Adjust speech probability in NS when echo

The average speech probability for the higher band is multiplied by the quotient of the process and analyze powers, to avoid thinking that suppressed echo is speech. In order to do this both magnitudes, alanyze and process, needed to be stored. This also was used to calculate different previous STSA estimates for analyze and process.
This CL was tested on two long team member recordings (bjornv and kwiberg) and the noisiest (5) recordings from the QA set.

BUG=webrtc:3763
R=andrew@webrtc.org, bjornv@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/23799004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7437 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
aluebs@webrtc.org 2014-10-13 20:48:05 +00:00
parent 1e6a5dd14e
commit b6af4283ca
3 changed files with 171 additions and 161 deletions

View File

@ -21,23 +21,23 @@
// Set Feature Extraction Parameters
void WebRtcNs_set_feature_extraction_parameters(NSinst_t* inst) {
// bin size of histogram
inst->featureExtractionParams.binSizeLrt = (float)0.1;
inst->featureExtractionParams.binSizeSpecFlat = (float)0.05;
inst->featureExtractionParams.binSizeSpecDiff = (float)0.1;
inst->featureExtractionParams.binSizeLrt = 0.1f;
inst->featureExtractionParams.binSizeSpecFlat = 0.05f;
inst->featureExtractionParams.binSizeSpecDiff = 0.1f;
// range of histogram over which lrt threshold is computed
inst->featureExtractionParams.rangeAvgHistLrt = (float)1.0;
inst->featureExtractionParams.rangeAvgHistLrt = 1.f;
// scale parameters: multiply dominant peaks of the histograms by scale factor
// to obtain thresholds for prior model
inst->featureExtractionParams.factor1ModelPars =
(float)1.20; // for lrt and spectral diff
1.2f; // for lrt and spectral diff
inst->featureExtractionParams.factor2ModelPars =
(float)0.9; // for spectral_flatness:
0.9f; // for spectral_flatness:
// used when noise is flatter than speech
// peak limit for spectral flatness (varies between 0 and 1)
inst->featureExtractionParams.thresPosSpecFlat = (float)0.6;
inst->featureExtractionParams.thresPosSpecFlat = 0.6f;
// limit on spacing of two highest peaks in histogram: spacing determined by
// bin size
@ -47,21 +47,21 @@ void WebRtcNs_set_feature_extraction_parameters(NSinst_t* inst) {
2 * inst->featureExtractionParams.binSizeSpecDiff;
// limit on relevance of second peak:
inst->featureExtractionParams.limitPeakWeightsSpecFlat = (float)0.5;
inst->featureExtractionParams.limitPeakWeightsSpecDiff = (float)0.5;
inst->featureExtractionParams.limitPeakWeightsSpecFlat = 0.5f;
inst->featureExtractionParams.limitPeakWeightsSpecDiff = 0.5f;
// fluctuation limit of lrt feature
inst->featureExtractionParams.thresFluctLrt = (float)0.05;
inst->featureExtractionParams.thresFluctLrt = 0.05f;
// limit on the max and min values for the feature thresholds
inst->featureExtractionParams.maxLrt = (float)1.0;
inst->featureExtractionParams.minLrt = (float)0.20;
inst->featureExtractionParams.maxLrt = 1.f;
inst->featureExtractionParams.minLrt = 0.2f;
inst->featureExtractionParams.maxSpecFlat = (float)0.95;
inst->featureExtractionParams.minSpecFlat = (float)0.10;
inst->featureExtractionParams.maxSpecFlat = 0.95f;
inst->featureExtractionParams.minSpecFlat = 0.1f;
inst->featureExtractionParams.maxSpecDiff = (float)1.0;
inst->featureExtractionParams.minSpecDiff = (float)0.16;
inst->featureExtractionParams.maxSpecDiff = 1.f;
inst->featureExtractionParams.minSpecDiff = 0.16f;
// criteria of weight of histogram peak to accept/reject feature
inst->featureExtractionParams.thresWeightSpecFlat =
@ -120,8 +120,8 @@ int WebRtcNs_InitCore(NSinst_t* inst, uint32_t fs) {
// for quantile noise estimation
