Add ability to include a larger time span (in addition to encode time) for measuring the processing time of a frame.

Controlled by setting enable_extended_processing_usage. Enabled by default.

R=mflodman@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/13289004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7460 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
asapersson@webrtc.org 2014-10-16 06:57:12 +00:00
parent d1ba6d9cbf
commit 9aed002090
5 changed files with 427 additions and 152 deletions

View File

@ -49,6 +49,7 @@ struct CpuOveruseOptions {
high_encode_usage_threshold_percent(90),
low_encode_time_rsd_threshold(-1),
high_encode_time_rsd_threshold(-1),
enable_extended_processing_usage(true),
frame_timeout_interval_ms(1500),
min_frame_samples(120),
min_process_count(3),
@ -68,6 +69,10 @@ struct CpuOveruseOptions {
int high_encode_time_rsd_threshold; // Additional threshold for triggering
// overuse (used in addition to
// threshold above if configured).
bool enable_extended_processing_usage; // Include a larger time span (in
// addition to encode time) for
// measuring the processing time of a
// frame.
// General settings.
int frame_timeout_interval_ms; // The maximum allowed interval between two
// frames before resetting estimations.
@ -90,6 +95,8 @@ struct CpuOveruseOptions {
o.high_encode_usage_threshold_percent &&
low_encode_time_rsd_threshold == o.low_encode_time_rsd_threshold &&
high_encode_time_rsd_threshold == o.high_encode_time_rsd_threshold &&
enable_extended_processing_usage ==
o.enable_extended_processing_usage &&
frame_timeout_interval_ms == o.frame_timeout_interval_ms &&
min_frame_samples == o.min_frame_samples &&
min_process_count == o.min_process_count &&

View File

@ -51,6 +51,7 @@ const float kMaxExp = 7.0f;
} // namespace
// TODO(asapersson): Remove this class. Not used.
Statistics::Statistics() :
sum_(0.0),
count_(0),
@ -121,7 +122,7 @@ class OveruseFrameDetector::EncodeTimeAvg {
}
~EncodeTimeAvg() {}
void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
void AddSample(float encode_time_ms, int64_t diff_last_sample_ms) {
float exp = diff_last_sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
@ -137,20 +138,22 @@ class OveruseFrameDetector::EncodeTimeAvg {
scoped_ptr<rtc::ExpFilter> filtered_encode_time_ms_;
};
// Class for calculating the encode usage.
class OveruseFrameDetector::EncodeUsage {
// Class for calculating the processing usage on the send-side (the average
// processing time of a frame divided by the average time difference between
// captured frames).
class OveruseFrameDetector::SendProcessingUsage {
public:
EncodeUsage()
SendProcessingUsage()
: kWeightFactorFrameDiff(0.998f),
kWeightFactorEncodeTime(0.995f),
kWeightFactorProcessing(0.995f),
kInitialSampleDiffMs(40.0f),
kMaxSampleDiffMs(45.0f),
count_(0),
filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactorEncodeTime)),
filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)),
filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
Reset();
}
~EncodeUsage() {}
~SendProcessingUsage() {}
void SetOptions(const CpuOveruseOptions& options) {
options_ = options;
@ -160,21 +163,21 @@ class OveruseFrameDetector::EncodeUsage {
count_ = 0;
filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
filtered_encode_time_ms_->Reset(kWeightFactorEncodeTime);
filtered_encode_time_ms_->Apply(1.0f, InitialEncodeTimeMs());
filtered_processing_ms_->Reset(kWeightFactorProcessing);
filtered_processing_ms_->Apply(1.0f, InitialProcessingMs());
}
void AddSample(float sample_ms) {
void AddCaptureSample(float sample_ms) {
float exp = sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_frame_diff_ms_->Apply(exp, sample_ms);
}
void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
++count_;
float exp = diff_last_sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
filtered_processing_ms_->Apply(exp, processing_ms);
}
int Value() const {
@ -184,7 +187,7 @@ class OveruseFrameDetector::EncodeUsage {
float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs);
float encode_usage_percent =
100.0f * filtered_encode_time_ms_->filtered() / frame_diff_ms;
100.0f * filtered_processing_ms_->filtered() / frame_diff_ms;
return static_cast<int>(encode_usage_percent + 0.5);
}
@ -195,24 +198,26 @@ class OveruseFrameDetector::EncodeUsage {
options_.high_encode_usage_threshold_percent) / 2.0f;
}
float InitialEncodeTimeMs() const {
float InitialProcessingMs() const {
return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
}
const float kWeightFactorFrameDiff;
const float kWeightFactorEncodeTime;
const float kWeightFactorProcessing;
const float kInitialSampleDiffMs;
const float kMaxSampleDiffMs;
uint64_t count_;
CpuOveruseOptions options_;
scoped_ptr<rtc::ExpFilter> filtered_encode_time_ms_;
scoped_ptr<rtc::ExpFilter> filtered_processing_ms_;
scoped_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
};
// Class for calculating the relative standard deviation of encode times.
