Add a new BitBuffer class to webrtc base.

Provides a read-only interface for reading byte and bit-sized data from
an underlying buffer in network/big-endian order. Also provides a method
for reading exponential golomb encoded values, which will be useful in
H.264 packet parsing (separate CL).

BUG=
R=pthatcher@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/49719004

Cr-Commit-Position: refs/heads/master@{#9046}
This commit is contained in:
Noah Richards 2015-04-21 16:30:13 -07:00
parent 61b4d518af
commit bbf7c864ad
6 changed files with 417 additions and 0 deletions

View File

@ -179,6 +179,8 @@ static_library("rtc_base") {
"base64.cc",
"base64.h",
"basicdefs.h",
"bitbuffer.cc",
"bitbuffer.h",
"bytebuffer.cc",
"bytebuffer.h",
"byteorder.h",

View File

@ -102,6 +102,8 @@
'basictypes.h',
'bind.h',
'bind.h.pump',
'bitbuffer.cc',
'bitbuffer.h',
'bytebuffer.cc',
'bytebuffer.h',
'byteorder.h',

View File

@ -53,6 +53,7 @@
'base64_unittest.cc',
'basictypes_unittest.cc',
'bind_unittest.cc',
'bitbuffer_unittest.cc',
'buffer_unittest.cc',
'bytebuffer_unittest.cc',
'byteorder_unittest.cc',

154
webrtc/base/bitbuffer.cc Normal file
View File

@ -0,0 +1,154 @@
/*
* Copyright 2015 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/bitbuffer.h"
#include <limits>
#include "webrtc/base/checks.h"
namespace {
// Returns the lowest (right-most) |bit_count| bits in |byte|.
uint8 LowestBits(uint8 byte, size_t bit_count) {
DCHECK_LE(bit_count, 8u);
uint8 mask_shift = 8 - static_cast<uint8>(bit_count);
return byte & (0xFF >> mask_shift);
}
// Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the
// lowest bits (to the right).
uint8 HighestBits(uint8 byte, size_t bit_count) {
DCHECK_LE(bit_count, 8u);
uint8 shift = 8 - static_cast<uint8>(bit_count);
uint8 mask = 0xFF << shift;
return (byte & mask) >> shift;
}
} // namespace
namespace rtc {
BitBuffer::BitBuffer(const uint8* bytes, size_t byte_count)
: bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() {
DCHECK(static_cast<uint64>(byte_count_) <=
std::numeric_limits<uint32>::max());
}
uint64 BitBuffer::RemainingBitCount() const {
return (static_cast<uint64>(byte_count_) - byte_offset_) * 8 - bit_offset_;
}
bool BitBuffer::ReadUInt8(uint8* val) {
uint32 bit_val;
if (!ReadBits(&bit_val, sizeof(uint8) * 8)) {
return false;
}
DCHECK(bit_val <= std::numeric_limits<uint8>::max());
*val = static_cast<uint8>(bit_val);
return true;
}
bool BitBuffer::ReadUInt16(uint16* val) {
uint32 bit_val;
if (!ReadBits(&bit_val, sizeof(uint16) * 8)) {
return false;
}
DCHECK(bit_val <= std::numeric_limits<uint16>::max());
*val = static_cast<uint16>(bit_val);
return true;
}
bool BitBuffer::ReadUInt32(uint32* val) {
return ReadBits(val, sizeof(uint32) * 8);
}
bool BitBuffer::PeekBits(uint32* val, size_t bit_count) {
if (!val || bit_count > RemainingBitCount() || bit_count > 32) {
return false;
}
const uint8* bytes = bytes_ + byte_offset_;
size_t remaining_bits_in_current_byte = 8 - bit_offset_;
uint32 bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
// If we're reading fewer bits than what's left in the current byte, just
// return the portion of this byte that we need.
if (bit_count < remaining_bits_in_current_byte) {
*val = HighestBits(bits, bit_offset_ + bit_count);
return true;
}
// Otherwise, subtract what we've read from the bit count and read as many
// full bytes as we can into bits.
bit_count -= remaining_bits_in_current_byte;
while (bit_count >= 8) {
bits = (bits << 8) | *bytes++;
bit_count -= 8;
}
// Whatever we have left is smaller than a byte, so grab just the bits we need
// and shift them into the lowest bits.
if (bit_count > 0) {
bits <<= bit_count;
bits |= HighestBits(*bytes, bit_count);
}
*val = bits;
return true;
}
bool BitBuffer::ReadBits(uint32* val, size_t bit_count) {
return PeekBits(val, bit_count) && ConsumeBits(bit_count);
}
bool BitBuffer::ConsumeBytes(size_t byte_count) {
return ConsumeBits(byte_count * 8);
}
bool BitBuffer::ConsumeBits(size_t bit_count) {
if (bit_count > RemainingBitCount()) {
return false;
}
byte_offset_ += (bit_offset_ + bit_count) / 8;
bit_offset_ = (bit_offset_ + bit_count) % 8;
return true;
}
bool BitBuffer::ReadExponentialGolomb(uint32* val) {
if (!val) {
return false;
}
// Store off the current byte/bit offset, in case we want to restore them due
// to a failed parse.
size_t original_byte_offset = byte_offset_;
size_t original_bit_offset = bit_offset_;
// Count the number of leading 0 bits by peeking/consuming them one at a time.
size_t zero_bit_count = 0;
uint32 peeked_bit;
while (PeekBits(&peeked_bit, 1) && peeked_bit == 0) {
zero_bit_count++;
ConsumeBits(1);
}
// We should either be at the end of the stream, or the next bit should be 1.
DCHECK(!PeekBits(&peeked_bit, 1) || peeked_bit == 1);
// The bit count of the value is the number of zeros + 1. Make sure that many
// bits fits in a uint32 and that we have enough bits left for it, and then
// read the value.
size_t value_bit_count = zero_bit_count + 1;
if (value_bit_count > 32 || !ReadBits(val, value_bit_count)) {
byte_offset_ = original_byte_offset;
bit_offset_ = original_bit_offset;
return false;
}
*val -= 1;
return true;
}
} // namespace rtc