memset(inst->quantile, 0, sizeof(float) * HALF_ANAL_BLOCKL);
for (i = 0; i < SIMULT * HALF_ANAL_BLOCKL; i++) {
inst->lquantile[i] = (float)8.0;
inst->density[i] = (float)0.3;
inst->lquantile[i] = 8.f;
inst->density[i] = 0.3f;
}
for (i = 0; i < SIMULT; i++) {
@ -133,61 +133,65 @@ int WebRtcNs_InitCore(NSinst_t* inst, uint32_t fs) {
// Wiener filter initialization
for (i = 0; i < HALF_ANAL_BLOCKL; i++) {
inst->smooth[i] = (float)1.0;
inst->smooth[i] = 1.f;
}
// Set the aggressiveness: default
inst->aggrMode = 0;
// initialize variables for new method
inst->priorSpeechProb = (float)0.5; // prior prob for speech/noise
inst->priorSpeechProb = 0.5f; // prior prob for speech/noise
// previous analyze mag spectrum
memset(inst->magnPrevAnalyze, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// previous process mag spectrum
memset(inst->magnPrevProcess, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// current noise-spectrum
memset(inst->noise, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// previous noise-spectrum
memset(inst->noisePrev, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// conservative noise spectrum estimate
memset(inst->magnAvgPause, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// for estimation of HB in second pass
memset(inst->speechProb, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// initial average mag spectrum
memset(inst->initMagnEst, 0, sizeof(float) * HALF_ANAL_BLOCKL);
for (i = 0; i < HALF_ANAL_BLOCKL; i++) {
inst->magnPrev[i] = (float)0.0; // previous mag spectrum
inst->noisePrev[i] = (float)0.0; // previous noise-spectrum
inst->logLrtTimeAvg[i] =
LRT_FEATURE_THR; // smooth LR ratio (same as threshold)
inst->magnAvgPause[i] = (float)0.0; // conservative noise spectrum estimate
inst->speechProb[i] = (float)0.0; // for estimation of HB in second pass
inst->initMagnEst[i] = (float)0.0; // initial average mag spectrum
}
// feature quantities
inst->featureData[0] =
SF_FEATURE_THR; // spectral flatness (start on threshold)
inst->featureData[1] =
(float)0.0; // spectral entropy: not used in this version
inst->featureData[2] =
(float)0.0; // spectral variance: not used in this version
inst->featureData[1] = 0.f; // spectral entropy: not used in this version
inst->featureData[2] = 0.f; // spectral variance: not used in this version
inst->featureData[3] =
LRT_FEATURE_THR; // average lrt factor (start on threshold)
inst->featureData[4] =
SF_FEATURE_THR; // spectral template diff (start on threshold)
inst->featureData[5] = (float)0.0; // normalization for spectral-diff
inst->featureData[5] = 0.f; // normalization for spectral-diff
inst->featureData[6] =
(float)0.0; // window time-average of input magnitude spectrum
0.f; // window time-average of input magnitude spectrum
// histogram quantities: used to estimate/update thresholds for features
for (i = 0; i < HIST_PAR_EST; i++) {
inst->histLrt[i] = 0;
inst->histSpecFlat[i] = 0;
inst->histSpecDiff[i] = 0;
}
memset(inst->histLrt, 0, sizeof(int) * HIST_PAR_EST);
memset(inst->histSpecFlat, 0, sizeof(int) * HIST_PAR_EST);
memset(inst->histSpecDiff, 0, sizeof(int) * HIST_PAR_EST);
inst->blockInd = -1; // frame counter
inst->priorModelPars[0] =
LRT_FEATURE_THR; // default threshold for lrt feature
inst->priorModelPars[1] = (float)0.5; // threshold for spectral flatness:
LRT_FEATURE_THR; // default threshold for lrt feature
inst->priorModelPars[1] = 0.5f; // threshold for spectral flatness:
// determined on-line
inst->priorModelPars[2] = (float)1.0; // sgn_map par for spectral measure:
inst->priorModelPars[2] = 1.f; // sgn_map par for spectral measure:
// 1 for flatness measure
inst->priorModelPars[3] =
(float)0.5; // threshold for template-difference feature:
inst->priorModelPars[3] = 0.5f; // threshold for template-difference feature:
// determined on-line
inst->priorModelPars[4] =
(float)1.0; // default weighting parameter for lrt feature
inst->priorModelPars[5] = (float)0.0; // default weighting parameter for
inst->priorModelPars[4] = 1.f; // default weighting parameter for lrt feature
inst->priorModelPars[5] = 0.f; // default weighting parameter for
// spectral flatness feature
inst->priorModelPars[6] = (float)0.0; // default weighting parameter for
inst->priorModelPars[6] = 0.f; // default weighting parameter for
// spectral difference feature
inst->modelUpdatePars[0] = 2; // update flag for parameters:
@ -221,23 +225,23 @@ int WebRtcNs_set_policy_core(NSinst_t* inst, int mode) {
inst->aggrMode = mode;
if (mode == 0) {
inst->overdrive = (float)1.0;
inst->denoiseBound = (float)0.5;
inst->overdrive = 1.f;
inst->denoiseBound = 0.5f;
inst->gainmap = 0;
} else if (mode == 1) {
// inst->overdrive = (float)1.25;
inst->overdrive = (float)1.0;
inst->denoiseBound = (float)0.25;
// inst->overdrive = 1.25f;
inst->overdrive = 1.f;
inst->denoiseBound = 0.25f;
inst->gainmap = 1;
} else if (mode == 2) {
// inst->overdrive = (float)1.25;
inst->overdrive = (float)1.1;
inst->denoiseBound = (float)0.125;
// inst->overdrive = 1.25f;
inst->overdrive = 1.1f;
inst->denoiseBound = 0.125f;
inst->gainmap = 1;
} else if (mode == 3) {
// inst->overdrive = (float)1.30;
inst->overdrive = (float)1.25;
inst->denoiseBound = (float)0.09;
// inst->overdrive = 1.3f;
inst->overdrive = 1.25f;
inst->denoiseBound = 0.09f;
inst->gainmap = 1;
}
return 0;
@ -264,7 +268,7 @@ void WebRtcNs_NoiseEstimation(NSinst_t* inst, float* magn, float* noise) {
for (i = 0; i < inst->magnLen; i++) {
// compute delta
if (inst->density[offset + i] > 1.0) {
delta = FACTOR * (float)1.0 / inst->density[offset + i];
delta = FACTOR * 1.f / inst->density[offset + i];
} else {
delta = FACTOR;
}
@ -275,14 +279,14 @@ void WebRtcNs_NoiseEstimation(NSinst_t* inst, float* magn, float* noise) {
QUANTILE * delta / (float)(inst->counter[s] + 1);
} else {
inst->lquantile[offset + i] -=
((float)1.0 - QUANTILE) * delta / (float)(inst->counter[s] + 1);
(1.f - QUANTILE) * delta / (float)(inst->counter[s] + 1);
}
// update density estimate
if (fabs(lmagn[i] - inst->lquantile[offset + i]) < WIDTH) {
inst->density[offset + i] =
((float)inst->counter[s] * inst->density[offset + i] +
(float)1.0 / ((float)2.0 * WIDTH)) /
1.f / (2.f * WIDTH)) /
(float)(inst->counter[s] + 1);
}
} // end loop over magnitude spectrum
@ -371,8 +375,7 @@ void WebRtcNs_FeatureParameterExtraction(NSinst_t* inst, int flag) {
avgSquareHistLrt = 0.0;
numHistLrt = 0;
for (i = 0; i < HIST_PAR_EST; i++) {
binMid =
((float)i + (float)0.5) * inst->featureExtractionParams.binSizeLrt;
binMid = ((float)i + 0.5f) * inst->featureExtractionParams.binSizeLrt;
if (binMid <= inst->featureExtractionParams.rangeAvgHistLrt) {
avgHistLrt += inst->histLrt[i] * binMid;
numHistLrt += inst->histLrt[i];
@ -414,8 +417,8 @@ void WebRtcNs_FeatureParameterExtraction(NSinst_t* inst, int flag) {
// peaks for flatness
for (i = 0; i < HIST_PAR_EST; i++) {
binMid = ((float)i + (float)0.5) *
inst->featureExtractionParams.binSizeSpecFlat;
binMid =
(i + 0.5f) * inst->featureExtractionParams.binSizeSpecFlat;
if (inst->histSpecFlat[i] > maxPeak1) {
// Found new "first" peak
maxPeak2 = maxPeak1;
@ -442,8 +445,8 @@ void WebRtcNs_FeatureParameterExtraction(NSinst_t* inst, int flag) {
weightPeak2SpecDiff = 0;
// peaks for spectral difference
for (i = 0; i < HIST_PAR_EST; i++) {
binMid = ((float)i + (float)0.5) *
inst->featureExtractionParams.binSizeSpecDiff;
binMid =
((float)i + 0.5f) * inst->featureExtractionParams.binSizeSpecDiff;