class OveruseFrameDetector::EncodeTimeRsd {
// Class for calculating the relative standard deviation of the processing time
// of frame on the send-side.
// Currently only used for testing.
class OveruseFrameDetector::SendProcessingRsd {
public:
EncodeTimeRsd(Clock* clock)
SendProcessingRsd(Clock* clock)
: kWeightFactor(0.6f),
count_(0),
filtered_rsd_(new rtc::ExpFilter(kWeightFactor)),
@ -221,7 +226,7 @@ class OveruseFrameDetector::EncodeTimeRsd {
last_process_time_ms_(clock->TimeInMilliseconds()) {
Reset();
}
~EncodeTimeRsd() {}
~SendProcessingRsd() {}
void SetOptions(const CpuOveruseOptions& options) {
options_ = options;
@ -236,10 +241,9 @@ class OveruseFrameDetector::EncodeTimeRsd {
hist_sum_ = 0.0f;
}
void AddEncodeSample(float encode_time_ms) {
int bin = static_cast<int>(encode_time_ms + 0.5f);
void AddSample(float processing_ms) {
int bin = static_cast<int>(processing_ms + 0.5f);
if (bin <= 0) {
// The frame was probably not encoded, skip possible dropped frame.
return;
}
++count_;
@ -265,7 +269,7 @@ class OveruseFrameDetector::EncodeTimeRsd {
last_process_time_ms_ = now;
// Calculate variance (using samples above the mean).
// Checks for a larger encode time of some frames while there is a small
// Checks for a larger processing time of some frames while there is a small
// increase in the average time.
int mean = hist_sum_ / hist_samples_;
float variance = 0.0f;
@ -305,15 +309,63 @@ class OveruseFrameDetector::EncodeTimeRsd {
}
const float kWeightFactor;
uint32_t count_; // Number of encode samples since last reset.
uint32_t count_; // Number of samples since last reset.
CpuOveruseOptions options_;
scoped_ptr<rtc::ExpFilter> filtered_rsd_;
int hist_samples_;
float hist_sum_;
std::map<int,int> hist_; // Histogram of encode time of frames.
std::map<int, int> hist_; // Histogram of time spent on processing frames.
int64_t last_process_time_ms_;
};
// Class for calculating the processing time of frames.
class OveruseFrameDetector::FrameQueue {
public:
FrameQueue() : last_processing_time_ms_(-1) {}
~FrameQueue() {}
// Called when a frame is captured.
// Starts the measuring of the processing time of the frame.
void Start(int64_t capture_time, int64_t now) {
const size_t kMaxSize = 90; // Allows for processing time of 1.5s at 60fps.
if (frame_times_.size() > kMaxSize) {
LOG(LS_WARNING) << "Max size reached, removed oldest frame.";
frame_times_.erase(frame_times_.begin());
}
if (frame_times_.find(capture_time) != frame_times_.end()) {
// Frame should not exist.
assert(false);
return;
}
frame_times_[capture_time] = now;
}
// Called when the processing of a frame has finished.
// Returns the processing time of the frame.
int End(int64_t capture_time, int64_t now) {
std::map<int64_t, int64_t>::iterator it = frame_times_.find(capture_time);
if (it == frame_times_.end()) {
return -1;
}
// Remove any old frames up to current.
