART_LEN; i += 4) {
const __m128 vec_fft0 = _mm_loadu_ps(&data[2 * i]);
const __m128 vec_fft4 = _mm_loadu_ps(&data[2 * i + 4]);
const __m128 vec_a = _mm_shuffle_ps(vec_fft0, vec_fft4,
_MM_SHUFFLE(2, 0, 2, 0));
const __m128 vec_b = _mm_shuffle_ps(vec_fft0, vec_fft4,
_MM_SHUFFLE(3, 1, 3, 1));
_mm_storeu_ps(&data_complex[0][i], vec_a);
_mm_storeu_ps(&data_complex[1][i], vec_b);
}
// fix beginning/end values
data_complex[1][0] = 0;
data_complex[1][PART_LEN] = 0;
data_complex[0][0] = data[0];
data_complex[0][PART_LEN] = data[1];
}
static void SubbandCoherenceSSE2(AecCore* aec,
float efw[2][PART_LEN1],
float xfw[2][PART_LEN1],
float* fft,
float* cohde,
float* cohxd) {
float dfw[2][PART_LEN1];
int i;
if (aec->delayEstCtr == 0)
aec->delayIdx = PartitionDelay(aec);
// Use delayed far.
memcpy(xfw,
aec->xfwBuf + aec->delayIdx * PART_LEN1,
sizeof(xfw[0][0]) * 2 * PART_LEN1);
// Windowed near fft
WindowData(fft, aec->dBuf);
aec_rdft_forward_128(fft);
StoreAsComplex(fft, dfw);
// Windowed error fft
WindowData(fft, aec->eBuf);
aec_rdft_forward_128(fft);
StoreAsComplex(fft, efw);
SmoothedPSD(aec, efw, dfw, xfw);
{
const __m128 vec_1eminus10 = _mm_set1_ps(1e-10f);
// Subband coherence
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const __m128 vec_sd = _mm_loadu_ps(&aec->sd[i]);
const __m128 vec_se = _mm_loadu_ps(&aec->se[i]);
const __m128 vec_sx = _mm_loadu_ps(&aec->sx[i]);
const __m128 vec_sdse = _mm_add_ps(vec_1eminus10,
_mm_mul_ps(vec_sd, vec_se));
const __m128 vec_sdsx = _mm_add_ps(vec_1eminus10,
_mm_mul_ps(vec_sd, vec_sx));
const __m128 vec_sde_3210 = _mm_loadu_ps(&aec->sde[i][0]);
const __m128 vec_sde_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]);
const __m128 vec_sxd_3210 = _mm_loadu_ps(&aec->sxd[i][0]);
const __m128 vec_sxd_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]);
const __m128 vec_sde_0 = _mm_shuffle_ps(vec_sde_3210, vec_sde_7654,
_MM_SHUFFLE(2, 0, 2, 0));
const __m128 vec_sde_1 = _mm_shuffle_ps(vec_sde_3210, vec_sde_7654,
_MM_SHUFFLE(3, 1, 3, 1));
const __m128 vec_sxd_0 = _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654,
_MM_SHUFFLE(2, 0, 2, 0));
const __m128 vec_sxd_1 = _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654,
_MM_SHUFFLE(3, 1, 3, 1));
__m128 vec_cohde = _mm_mul_ps(vec_sde_0, vec_sde_0);
__m128 vec_cohxd = _mm_mul_ps(vec_sxd_0, vec_sxd_0);
vec_cohde = _mm_add_ps(vec_cohde, _mm_mul_ps(vec_sde_1, vec_sde_1));
vec_cohde = _mm_div_ps(vec_cohde, vec_sdse);
vec_cohxd = _mm_add_ps(vec_cohxd, _mm_mul_ps(vec_sxd_1, vec_sxd_1));
vec_cohxd = _mm_div_ps(vec_cohxd, vec_sdsx);
_mm_storeu_ps(&cohde[i], vec_cohde);
_mm_storeu_ps(&cohxd[i], vec_cohxd);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
cohde[i] =
(aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
(aec->sd[i] * aec->se[i] + 1e-10f);
cohxd[i] =
(aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
(aec->sx[i] * aec->sd[i] + 1e-10f);
}
}
}
void WebRtcAec_InitAec_SSE2(void) {
WebRtcAec_FilterFar = FilterFarSSE2;
WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2;
WebRtcAec_SubbandCoherence = SubbandCoherenceSSE2;
}