if (inst->histSpecDiff[i] > maxPeak1) {
// Found new "first" peak
maxPeak2 = maxPeak1;
@ -470,7 +473,7 @@ void WebRtcNs_FeatureParameterExtraction(NSinst_t* inst, int flag) {
inst->featureExtractionParams.limitPeakWeightsSpecFlat *
weightPeak1SpecFlat)) {
weightPeak1SpecFlat += weightPeak2SpecFlat;
posPeak1SpecFlat = (float)0.5 * (posPeak1SpecFlat + posPeak2SpecFlat);
posPeak1SpecFlat = 0.5f * (posPeak1SpecFlat + posPeak2SpecFlat);
}
// reject if weight of peaks is not large enough, or peak value too small
if (weightPeak1SpecFlat <
@ -502,7 +505,7 @@ void WebRtcNs_FeatureParameterExtraction(NSinst_t* inst, int flag) {
inst->featureExtractionParams.limitPeakWeightsSpecDiff *
weightPeak1SpecDiff)) {
weightPeak1SpecDiff += weightPeak2SpecDiff;
posPeak1SpecDiff = (float)0.5 * (posPeak1SpecDiff + posPeak2SpecDiff);
posPeak1SpecDiff = 0.5f * (posPeak1SpecDiff + posPeak2SpecDiff);
}
// get the threshold value
inst->priorModelPars[3] =
@ -532,7 +535,7 @@ void WebRtcNs_FeatureParameterExtraction(NSinst_t* inst, int flag) {
// inst->priorModelPars[5] is weight for spectral flatness
// inst->priorModelPars[6] is weight for spectral difference
featureSum = (float)(1 + useFeatureSpecFlat + useFeatureSpecDiff);
inst->priorModelPars[4] = (float)1.0 / featureSum;
inst->priorModelPars[4] = 1.f / featureSum;
inst->priorModelPars[5] = ((float)useFeatureSpecFlat) / featureSum;
inst->priorModelPars[6] = ((float)useFeatureSpecDiff) / featureSum;
@ -622,10 +625,9 @@ void WebRtcNs_ComputeSpectralDifference(NSinst_t* inst, float* magnIn) {
inst->featureData[6] += inst->signalEnergy;
avgDiffNormMagn =
varMagn - (covMagnPause * covMagnPause) / (varPause + (float)0.0001);
varMagn - (covMagnPause * covMagnPause) / (varPause + 0.0001f);
// normalize and compute time-avg update of difference feature
avgDiffNormMagn =
(float)(avgDiffNormMagn / (inst->featureData[5] + (float)0.0001));
avgDiffNormMagn = (float)(avgDiffNormMagn / (inst->featureData[5] + 0.0001f));
inst->featureData[4] +=
SPECT_DIFF_TAVG * (avgDiffNormMagn - inst->featureData[4]);
}
@ -650,9 +652,9 @@ void WebRtcNs_SpeechNoiseProb(NSinst_t* inst,
float widthPrior, widthPrior0, widthPrior1, widthPrior2;
widthPrior0 = WIDTH_PR_MAP;
widthPrior1 = (float)2.0 * WIDTH_PR_MAP; // width for pause region:
widthPrior1 = 2.f * WIDTH_PR_MAP; // width for pause region:
// lower range, so increase width in tanh map
widthPrior2 = (float)2.0 * WIDTH_PR_MAP; // for spectral-difference measure
widthPrior2 = 2.f * WIDTH_PR_MAP; // for spectral-difference measure
// threshold parameters for features
threshPrior0 = inst->priorModelPars[0];
@ -671,9 +673,9 @@ void WebRtcNs_SpeechNoiseProb(NSinst_t* inst,
// this is the average over all frequencies of the smooth log lrt
logLrtTimeAvgKsum = 0.0;
for (i = 0; i < inst->magnLen; i++) {
tmpFloat1 = (float)1.0 + (float)2.0 * snrLocPrior[i];
tmpFloat2 = (float)2.0 * snrLocPrior[i] / (tmpFloat1 + (float)0.0001);
besselTmp = (snrLocPost[i] + (float)1.0) * tmpFloat2;
tmpFloat1 = 1.f + 2.f * snrLocPrior[i];
tmpFloat2 = 2.f * snrLocPrior[i] / (tmpFloat1 + 0.0001f);
besselTmp = (snrLocPost[i] + 1.f) * tmpFloat2;
inst->logLrtTimeAvg[i] +=
LRT_TAVG * (besselTmp - (float)log(tmpFloat1) - inst->logLrtTimeAvg[i]);
logLrtTimeAvgKsum += inst->logLrtTimeAvg[i];
@ -693,9 +695,9 @@ void WebRtcNs_SpeechNoiseProb(NSinst_t* inst,
widthPrior = widthPrior1;
}
// compute indicator function: sigmoid map
indicator0 = (float)0.5 *
((float)tanh(widthPrior * (logLrtTimeAvgKsum - threshPrior0)) +
(float)1.0);
indicator0 =
0.5f *
((float)tanh(widthPrior * (logLrtTimeAvgKsum - threshPrior0)) + 1.f);
// spectral flatness feature
tmpFloat1 = inst->featureData[0];