// Old frames have been skipped by the capture process thread.
// TODO(asapersson): Consider measuring time from first frame in list.
last_processing_time_ms_ = now - (*it).second;
frame_times_.erase(frame_times_.begin(), ++it);
return last_processing_time_ms_;
}
void Reset() { frame_times_.clear(); }
int NumFrames() const { return frame_times_.size(); }
int last_processing_time_ms() const { return last_processing_time_ms_; }
private:
// Captured frames mapped by the capture time.
std::map<int64_t, int64_t> frame_times_;
int last_processing_time_ms_;
};
// TODO(asapersson): Remove this class. Not used.
// Class for calculating the capture queue delay change.
class OveruseFrameDetector::CaptureQueueDelay {
public:
@ -387,8 +439,10 @@ OveruseFrameDetector::OveruseFrameDetector(Clock* clock)
num_pixels_(0),
last_encode_sample_ms_(0),
encode_time_(new EncodeTimeAvg()),
encode_rsd_(new EncodeTimeRsd(clock)),
encode_usage_(new EncodeUsage()),
rsd_(new SendProcessingRsd(clock)),
usage_(new SendProcessingUsage()),
frame_queue_(new FrameQueue()),
last_sample_time_ms_(0),
capture_queue_delay_(new CaptureQueueDelay()) {
}
@ -408,8 +462,8 @@ void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
}
options_ = options;
capture_deltas_.SetOptions(options);
encode_usage_->SetOptions(options);
encode_rsd_->SetOptions(options);
usage_->SetOptions(options);
rsd_->SetOptions(options);
ResetAll(num_pixels_);
}
@ -418,13 +472,23 @@ int OveruseFrameDetector::CaptureQueueDelayMsPerS() const {
return capture_queue_delay_->delay_ms();
}
int OveruseFrameDetector::LastProcessingTimeMs() const {
CriticalSectionScoped cs(crit_.get());
return frame_queue_->last_processing_time_ms();
}
int OveruseFrameDetector::FramesInQueue() const {
CriticalSectionScoped cs(crit_.get());
return frame_queue_->NumFrames();
}
void OveruseFrameDetector::GetCpuOveruseMetrics(
CpuOveruseMetrics* metrics) const {
CriticalSectionScoped cs(crit_.get());
metrics->capture_jitter_ms = static_cast<int>(capture_deltas_.StdDev() + 0.5);
metrics->avg_encode_time_ms = encode_time_->Value();
metrics->encode_rsd = encode_rsd_->Value();
metrics->encode_usage_percent = encode_usage_->Value();
metrics->encode_rsd = rsd_->Value();
metrics->encode_usage_percent = usage_->Value();
metrics->capture_queue_delay_ms_per_s = capture_queue_delay_->Value();
}
@ -450,14 +514,17 @@ bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const {
void OveruseFrameDetector::ResetAll(int num_pixels) {
num_pixels_ = num_pixels;
capture_deltas_.Reset();
encode_usage_->Reset();
encode_rsd_->Reset();
usage_->Reset();
rsd_->Reset();
frame_queue_->Reset();
capture_queue_delay_->ClearFrames();
last_capture_time_ = 0;
num_process_times_ = 0;
}
void OveruseFrameDetector::FrameCaptured(int width, int height) {
void OveruseFrameDetector::FrameCaptured(int width,
int height,
int64_t capture_time_ms) {
CriticalSectionScoped cs(crit_.get());
int64_t now = clock_->TimeInMilliseconds();
@ -467,11 +534,15 @@ void OveruseFrameDetector::FrameCaptured(int width, int height) {
if (last_capture_time_ != 0) {
capture_deltas_.AddSample(now - last_capture_time_);
encode_usage_->AddSample(now - last_capture_time_);
usage_->AddCaptureSample(now - last_capture_time_);
}
last_capture_time_ = now;
capture_queue_delay_->FrameCaptured(now);
if (options_.enable_extended_processing_usage) {
frame_queue_->Start(capture_time_ms, now);
}
}
void OveruseFrameDetector::FrameProcessingStarted() {
@ -481,14 +552,38 @@ void OveruseFrameDetector::FrameProcessingStarted() {
void OveruseFrameDetector::FrameEncoded(int encode_time_ms) {
CriticalSectionScoped cs(crit_.get());
int64_t time = clock_->TimeInMilliseconds();
