Remove basictypes.h dependency from bitbuffer.

This reduces the types exported in webrtc proper, which can cause other
issues (since it doesn't generally use webrtc/base/basictypes.h).
basictypes.h integral types (e.g. uint8) have been replaced by the
stdint counterparts (e.g. uint8_t), which matches general webrtc style.

The include for common.h has been replaced by constructormagic.h, which
was the only part used.

BUG=
R=pthatcher@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/50859004

Cr-Commit-Position: refs/heads/master@{#9181}
This commit is contained in:
Noah Richards 2015-05-12 12:20:47 -07:00
parent e2357149eb
commit 9b9f1c4562
2 changed files with 76 additions and 71 deletions

View File

@ -18,37 +18,39 @@
namespace {
// Returns the lowest (right-most) |bit_count| bits in |byte|.
uint8 LowestBits(uint8 byte, size_t bit_count) {
uint8_t LowestBits(uint8_t byte, size_t bit_count) {
DCHECK_LE(bit_count, 8u);
return byte & ((1 << bit_count) - 1);
}
// Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the
// lowest bits (to the right).
uint8 HighestBits(uint8 byte, size_t bit_count) {
uint8_t HighestBits(uint8_t byte, size_t bit_count) {
DCHECK_LE(bit_count, 8u);
uint8 shift = 8 - static_cast<uint8>(bit_count);
uint8 mask = 0xFF << shift;
uint8_t shift = 8 - static_cast<uint8_t>(bit_count);
uint8_t mask = 0xFF << shift;
return (byte & mask) >> shift;
}
// Returns the highest byte of |val| in a uint8.
uint8 HighestByte(uint64 val) {
return static_cast<uint8>(val >> 56);
// Returns the highest byte of |val| in a uint8_t.
uint8_t HighestByte(uint64_t val) {
return static_cast<uint8_t>(val >> 56);
}
// Returns the result of writing partial data from |source|, of
// |source_bit_count| size in the highest bits, to |target| at
// |target_bit_offset| from the highest bit.
uint8 WritePartialByte(uint8 source, size_t source_bit_count,
uint8 target, size_t target_bit_offset) {
uint8_t WritePartialByte(uint8_t source,
size_t source_bit_count,
uint8_t target,
size_t target_bit_offset) {
DCHECK(target_bit_offset < 8);
DCHECK(source_bit_count < 9);
DCHECK(source_bit_count <= (8 - target_bit_offset));
// Generate a mask for just the bits we're going to overwrite, so:
uint8 mask =
uint8_t mask =
// The number of bits we want, in the most significant bits...
static_cast<uint8>(0xFF << (8 - source_bit_count))
static_cast<uint8_t>(0xFF << (8 - source_bit_count))
// ...shifted over to the target offset from the most signficant bit.
>> target_bit_offset;
@ -58,7 +60,7 @@ uint8 WritePartialByte(uint8 source, size_t source_bit_count,
}
// Counts the number of bits used in the binary representation of val.
size_t CountBits(uint64 val) {
size_t CountBits(uint64_t val) {
size_t bit_count = 0;
while (val != 0) {
bit_count++;
@ -71,47 +73,47 @@ size_t CountBits(uint64 val) {
namespace rtc {
BitBuffer::BitBuffer(const uint8* bytes, size_t byte_count)
BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count)
: bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() {
DCHECK(static_cast<uint64>(byte_count_) <=
std::numeric_limits<uint32>::max());
DCHECK(static_cast<uint64_t>(byte_count_) <=
std::numeric_limits<uint32_t>::max());
}
uint64 BitBuffer::RemainingBitCount() const {
return (static_cast<uint64>(byte_count_) - byte_offset_) * 8 - bit_offset_;
uint64_t BitBuffer::RemainingBitCount() const {
return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_;
}
bool BitBuffer::ReadUInt8(uint8* val) {
uint32 bit_val;
if (!ReadBits(&bit_val, sizeof(uint8) * 8)) {
bool BitBuffer::ReadUInt8(uint8_t* val) {
uint32_t bit_val;
if (!ReadBits(&bit_val, sizeof(uint8_t) * 8)) {
return false;
}
DCHECK(bit_val <= std::numeric_limits<uint8>::max());
*val = static_cast<uint8>(bit_val);
DCHECK(bit_val <= std::numeric_limits<uint8_t>::max());
*val = static_cast<uint8_t>(bit_val);
return true;
}
bool BitBuffer::ReadUInt16(uint16* val) {
uint32 bit_val;
if (!ReadBits(&bit_val, sizeof(uint16) * 8)) {
bool BitBuffer::ReadUInt16(uint16_t* val) {
uint32_t bit_val;
if (!ReadBits(&bit_val, sizeof(uint16_t) * 8)) {
return false;
}
DCHECK(bit_val <= std::numeric_limits<uint16>::max());
*val = static_cast<uint16>(bit_val);
DCHECK(bit_val <= std::numeric_limits<uint16_t>::max());
*val = static_cast<uint16_t>(bit_val);
return true;
}
bool BitBuffer::ReadUInt32(uint32* val) {
return ReadBits(val, sizeof(uint32) * 8);
bool BitBuffer::ReadUInt32(uint32_t* val) {
return ReadBits(val, sizeof(uint32_t) * 8);