@ -709,9 +711,9 @@ void WebRtcNs_SpeechNoiseProb(NSinst_t* inst,
}
// compute indicator function: sigmoid map
indicator1 =
(float)0.5 *
0.5f *
((float)tanh((float)sgnMap * widthPrior * (threshPrior1 - tmpFloat1)) +
(float)1.0);
1.f);
// for template spectrum-difference
tmpFloat1 = inst->featureData[4];
@ -722,8 +724,7 @@ void WebRtcNs_SpeechNoiseProb(NSinst_t* inst,
}
// compute indicator function: sigmoid map
indicator2 =
(float)0.5 *
((float)tanh(widthPrior * (tmpFloat1 - threshPrior2)) + (float)1.0);
0.5f * ((float)tanh(widthPrior * (tmpFloat1 - threshPrior2)) + 1.f);
// combine the indicator function with the feature weights
indPrior = weightIndPrior0 * indicator0 + weightIndPrior1 * indicator1 +
@ -733,20 +734,19 @@ void WebRtcNs_SpeechNoiseProb(NSinst_t* inst,
// compute the prior probability
inst->priorSpeechProb += PRIOR_UPDATE * (indPrior - inst->priorSpeechProb);
// make sure probabilities are within range: keep floor to 0.01
if (inst->priorSpeechProb > 1.0) {
inst->priorSpeechProb = (float)1.0;
if (inst->priorSpeechProb > 1.f) {
inst->priorSpeechProb = 1.f;
}
if (inst->priorSpeechProb < 0.01) {
inst->priorSpeechProb = (float)0.01;
if (inst->priorSpeechProb < 0.01f) {
inst->priorSpeechProb = 0.01f;
}
// final speech probability: combine prior model with LR factor:
gainPrior = ((float)1.0 - inst->priorSpeechProb) /
(inst->priorSpeechProb + (float)0.0001);
gainPrior = (1.f - inst->priorSpeechProb) / (inst->priorSpeechProb + 0.0001f);
for (i = 0; i < inst->magnLen; i++) {
invLrt = (float)exp(-inst->logLrtTimeAvg[i]);
invLrt = (float)gainPrior * invLrt;
probSpeechFinal[i] = (float)1.0 / ((float)1.0 + invLrt);
probSpeechFinal[i] = 1.f / (1.f + invLrt);
}
}
@ -762,6 +762,7 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
float winData[ANAL_BLOCKL_MAX];
float magn[HALF_ANAL_BLOCKL], noise[HALF_ANAL_BLOCKL];
float snrLocPost[HALF_ANAL_BLOCKL], snrLocPrior[HALF_ANAL_BLOCKL];
float previousEstimateStsa[HALF_ANAL_BLOCKL];
float real[ANAL_BLOCKL_MAX], imag[HALF_ANAL_BLOCKL];
// Variables during startup
float sum_log_i = 0.0;
@ -812,10 +813,10 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
imag[0] = 0;
real[0] = winData[0];
magn[0] = (float)(fabs(real[0]) + 1.0f);
magn[0] = fabs(real[0]) + 1.f;
imag[inst->magnLen - 1] = 0;
real[inst->magnLen - 1] = winData[1];
magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
magn[inst->magnLen - 1] = fabs(real[inst->magnLen - 1]) + 1.f;
signalEnergy = (float)(real[0] * real[0]) +
(float)(real[inst->magnLen - 1] * real[inst->magnLen - 1]);
sumMagn = magn[0] + magn[inst->magnLen - 1];
@ -834,7 +835,7 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
fTmp = real[i] * real[i];
fTmp += imag[i] * imag[i];
signalEnergy += fTmp;
magn[i] = ((float)sqrt(fTmp)) + 1.0f;
magn[i] = ((float)sqrt(fTmp)) + 1.f;
sumMagn += magn[i];
if (inst->blockInd < END_STARTUP_SHORT) {
if (i >= kStartBand) {
@ -866,24 +867,24 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
(sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
tmpFloat3 = tmpFloat2 / tmpFloat1;
// Constrain the estimated spectrum to be positive
if (tmpFloat3 < 0.0f) {
tmpFloat3 = 0.0f;
if (tmpFloat3 < 0.f) {
tmpFloat3 = 0.f;
}
inst->pinkNoiseNumerator += tmpFloat3;
tmpFloat2 = (sum_log_i * sum_log_magn);
tmpFloat2 -= ((float)(inst->magnLen - kStartBand)) * sum_log_i_log_magn;
tmpFloat3 = tmpFloat2 / tmpFloat1;
// Constrain the pink noise power to be in the interval [0, 1];
if (tmpFloat3 < 0.0f) {
tmpFloat3 = 0.0f;
if (tmpFloat3 < 0.f) {
tmpFloat3 = 0.f;
}
if (tmpFloat3 > 1.0f) {
tmpFloat3 = 1.0f;
if (tmpFloat3 > 1.f) {
tmpFloat3 = 1.f;
}
inst->pinkNoiseExp += tmpFloat3;
// Calculate frequency independent parts of parametric noise estimate.