int64_t now = clock_->TimeInMilliseconds();
if (last_encode_sample_ms_ != 0) {
int64_t diff_ms = time - last_encode_sample_ms_;
encode_time_->AddEncodeSample(encode_time_ms, diff_ms);
encode_usage_->AddEncodeSample(encode_time_ms, diff_ms);
encode_rsd_->AddEncodeSample(encode_time_ms);
int64_t diff_ms = now - last_encode_sample_ms_;
encode_time_->AddSample(encode_time_ms, diff_ms);
}
last_encode_sample_ms_ = time;
last_encode_sample_ms_ = now;
if (!options_.enable_extended_processing_usage) {
AddProcessingTime(encode_time_ms);
}
}
void OveruseFrameDetector::FrameSent(int64_t capture_time_ms) {
CriticalSectionScoped cs(crit_.get());
if (!options_.enable_extended_processing_usage) {
return;
}
int delay_ms = frame_queue_->End(capture_time_ms,
clock_->TimeInMilliseconds());
if (delay_ms > 0) {
AddProcessingTime(delay_ms);
}
}
void OveruseFrameDetector::AddProcessingTime(int elapsed_ms) {
int64_t now = clock_->TimeInMilliseconds();
if (last_sample_time_ms_ != 0) {
int64_t diff_ms = now - last_sample_time_ms_;
usage_->AddSample(elapsed_ms, diff_ms);
rsd_->AddSample(elapsed_ms);
}
last_sample_time_ms_ = now;
}
int32_t OveruseFrameDetector::Process() {
@ -504,7 +599,7 @@ int32_t OveruseFrameDetector::Process() {
next_process_time_ = now + kProcessIntervalMs;
++num_process_times_;
encode_rsd_->Process(now);
rsd_->Process(now);
capture_queue_delay_->CalculateDelayChange(diff_ms);
if (num_process_times_ <= options_.min_process_count) {
@ -548,8 +643,8 @@ int32_t OveruseFrameDetector::Process() {
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
LOG(LS_VERBOSE) << " Frame stats: capture avg: " << capture_deltas_.Mean()
<< " capture stddev " << capture_deltas_.StdDev()
<< " encode usage " << encode_usage_->Value()
<< " encode rsd " << encode_rsd_->Value()
<< " encode usage " << usage_->Value()
<< " encode rsd " << rsd_->Value()
<< " overuse detections " << num_overuse_detections_
<< " rampup delay " << rampup_delay;
return 0;
@ -561,14 +656,13 @@ bool OveruseFrameDetector::IsOverusing() {
overusing = capture_deltas_.StdDev() >=
options_.high_capture_jitter_threshold_ms;
} else if (options_.enable_encode_usage_method) {
bool encode_usage_overuse =
encode_usage_->Value() >= options_.high_encode_usage_threshold_percent;
bool encode_rsd_overuse = false;
bool usage_overuse =
usage_->Value() >= options_.high_encode_usage_threshold_percent;
bool rsd_overuse = false;
if (options_.high_encode_time_rsd_threshold > 0) {
encode_rsd_overuse =
(encode_rsd_->Value() >= options_.high_encode_time_rsd_threshold);
rsd_overuse = (rsd_->Value() >= options_.high_encode_time_rsd_threshold);
}
overusing = encode_usage_overuse || encode_rsd_overuse;
overusing = usage_overuse || rsd_overuse;
}
if (overusing) {
@ -589,14 +683,13 @@ bool OveruseFrameDetector::IsUnderusing(int64_t time_now) {
underusing = capture_deltas_.StdDev() <
options_.low_capture_jitter_threshold_ms;
} else if (options_.enable_encode_usage_method) {
bool encode_usage_underuse =
encode_usage_->Value() < options_.low_encode_usage_threshold_percent;
bool encode_rsd_underuse = true;
bool usage_underuse =
usage_->Value() < options_.low_encode_usage_threshold_percent;
bool rsd_underuse = true;
if (options_.low_encode_time_rsd_threshold > 0) {
encode_rsd_underuse =
(encode_rsd_->Value() < options_.low_encode_time_rsd_threshold);
rsd_underuse = (rsd_->Value() < options_.low_encode_time_rsd_threshold);
}
underusing = encode_usage_underuse && encode_rsd_underuse;
underusing = usage_underuse && rsd_underuse;
}
return underusing;
}

View File

@ -61,7 +61,7 @@ class OveruseFrameDetector : public Module {
void SetOptions(const CpuOveruseOptions& options);
// Called for each captured frame.