}
bool BitBuffer::PeekBits(uint32* val, size_t bit_count) {
bool BitBuffer::PeekBits(uint32_t* val, size_t bit_count) {
if (!val || bit_count > RemainingBitCount() || bit_count > 32) {
return false;
}
const uint8* bytes = bytes_ + byte_offset_;
const uint8_t* bytes = bytes_ + byte_offset_;
size_t remaining_bits_in_current_byte = 8 - bit_offset_;
uint32 bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
// If we're reading fewer bits than what's left in the current byte, just
// return the portion of this byte that we need.
if (bit_count < remaining_bits_in_current_byte) {
@ -135,7 +137,7 @@ bool BitBuffer::PeekBits(uint32* val, size_t bit_count) {
return true;
}
bool BitBuffer::ReadBits(uint32* val, size_t bit_count) {
bool BitBuffer::ReadBits(uint32_t* val, size_t bit_count) {
return PeekBits(val, bit_count) && ConsumeBits(bit_count);
}
@ -153,7 +155,7 @@ bool BitBuffer::ConsumeBits(size_t bit_count) {
return true;
}
bool BitBuffer::ReadExponentialGolomb(uint32* val) {
bool BitBuffer::ReadExponentialGolomb(uint32_t* val) {
if (!val) {
return false;
}
@ -164,7 +166,7 @@ bool BitBuffer::ReadExponentialGolomb(uint32* val) {
// Count the number of leading 0 bits by peeking/consuming them one at a time.
size_t zero_bit_count = 0;
uint32 peeked_bit;
uint32_t peeked_bit;
while (PeekBits(&peeked_bit, 1) && peeked_bit == 0) {
zero_bit_count++;
ConsumeBits(1);
@ -174,7 +176,7 @@ bool BitBuffer::ReadExponentialGolomb(uint32* val) {
DCHECK(!PeekBits(&peeked_bit, 1) || peeked_bit == 1);
// The bit count of the value is the number of zeros + 1. Make sure that many
// bits fits in a uint32 and that we have enough bits left for it, and then
// bits fits in a uint32_t and that we have enough bits left for it, and then
// read the value.
size_t value_bit_count = zero_bit_count + 1;
if (value_bit_count > 32 || !ReadBits(val, value_bit_count)) {
@ -203,32 +205,32 @@ bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) {
return true;
}
BitBufferWriter::BitBufferWriter(uint8* bytes, size_t byte_count)
: BitBuffer(bytes, byte_count), writable_bytes_(bytes) {
BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count)
: BitBuffer(bytes, byte_count), writable_bytes_(bytes) {
}
bool BitBufferWriter::WriteUInt8(uint8 val) {
return WriteBits(val, sizeof(uint8) * 8);
bool BitBufferWriter::WriteUInt8(uint8_t val) {
return WriteBits(val, sizeof(uint8_t) * 8);
}
bool BitBufferWriter::WriteUInt16(uint16 val) {
return WriteBits(val, sizeof(uint16) * 8);
bool BitBufferWriter::WriteUInt16(uint16_t val) {
return WriteBits(val, sizeof(uint16_t) * 8);
}
bool BitBufferWriter::WriteUInt32(uint32 val) {
return WriteBits(val, sizeof(uint32) * 8);
bool BitBufferWriter::WriteUInt32(uint32_t val) {
return WriteBits(val, sizeof(uint32_t) * 8);
}
bool BitBufferWriter::WriteBits(uint64 val, size_t bit_count) {
bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) {
if (bit_count > RemainingBitCount()) {
return false;
}
size_t total_bits = bit_count;
// For simplicity, push the bits we want to read from val to the highest bits.
val <<= (sizeof(uint64) * 8 - bit_count);
val <<= (sizeof(uint64_t) * 8 - bit_count);
uint8* bytes = writable_bytes_ + byte_offset_;
uint8_t* bytes = writable_bytes_ + byte_offset_;
// The first byte is relatively special; the bit offset to write to may put us
// in the middle of the byte, and the total bit count to write may require we
@ -264,17 +266,17 @@ bool BitBufferWriter::WriteBits(uint64 val, size_t bit_count) {
return ConsumeBits(total_bits);
}
bool BitBufferWriter::WriteExponentialGolomb(uint32 val) {
// We don't support reading UINT32_MAX, because it doesn't fit in a uint32
bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) {
// We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t
// when encoded, so don't support writing it either.
if (val == std::numeric_limits<uint32>::max()) {
if (val == std::numeric_limits<uint32_t>::max()) {
return false;
}
uint64 val_to_encode = static_cast<uint64>(val) + 1;
uint64_t val_to_encode = static_cast<uint64_t>(val) + 1;
// We need to write CountBits(val+1) 0s and then val+1. Since val (as a
// uint64) has leading zeros, we can just write the total golomb encoded size
// worth of bits, knowing the value will appear last.
// uint64_t) has leading zeros, we can just write the total golomb encoded
// size worth of bits, knowing the value will appear last.
return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1);
}