if (inst->pinkNoiseExp > 0.0f) {
if (inst->pinkNoiseExp > 0.f) {
// Use pink noise estimate
parametric_num =
exp(inst->pinkNoiseNumerator / (float)(inst->blockInd + 1));
@ -893,7 +894,7 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
for (i = 0; i < inst->magnLen; i++) {
// Estimate the background noise using the white and pink noise
// parameters
if (inst->pinkNoiseExp == 0.0f) {
if (inst->pinkNoiseExp == 0.f) {
// Use white noise estimate
inst->parametricNoise[i] = inst->whiteNoiseLevel;
} else {
@ -923,19 +924,18 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
// compute DD estimate of prior SNR: needed for new method
for (i = 0; i < inst->magnLen; i++) {
// post snr
snrLocPost[i] = (float)0.0;
snrLocPost[i] = 0.f;
if (magn[i] > noise[i]) {
snrLocPost[i] = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
snrLocPost[i] = magn[i] / (noise[i] + 0.0001f) - 1.f;
}
// previous post snr
// previous estimate: based on previous frame with gain filter
inst->previousEstimateStsa[i] = inst->magnPrev[i] /
(inst->noisePrev[i] + (float)0.0001) *
(inst->smooth[i]);
previousEstimateStsa[i] = inst->magnPrevAnalyze[i] /
(inst->noisePrev[i] + 0.0001f) * inst->smooth[i];
// DD estimate is sum of two terms: current estimate and previous estimate
// directed decision update of snrPrior
snrLocPrior[i] = DD_PR_SNR * inst->previousEstimateStsa[i] +
((float)1.0 - DD_PR_SNR) * snrLocPost[i];
snrLocPrior[i] =
DD_PR_SNR * previousEstimateStsa[i] + (1.f - DD_PR_SNR) * snrLocPost[i];
// post and prior snr needed for step 2
} // end of loop over freqs
// done with step 1: dd computation of prior and post snr
@ -968,8 +968,8 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
inst->featureData[6] =
inst->featureData[6] / ((float)inst->modelUpdatePars[1]);
inst->featureData[5] =
(float)0.5 * (inst->featureData[6] + inst->featureData[5]);
inst->featureData[6] = (float)0.0;
0.5f * (inst->featureData[6] + inst->featureData[5]);
inst->featureData[6] = 0.f;
}
}
}
@ -979,13 +979,12 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
gammaNoiseTmp = NOISE_UPDATE;
for (i = 0; i < inst->magnLen; i++) {
probSpeech = inst->speechProb[i];
probNonSpeech = (float)1.0 - probSpeech;
probNonSpeech = 1.f - probSpeech;
// temporary noise update:
// use it for speech frames if update value is less than previous
noiseUpdateTmp =
gammaNoiseTmp * inst->noisePrev[i] +
((float)1.0 - gammaNoiseTmp) *
(probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
noiseUpdateTmp = gammaNoiseTmp * inst->noisePrev[i] +
(1.f - gammaNoiseTmp) * (probNonSpeech * magn[i] +
probSpeech * inst->noisePrev[i]);
//
// time-constant based on speech/noise state
gammaNoiseOld = gammaNoiseTmp;
@ -1002,10 +1001,9 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
if (gammaNoiseTmp == gammaNoiseOld) {
noise[i] = noiseUpdateTmp;
} else {
noise[i] =
gammaNoiseTmp * inst->noisePrev[i] +
((float)1.0 - gammaNoiseTmp) *
(probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
noise[i] = gammaNoiseTmp * inst->noisePrev[i] +
(1.f - gammaNoiseTmp) * (probNonSpeech * magn[i] +
probSpeech * inst->noisePrev[i]);
// allow for noise update downwards:
// if noise update decreases the noise, it is safe, so allow it to
// happen
@ -1017,9 +1015,8 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
// done with step 2: noise update
// keep track of noise spectrum for next frame
for (i = 0; i < inst->magnLen; i++) {
inst->noisePrev[i] = noise[i];
}
memcpy(inst->noise, noise, sizeof(*noise) * inst->magnLen);
memcpy(inst->magnPrevAnalyze, magn, sizeof(*magn) * inst->magnLen);
return 0;
}
@ -1034,7 +1031,7 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
int i;
float energy1, energy2, gain, factor, factor1, factor2;
float snrPrior, currentEstimateStsa;
float snrPrior, previousEstimateStsa, currentEstimateStsa;
float tmpFloat1, tmpFloat2;
float fTmp;
float fout[BLOCKL_MAX];
@ -1050,6 +1047,7 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
float gainMapParHB = 1.0;
float gainTimeDomainHB = 1.0;
float avgProbSpeechHB, avgProbSpeechHBTmp, avgFilterGainHB, gainModHB;
float sumMagnAnalyze, sumMagnProcess;
// Check that initiation has been done
if (inst->initFlag != 1) {
@ -1121,10 +1119,10 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
imag[0] = 0;
real[0] = winData[0];
magn[0] = (float)(fabs(real[0]) + 1.0f);
magn[0] = fabs(real[0]) + 1.f;
imag[inst->magnLen - 1] = 0;
real[inst->magnLen - 1] = winData[1];
magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
magn[inst->magnLen - 1] = fabs(real[inst->magnLen - 1]) + 1.f;