void FrameCaptured(int width, int height);
void FrameCaptured(int width, int height, int64_t capture_time_ms);
// Called when the processing of a captured frame is started.
void FrameProcessingStarted();
@ -69,14 +69,19 @@ class OveruseFrameDetector : public Module {
// Called for each encoded frame.
void FrameEncoded(int encode_time_ms);
// Called for each sent frame.
void FrameSent(int64_t capture_time_ms);
// Accessors.
// Returns CpuOveruseMetrics where
// capture_jitter_ms: The estimated jitter based on incoming captured frames.
// avg_encode_time_ms: Running average of reported encode time
// (FrameEncoded()). Only used for stats.
// encode_usage_percent: The average encode time divided by the average time
// difference between incoming captured frames.
// TODO(asapersson): Rename metric.
// encode_usage_percent: The average processing time of a frame on the
// send-side divided by the average time difference
// between incoming captured frames.
// capture_queue_delay_ms_per_s: The current time delay between an incoming
// captured frame (FrameCaptured()) until the
// frame is being processed
@ -87,7 +92,10 @@ class OveruseFrameDetector : public Module {
// Only used for stats.
void GetCpuOveruseMetrics(CpuOveruseMetrics* metrics) const;
// Only public for testing.
int CaptureQueueDelayMsPerS() const;
int LastProcessingTimeMs() const;
int FramesInQueue() const;
// Implements Module.
virtual int32_t TimeUntilNextProcess() OVERRIDE;
@ -95,9 +103,12 @@ class OveruseFrameDetector : public Module {
private:
class EncodeTimeAvg;
class EncodeTimeRsd;
class EncodeUsage;
class SendProcessingRsd;
class SendProcessingUsage;
class CaptureQueueDelay;
class FrameQueue;
void AddProcessingTime(int elapsed_ms);
bool IsOverusing();
bool IsUnderusing(int64_t time_now);
@ -135,8 +146,11 @@ class OveruseFrameDetector : public Module {
int64_t last_encode_sample_ms_;
scoped_ptr<EncodeTimeAvg> encode_time_;
scoped_ptr<EncodeTimeRsd> encode_rsd_;
scoped_ptr<EncodeUsage> encode_usage_;
scoped_ptr<SendProcessingRsd> rsd_;
scoped_ptr<SendProcessingUsage> usage_;
scoped_ptr<FrameQueue> frame_queue_;
int64_t last_sample_time_ms_;
scoped_ptr<CaptureQueueDelay> capture_queue_delay_;

View File

@ -66,12 +66,12 @@ class OveruseFrameDetectorTest : public ::testing::Test {
options_.high_capture_jitter_threshold_ms) / 2.0f) + 0.5;
}
int InitialEncodeUsage() {
int InitialUsage() {
return ((options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5;
}
int InitialEncodeRsd() {
int InitialRsd() {
return std::max(
((options_.low_encode_time_rsd_threshold +
options_.high_encode_time_rsd_threshold) / 2.0f) + 0.5f, 0.0f);
@ -81,17 +81,20 @@ class OveruseFrameDetectorTest : public ::testing::Test {
size_t num_frames, int interval_ms, int width, int height) {
while (num_frames-- > 0) {
clock_->AdvanceTimeMilliseconds(interval_ms);
overuse_detector_->FrameCaptured(width, height);
overuse_detector_->FrameCaptured(width, height,
clock_->TimeInMilliseconds());
}
}
void InsertAndEncodeFramesWithInterval(
int num_frames, int interval_ms, int width, int height, int encode_ms) {
void InsertAndSendFramesWithInterval(
int num_frames, int interval_ms, int width, int height, int delay_ms) {
while (num_frames-- > 0) {
overuse_detector_->FrameCaptured(width, height);
clock_->AdvanceTimeMilliseconds(encode_ms);
overuse_detector_->FrameEncoded(encode_ms);
clock_->AdvanceTimeMilliseconds(interval_ms - encode_ms);
int64_t capture_time_ms = clock_->TimeInMilliseconds();
overuse_detector_->FrameCaptured(width, height, capture_time_ms);
clock_->AdvanceTimeMilliseconds(delay_ms);
overuse_detector_->FrameEncoded(delay_ms);
overuse_detector_->FrameSent(capture_time_ms);
clock_->AdvanceTimeMilliseconds(interval_ms - delay_ms);
}
}
@ -103,39 +106,39 @@ class OveruseFrameDetectorTest : public ::testing::Test {