75
webrtc/base/bitbuffer.h Normal file
View File

@ -0,0 +1,75 @@
/*
* Copyright 2015 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_BASE_BITBUFFER_H_
#define WEBRTC_BASE_BITBUFFER_H_
#include "webrtc/base/common.h"
namespace rtc {
// A class, similar to ByteBuffer, that can parse bit-sized data out of a set of
// bytes. Has a similar API to the read-only parts of ByteBuffer, plus methods
// for reading bit-sized data and processing exponential golomb encoded data.
// Sizes/counts specify bits/bytes, for clarity.
// Byte order is assumed big-endian/network.
class BitBuffer {
public:
BitBuffer(const uint8* bytes, size_t byte_count);
// The remaining bits in the byte buffer.
uint64 RemainingBitCount() const;
// Reads byte-sized values from the buffer. Returns false if there isn't
// enough data left for the specified type.
bool ReadUInt8(uint8* val);
bool ReadUInt16(uint16* val);
bool ReadUInt32(uint32* val);
// Reads bit-sized values from the buffer. Returns false if there isn't enough
// data left for the specified type.
bool ReadBits(uint32* val, size_t bit_count);
// Peeks bit-sized values from the buffer. Returns false if there isn't enough
// data left for the specified type. Doesn't move the current read offset.
bool PeekBits(uint32* val, size_t bit_count);
// Reads the exponential golomb encoded value at the current bit offset.
// Exponential golomb values are encoded as:
// 1) x = source val + 1
// 2) In binary, write [countbits(x) - 1] 0s, then x
// To decode, we count the number of leading 0 bits, read that many + 1 bits,
// and increment the result by 1.
// Returns false if there isn't enough data left for the specified type, or if
// the value wouldn't fit in a uint32.
bool ReadExponentialGolomb(uint32* val);
// Moves current position |byte_count| bytes forward. Returns false if
// there aren't enough bytes left in the buffer.
bool ConsumeBytes(size_t byte_count);
// Moves current position |bit_count| bits forward. Returns false if
// there aren't enough bits left in the buffer.
bool ConsumeBits(size_t bit_count);
private:
const uint8* const bytes_;
// The total size of |bytes_|.
size_t byte_count_;
// The current offset, in bytes, from the start of |bytes_|.
size_t byte_offset_;
// The current offset, in bits, into the current byte.
size_t bit_offset_;
DISALLOW_COPY_AND_ASSIGN(BitBuffer);
};
} // namespace rtc
#endif // WEBRTC_BASE_BITBUFFER_H_