if (inst->blockInd < END_STARTUP_SHORT) {
inst->initMagnEst[0] += magn[0];
inst->initMagnEst[inst->magnLen - 1] += magn[inst->magnLen - 1];
@ -1135,7 +1133,7 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
// magnitude spectrum
fTmp = real[i] * real[i];
fTmp += imag[i] * imag[i];
magn[i] = ((float)sqrt(fTmp)) + 1.0f;
magn[i] = ((float)sqrt(fTmp)) + 1.f;
if (inst->blockInd < END_STARTUP_SHORT) {
inst->initMagnEst[i] += magn[i];
}
@ -1143,17 +1141,19 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
// Compute dd update of prior snr and post snr based on new noise estimate
for (i = 0; i < inst->magnLen; i++) {
// previous estimate: based on previous frame with gain filter
previousEstimateStsa = inst->magnPrevProcess[i] /
(inst->noisePrev[i] + 0.0001f) * inst->smooth[i];
// post and prior snr
currentEstimateStsa = (float)0.0;
if (magn[i] > inst->noisePrev[i]) {
currentEstimateStsa =
magn[i] / (inst->noisePrev[i] + (float)0.0001) - (float)1.0;
currentEstimateStsa = 0.f;
if (magn[i] > inst->noise[i]) {
currentEstimateStsa = magn[i] / (inst->noise[i] + 0.0001f) - 1.f;
}
// DD estimate is sume of two terms: current estimate and previous
// estimate
// directed decision update of snrPrior
snrPrior = DD_PR_SNR * inst->previousEstimateStsa[i] +
((float)1.0 - DD_PR_SNR) * currentEstimateStsa;
snrPrior = DD_PR_SNR * previousEstimateStsa +
(1.f - DD_PR_SNR) * currentEstimateStsa;
// gain filter
tmpFloat1 = inst->overdrive + snrPrior;
tmpFloat2 = (float)snrPrior / tmpFloat1;
@ -1166,20 +1166,20 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
theFilter[i] = inst->denoiseBound;
}
// flooring top
if (theFilter[i] > (float)1.0) {
theFilter[i] = 1.0;
if (theFilter[i] > 1.f) {
theFilter[i] = 1.f;
}
if (inst->blockInd < END_STARTUP_SHORT) {
theFilterTmp[i] =
(inst->initMagnEst[i] - inst->overdrive * inst->parametricNoise[i]);
theFilterTmp[i] /= (inst->initMagnEst[i] + (float)0.0001);
theFilterTmp[i] /= (inst->initMagnEst[i] + 0.0001f);
// flooring bottom
if (theFilterTmp[i] < inst->denoiseBound) {
theFilterTmp[i] = inst->denoiseBound;
}
// flooring top
if (theFilterTmp[i] > (float)1.0) {
theFilterTmp[i] = 1.0;
if (theFilterTmp[i] > 1.f) {
theFilterTmp[i] = 1.f;
}
// Weight the two suppression filters
theFilter[i] *= (inst->blockInd);
@ -1193,9 +1193,8 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
imag[i] *= inst->smooth[i];
}
// keep track of magn spectrum for next frame
for (i = 0; i < inst->magnLen; i++) {
inst->magnPrev[i] = magn[i];
}
memcpy(inst->magnPrevProcess, magn, sizeof(*magn) * inst->magnLen);
memcpy(inst->noisePrev, inst->noise, sizeof(inst->noise[0]) * inst->magnLen);
// back to time domain
winData[0] = real[0];
winData[1] = real[inst->magnLen - 1];
@ -1206,26 +1205,26 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
WebRtc_rdft(inst->anaLen, -1, winData, inst->ip, inst->wfft);
for (i = 0; i < inst->anaLen; i++) {
real[i] = 2.0f * winData[i] / inst->anaLen; // fft scaling
real[i] = 2.f * winData[i] / inst->anaLen; // fft scaling
}
// scale factor: only do it after END_STARTUP_LONG time
factor = (float)1.0;
factor = 1.f;
if (inst->gainmap == 1 && inst->blockInd > END_STARTUP_LONG) {
factor1 = (float)1.0;
factor2 = (float)1.0;
factor1 = 1.f;
factor2 = 1.f;
energy2 = 0.0;
for (i = 0; i < inst->anaLen; i++) {
energy2 += (float)real[i] * (float)real[i];
}
gain = (float)sqrt(energy2 / (energy1 + (float)1.0));
gain = (float)sqrt(energy2 / (energy1 + 1.f));
// scaling for new version
if (gain > B_LIM) {
factor1 = (float)1.0 + (float)1.3 * (gain - B_LIM);
if (gain * factor1 > (float)1.0) {
factor1 = (float)1.0 / gain;
factor1 = 1.f + 1.3f * (gain - B_LIM);
if (gain * factor1 > 1.f) {
factor1 = 1.f / gain;
}
}
if (gain < B_LIM) {
@ -1234,12 +1233,12 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
if (gain <= inst->denoiseBound) {
gain = inst->denoiseBound;
}
factor2 = (float)1.0 - (float)0.3 * (B_LIM - gain);
factor2 = 1.f - 0.3f * (B_LIM - gain);
}
// combine both scales with speech/noise prob:
// note prior (priorSpeechProb) is not frequency dependent
factor = inst->priorSpeechProb * factor1 +
((float)1.0 - inst->priorSpeechProb) * factor2;
(1.f - inst->priorSpeechProb) * factor2;
} // out of inst->gainmap==1
// synthesis
@ -1271,6 +1270,16 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
avgProbSpeechHB += inst->speechProb[i];
}
avgProbSpeechHB = avgProbSpeechHB / ((float)deltaBweHB);
// If the speech was suppressed by a component between Analyze and
// Process, for example the AEC, then it should not be considered speech
// for high band suppression purposes.