}
}
void TriggerNormalUsage() {
void TriggerUnderuse() {
InsertFramesWithInterval(900, kFrameInterval33ms, kWidth, kHeight);
overuse_detector_->Process();
}
void TriggerOveruseWithEncodeUsage(int num_times) {
const int kEncodeTimeMs = 32;
void TriggerOveruseWithProcessingUsage(int num_times) {
const int kDelayMs = 32;
for (int i = 0; i < num_times; ++i) {
InsertAndEncodeFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs);
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kDelayMs);
overuse_detector_->Process();
}
}
void TriggerOveruseWithEncodeRsd(int num_times) {
const int kEncodeTimeMs1 = 10;
const int kEncodeTimeMs2 = 25;
void TriggerOveruseWithRsd(int num_times) {
const int kDelayMs1 = 10;
const int kDelayMs2 = 25;
for (int i = 0; i < num_times; ++i) {
InsertAndEncodeFramesWithInterval(
200, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs1);
InsertAndEncodeFramesWithInterval(
10, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs2);
InsertAndSendFramesWithInterval(
200, kFrameInterval33ms, kWidth, kHeight, kDelayMs1);
InsertAndSendFramesWithInterval(
10, kFrameInterval33ms, kWidth, kHeight, kDelayMs2);
overuse_detector_->Process();
}
}
void TriggerNormalUsageWithEncodeTime() {
const int kEncodeTimeMs1 = 5;
const int kEncodeTimeMs2 = 6;
InsertAndEncodeFramesWithInterval(
1300, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs1);
InsertAndEncodeFramesWithInterval(
1, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs2);
void TriggerUnderuseWithProcessingUsage() {
const int kDelayMs1 = 5;
const int kDelayMs2 = 6;
InsertAndSendFramesWithInterval(
1300, kFrameInterval33ms, kWidth, kHeight, kDelayMs1);
InsertAndSendFramesWithInterval(
1, kFrameInterval33ms, kWidth, kHeight, kDelayMs2);
overuse_detector_->Process();
}
@ -151,13 +154,13 @@ class OveruseFrameDetectorTest : public ::testing::Test {
return metrics.avg_encode_time_ms;
}
int EncodeUsagePercent() {
int UsagePercent() {
CpuOveruseMetrics metrics;
overuse_detector_->GetCpuOveruseMetrics(&metrics);
return metrics.encode_usage_percent;
}
int EncodeRsd() {
int Rsd() {
CpuOveruseMetrics metrics;
overuse_detector_->GetCpuOveruseMetrics(&metrics);
return metrics.encode_rsd;
@ -184,7 +187,7 @@ TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) {
TriggerOveruse(options_.high_threshold_consecutive_count);
// capture_jitter < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerNormalUsage();
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) {
@ -192,7 +195,7 @@ TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsage();
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithMethodDisabled) {
@ -202,7 +205,7 @@ TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithMethodDisabled) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsage();
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
@ -210,10 +213,10 @@ TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
TriggerOveruse(options_.high_threshold_consecutive_count);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerNormalUsage();
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, TriggerNormalUsageWithMinProcessCount) {
TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) {
CpuOveruseObserverImpl overuse_observer_;
overuse_detector_->SetObserver(&overuse_observer_);
options_.min_process_count = 1;
@ -305,22 +308,26 @@ TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdatingCaptureJitter) {
TEST_F(OveruseFrameDetectorTest, NoCaptureQueueDelay) {
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 0);
overuse_detector_->FrameCaptured(kWidth, kHeight);
overuse_detector_->FrameCaptured(
kWidth, kHeight, clock_->TimeInMilliseconds());
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 0);
}
TEST_F(OveruseFrameDetectorTest, CaptureQueueDelay) {