View File

@ -0,0 +1,183 @@
/*
* Copyright 2015 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/bitbuffer.h"
#include "webrtc/base/bytebuffer.h"
#include "webrtc/base/common.h"
#include "webrtc/base/gunit.h"
namespace rtc {
TEST(BitBufferTest, ConsumeBits) {
const uint8 bytes[64] = {0};
BitBuffer buffer(bytes, 32);
uint64 total_bits = 32 * 8;
EXPECT_EQ(total_bits, buffer.RemainingBitCount());
EXPECT_TRUE(buffer.ConsumeBits(3));
total_bits -= 3;
EXPECT_EQ(total_bits, buffer.RemainingBitCount());
EXPECT_TRUE(buffer.ConsumeBits(3));
total_bits -= 3;
EXPECT_EQ(total_bits, buffer.RemainingBitCount());
EXPECT_TRUE(buffer.ConsumeBits(15));
total_bits -= 15;
EXPECT_EQ(total_bits, buffer.RemainingBitCount());
EXPECT_TRUE(buffer.ConsumeBits(37));
total_bits -= 37;
EXPECT_EQ(total_bits, buffer.RemainingBitCount());
EXPECT_FALSE(buffer.ConsumeBits(32 * 8));
EXPECT_EQ(total_bits, buffer.RemainingBitCount());
}
TEST(BitBufferTest, ReadBytesAligned) {
const uint8 bytes[] = {0x0A, 0xBC, 0xDE, 0xF1, 0x23, 0x45, 0x67, 0x89};
uint8 val8;
uint16 val16;
uint32 val32;
BitBuffer buffer(bytes, 8);
EXPECT_TRUE(buffer.ReadUInt8(&val8));
EXPECT_EQ(0x0Au, val8);
EXPECT_TRUE(buffer.ReadUInt8(&val8));
EXPECT_EQ(0xBCu, val8);
EXPECT_TRUE(buffer.ReadUInt16(&val16));
EXPECT_EQ(0xDEF1u, val16);
EXPECT_TRUE(buffer.ReadUInt32(&val32));
EXPECT_EQ(0x23456789u, val32);
}
TEST(BitBufferTest, ReadBytesOffset4) {
const uint8 bytes[] = {0x0A, 0xBC, 0xDE, 0xF1, 0x23, 0x45, 0x67, 0x89, 0x0A};
uint8 val8;
uint16 val16;
uint32 val32;
BitBuffer buffer(bytes, 9);
EXPECT_TRUE(buffer.ConsumeBits(4));
EXPECT_TRUE(buffer.ReadUInt8(&val8));
EXPECT_EQ(0xABu, val8);
EXPECT_TRUE(buffer.ReadUInt8(&val8));
EXPECT_EQ(0xCDu, val8);
EXPECT_TRUE(buffer.ReadUInt16(&val16));
EXPECT_EQ(0xEF12u, val16);
EXPECT_TRUE(buffer.ReadUInt32(&val32));
EXPECT_EQ(0x34567890u, val32);
}
TEST(BitBufferTest, ReadBytesOffset3) {
// The pattern we'll check against is counting down from 0b1111. It looks
// weird here because it's all offset by 3.
// Byte pattern is:
// 56701234
// 0b00011111,
// 0b11011011,
// 0b10010111,
// 0b01010011,
// 0b00001110,
// 0b11001010,
// 0b10000110,
// 0b01000010
// xxxxx <-- last 5 bits unused.
// The bytes. It almost looks like counting down by two at a time, except the
// jump at 5->3->0, since that's when the high bit is turned off.
const uint8 bytes[] = {0x1F, 0xDB, 0x97, 0x53, 0x0E, 0xCA, 0x86, 0x42};
uint8 val8;
uint16 val16;
uint32 val32;
BitBuffer buffer(bytes, 8);