sumMagnAnalyze = 0;
sumMagnProcess = 0;
for (i = 0; i < inst->magnLen; ++i) {
sumMagnAnalyze += inst->magnPrevAnalyze[i];
sumMagnProcess += inst->magnPrevProcess[i];
}
avgProbSpeechHB *= sumMagnProcess / sumMagnAnalyze;
// average filter gain from low band
// average over second half (i.e., 4->8kHz) of freq. spectrum
avgFilterGainHB = 0.0;
@ -1278,15 +1287,13 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
avgFilterGainHB += inst->smooth[i];
}
avgFilterGainHB = avgFilterGainHB / ((float)(deltaGainHB));
avgProbSpeechHBTmp = (float)2.0 * avgProbSpeechHB - (float)1.0;
avgProbSpeechHBTmp = 2.f * avgProbSpeechHB - 1.f;
// gain based on speech prob:
gainModHB = (float)0.5 *
((float)1.0 + (float)tanh(gainMapParHB * avgProbSpeechHBTmp));
gainModHB = 0.5f * (1.f + (float)tanh(gainMapParHB * avgProbSpeechHBTmp));
// combine gain with low band gain
gainTimeDomainHB = (float)0.5 * gainModHB + (float)0.5 * avgFilterGainHB;
if (avgProbSpeechHB >= (float)0.5) {
gainTimeDomainHB =
(float)0.25 * gainModHB + (float)0.75 * avgFilterGainHB;
gainTimeDomainHB = 0.5f * gainModHB + 0.5f * avgFilterGainHB;
if (avgProbSpeechHB >= 0.5f) {
gainTimeDomainHB = 0.25f * gainModHB + 0.75f * avgFilterGainHB;
}
gainTimeDomainHB = gainTimeDomainHB * decayBweHB;
// make sure gain is within flooring range
@ -1295,8 +1302,8 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
gainTimeDomainHB = inst->denoiseBound;
}
// flooring top
if (gainTimeDomainHB > (float)1.0) {
gainTimeDomainHB = 1.0;
if (gainTimeDomainHB > 1.f) {
gainTimeDomainHB = 1.f;
}
// apply gain
for (i = 0; i < inst->blockLen; i++) {

View File

@ -69,7 +69,6 @@ typedef struct NSinst_t_ {
int counter[SIMULT];
int updates;
// parameters for Wiener filter
float previousEstimateStsa[HALF_ANAL_BLOCKL];
float smooth[HALF_ANAL_BLOCKL];
float overdrive;
float denoiseBound;
@ -83,8 +82,12 @@ typedef struct NSinst_t_ {
int modelUpdatePars[4]; // parameters for updating or estimating
// thresholds/weights for prior model
float priorModelPars[7]; // parameters for prior model
float noise[HALF_ANAL_BLOCKL]; // noise spectrum from current frame
float noisePrev[HALF_ANAL_BLOCKL]; // noise spectrum from previous frame
float magnPrev[HALF_ANAL_BLOCKL]; // magnitude spectrum of previous frame
// magnitude spectrum of previous analyze frame
float magnPrevAnalyze[HALF_ANAL_BLOCKL];
// magnitude spectrum of previous process frame
float magnPrevProcess[HALF_ANAL_BLOCKL];
float logLrtTimeAvg[HALF_ANAL_BLOCKL]; // log lrt factor with time-smoothing
float priorSpeechProb; // prior speech/noise probability
float featureData[7]; // data for features