View File

@ -11,7 +11,10 @@
#ifndef WEBRTC_BASE_BITBUFFER_H_
#define WEBRTC_BASE_BITBUFFER_H_
#include "webrtc/base/common.h"
#include <stdint.h> // For integer types.
#include <stddef.h> // For size_t.
#include "webrtc/base/constructormagic.h"
namespace rtc {
@ -24,29 +27,29 @@ namespace rtc {
// Byte order is assumed big-endian/network.
class BitBuffer {
public:
BitBuffer(const uint8* bytes, size_t byte_count);
BitBuffer(const uint8_t* bytes, size_t byte_count);
// Gets the current offset, in bytes/bits, from the start of the buffer. The
// bit offset is the offset into the current byte, in the range [0,7].
void GetCurrentOffset(size_t* out_byte_offset, size_t* out_bit_offset);
// The remaining bits in the byte buffer.
uint64 RemainingBitCount() const;
uint64_t RemainingBitCount() const;
// Reads byte-sized values from the buffer. Returns false if there isn't
// enough data left for the specified type.
bool ReadUInt8(uint8* val);
bool ReadUInt16(uint16* val);
bool ReadUInt32(uint32* val);
bool ReadUInt8(uint8_t* val);
bool ReadUInt16(uint16_t* val);
bool ReadUInt32(uint32_t* val);
// Reads bit-sized values from the buffer. Returns false if there isn't enough
// data left for the specified bit count..
bool ReadBits(uint32* val, size_t bit_count);
bool ReadBits(uint32_t* val, size_t bit_count);
// Peeks bit-sized values from the buffer. Returns false if there isn't enough
// data left for the specified number of bits. Doesn't move the current
// offset.
bool PeekBits(uint32* val, size_t bit_count);
bool PeekBits(uint32_t* val, size_t bit_count);
// Reads the exponential golomb encoded value at the current offset.
// Exponential golomb values are encoded as:
@ -55,8 +58,8 @@ class BitBuffer {
// To decode, we count the number of leading 0 bits, read that many + 1 bits,
// and increment the result by 1.
// Returns false if there isn't enough data left for the specified type, or if
// the value wouldn't fit in a uint32.
bool ReadExponentialGolomb(uint32* val);
// the value wouldn't fit in a uint32_t.
bool ReadExponentialGolomb(uint32_t* val);
// Moves current position |byte_count| bytes forward. Returns false if
// there aren't enough bytes left in the buffer.
@ -70,7 +73,7 @@ class BitBuffer {
bool Seek(size_t byte_offset, size_t bit_offset);
protected:
const uint8* const bytes_;
const uint8_t* const bytes_;
// The total size of |bytes_|.
size_t byte_count_;
// The current offset, in bytes, from the start of |bytes_|.
@ -87,25 +90,25 @@ class BitBuffer {
class BitBufferWriter : public BitBuffer {
public:
// Constructs a bit buffer for the writable buffer of |bytes|.
BitBufferWriter(uint8* bytes, size_t byte_count);
BitBufferWriter(uint8_t* bytes, size_t byte_count);
// Writes byte-sized values from the buffer. Returns false if there isn't
// enough data left for the specified type.
bool WriteUInt8(uint8 val);
bool WriteUInt16(uint16 val);
bool WriteUInt32(uint32 val);
bool WriteUInt8(uint8_t val);
bool WriteUInt16(uint16_t val);
bool WriteUInt32(uint32_t val);
// Writes bit-sized values to the buffer. Returns false if there isn't enough
// room left for the specified number of bits.
bool WriteBits(uint64 val, size_t bit_count);
bool WriteBits(uint64_t val, size_t bit_count);
// Writes the exponential golomb encoded version of the supplied value.
// Returns false if there isn't enough room left for the value.
bool WriteExponentialGolomb(uint32 val);
bool WriteExponentialGolomb(uint32_t val);
private:
// The buffer, as a writable array.
uint8* const writable_bytes_;
uint8_t* const writable_bytes_;
DISALLOW_COPY_AND_ASSIGN(BitBufferWriter);
};