overuse_detector_->FrameCaptured(kWidth, kHeight);
overuse_detector_->FrameCaptured(
kWidth, kHeight, clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(100);
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100);
}
TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayMultipleFrames) {
overuse_detector_->FrameCaptured(kWidth, kHeight);
overuse_detector_->FrameCaptured(
kWidth, kHeight, clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(10);
overuse_detector_->FrameCaptured(kWidth, kHeight);
overuse_detector_->FrameCaptured(
kWidth, kHeight, clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(20);
overuse_detector_->FrameProcessingStarted();
@ -330,9 +337,11 @@ TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayMultipleFrames) {
}
TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayResetAtResolutionSwitch) {
overuse_detector_->FrameCaptured(kWidth, kHeight);
overuse_detector_->FrameCaptured(
kWidth, kHeight, clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(10);
overuse_detector_->FrameCaptured(kWidth, kHeight + 1);
overuse_detector_->FrameCaptured(
kWidth, kHeight + 1, clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(20);
overuse_detector_->FrameProcessingStarted();
@ -340,7 +349,8 @@ TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayResetAtResolutionSwitch) {
}
TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayNoMatchingCapturedFrame) {
overuse_detector_->FrameCaptured(kWidth, kHeight);
overuse_detector_->FrameCaptured(
kWidth, kHeight, clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(100);
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100);
@ -349,6 +359,106 @@ TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayNoMatchingCapturedFrame) {
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100);
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_OneFrameDisabled) {
options_.enable_extended_processing_usage = false;
overuse_detector_->SetOptions(options_);
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameSent(33);
EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_OneFrame) {
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs());
overuse_detector_->FrameSent(33);
EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(0, overuse_detector_->FramesInQueue());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_TwoFrames) {
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
const int kProcessingTimeMs1 = 100;
const int kProcessingTimeMs2 = 50;
const int kTimeBetweenFramesMs = 200;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs1);
overuse_detector_->FrameSent(33);
EXPECT_EQ(kProcessingTimeMs1, overuse_detector_->LastProcessingTimeMs());
clock_->AdvanceTimeMilliseconds(kTimeBetweenFramesMs);
overuse_detector_->FrameCaptured(kWidth, kHeight, 66);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs2);
overuse_detector_->FrameSent(66);
EXPECT_EQ(kProcessingTimeMs2, overuse_detector_->LastProcessingTimeMs());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_MaxQueueSize) {
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
const int kMaxQueueSize = 91;
for (int i = 0; i < kMaxQueueSize * 2; ++i) {
overuse_detector_->FrameCaptured(kWidth, kHeight, i);
}
EXPECT_EQ(kMaxQueueSize, overuse_detector_->FramesInQueue());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_NonProcessedFramesRemoved) {
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameCaptured(kWidth, kHeight, 35);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameCaptured(kWidth, kHeight, 66);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameCaptured(kWidth, kHeight, 99);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(4, overuse_detector_->FramesInQueue());
overuse_detector_->FrameSent(66);
// Frame 33, 35 removed, 66 processed, 99 not processed.