EXPECT_TRUE(buffer.ConsumeBits(3));
EXPECT_TRUE(buffer.ReadUInt8(&val8));
EXPECT_EQ(0xFEu, val8);
EXPECT_TRUE(buffer.ReadUInt16(&val16));
EXPECT_EQ(0xDCBAu, val16);
EXPECT_TRUE(buffer.ReadUInt32(&val32));
EXPECT_EQ(0x98765432u, val32);
// 5 bits left unread. Not enough to read a uint8.
EXPECT_EQ(5u, buffer.RemainingBitCount());
EXPECT_FALSE(buffer.ReadUInt8(&val8));
}
TEST(BitBufferTest, ReadBits) {
// Bit values are:
// 0b01001101,
// 0b00110010
const uint8 bytes[] = {0x4D, 0x32};
uint32_t val;
BitBuffer buffer(bytes, 2);
EXPECT_TRUE(buffer.ReadBits(&val, 3));
// 0b010
EXPECT_EQ(0x2u, val);
EXPECT_TRUE(buffer.ReadBits(&val, 2));
// 0b01
EXPECT_EQ(0x1u, val);
EXPECT_TRUE(buffer.ReadBits(&val, 7));
// 0b1010011
EXPECT_EQ(0x53u, val);
EXPECT_TRUE(buffer.ReadBits(&val, 2));
// 0b00
EXPECT_EQ(0x0u, val);
EXPECT_TRUE(buffer.ReadBits(&val, 1));
// 0b1
EXPECT_EQ(0x1u, val);
EXPECT_TRUE(buffer.ReadBits(&val, 1));
// 0b0
EXPECT_EQ(0x0u, val);
EXPECT_FALSE(buffer.ReadBits(&val, 1));
}
uint64 GolombEncoded(uint32 val) {
val++;
uint32 bit_counter = val;
uint64 bit_count = 0;
while (bit_counter > 0) {
bit_count++;
bit_counter >>= 1;
}
return static_cast<uint64>(val) << (64 - (bit_count * 2 - 1));
}
TEST(BitBufferTest, GolombString) {
char test_string[] = "my precious";
for (size_t i = 0; i < ARRAY_SIZE(test_string); ++i) {
uint64 encoded_val = GolombEncoded(test_string[i]);
// Use ByteBuffer to convert to bytes, to account for endianness (BitBuffer
// requires network order).
ByteBuffer byteBuffer;
byteBuffer.WriteUInt64(encoded_val);
BitBuffer buffer(reinterpret_cast<const uint8*>(byteBuffer.Data()),
byteBuffer.Length());
uint32 decoded_val;
EXPECT_TRUE(buffer.ReadExponentialGolomb(&decoded_val));
EXPECT_EQ(test_string[i], static_cast<char>(decoded_val));
}
}
TEST(BitBufferTest, NoGolombOverread) {
const uint8 bytes[] = {0x00, 0xFF, 0xFF};
// Make sure the bit buffer correctly enforces byte length on golomb reads.
// If it didn't, the above buffer would be valid at 3 bytes.
BitBuffer buffer(bytes, 1);
uint32 decoded_val;
EXPECT_FALSE(buffer.ReadExponentialGolomb(&decoded_val));
BitBuffer longer_buffer(bytes, 2);
EXPECT_FALSE(longer_buffer.ReadExponentialGolomb(&decoded_val));
BitBuffer longest_buffer(bytes, 3);
EXPECT_TRUE(longest_buffer.ReadExponentialGolomb(&decoded_val));
// Golomb should have read 9 bits, so 0x01FF, and since it is golomb, the
// result is 0x01FF - 1 = 0x01FE.
EXPECT_EQ(0x01FEu, decoded_val);
}
} // namespace rtc