EXPECT_EQ(2 * kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(1, overuse_detector_->FramesInQueue());
overuse_detector_->FrameSent(99);
EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(0, overuse_detector_->FramesInQueue());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_ResetClearsFrames) {
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
EXPECT_EQ(1, overuse_detector_->FramesInQueue());
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
// Verify reset (resolution changed).
overuse_detector_->FrameCaptured(kWidth, kHeight + 1, 66);
EXPECT_EQ(1, overuse_detector_->FramesInQueue());
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameSent(66);
EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(0, overuse_detector_->FramesInQueue());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_NonMatchingSendFrameIgnored) {
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameSent(34);
EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs());
overuse_detector_->FrameSent(33);
EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
}
TEST_F(OveruseFrameDetectorTest, EncodedFrame) {
const int kInitialAvgEncodeTimeInMs = 5;
EXPECT_EQ(kInitialAvgEncodeTimeInMs, AvgEncodeTimeMs());
@ -359,92 +469,136 @@ TEST_F(OveruseFrameDetectorTest, EncodedFrame) {
EXPECT_EQ(2, AvgEncodeTimeMs());
}
TEST_F(OveruseFrameDetectorTest, InitialEncodeUsage) {
EXPECT_EQ(InitialEncodeUsage(), EncodeUsagePercent());
TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) {
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, EncodedUsage) {
const int kEncodeTimeMs = 5;
InsertAndEncodeFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs);
EXPECT_EQ(kEncodeTimeMs * 100 / kFrameInterval33ms, EncodeUsagePercent());
TEST_F(OveruseFrameDetectorTest, ProcessingUsage) {
const int kProcessingTimeMs = 5;
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kProcessingTimeMs);
EXPECT_EQ(kProcessingTimeMs * 100 / kFrameInterval33ms, UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, EncodeUsageResetAfterChangingThreshold) {
EXPECT_EQ(InitialEncodeUsage(), EncodeUsagePercent());
TEST_F(OveruseFrameDetectorTest, ProcessingUsageResetAfterChangingThreshold) {
EXPECT_EQ(InitialUsage(), UsagePercent());
options_.high_encode_usage_threshold_percent = 100;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialEncodeUsage(), EncodeUsagePercent());
EXPECT_EQ(InitialUsage(), UsagePercent());
options_.low_encode_usage_threshold_percent = 20;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialEncodeUsage(), EncodeUsagePercent());
EXPECT_EQ(InitialUsage(), UsagePercent());
}
// enable_encode_usage_method = true;
// EncodeUsagePercent() > high_encode_usage_threshold_percent => overuse.
// EncodeUsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithEncodeUsage) {
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithProcessingUsage) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.enable_extended_processing_usage = false;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithEncodeUsage(options_.high_threshold_consecutive_count);
TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithEncodeUsage) {
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithProcessingUsage) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.enable_extended_processing_usage = false;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithEncodeUsage(options_.high_threshold_consecutive_count);
TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerNormalUsageWithEncodeTime();
TriggerUnderuseWithProcessingUsage();
}
TEST_F(OveruseFrameDetectorTest,
OveruseAndRecoverWithEncodeUsageMethodDisabled) {
OveruseAndRecoverWithProcessingUsageMethodDisabled) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = false;
options_.enable_extended_processing_usage = false;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruseWithEncodeUsage(options_.high_threshold_consecutive_count);
TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsageWithEncodeTime();
TriggerUnderuseWithProcessingUsage();
}
TEST_F(OveruseFrameDetectorTest, EncodeRsdResetAfterChangingThreshold) {
EXPECT_EQ(InitialEncodeRsd(), EncodeRsd());
// enable_extended_processing_usage = true;
// enable_encode_usage_method = true;
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithExtendedProcessingUsage) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithExtendedProcessingUsage) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerUnderuseWithProcessingUsage();
}
TEST_F(OveruseFrameDetectorTest,
OveruseAndRecoverWithExtendedProcessingUsageMethodDisabled) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = false;
options_.enable_extended_processing_usage = true;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerUnderuseWithProcessingUsage();
}
TEST_F(OveruseFrameDetectorTest, RsdResetAfterChangingThreshold) {
EXPECT_EQ(InitialRsd(), Rsd());
options_.high_encode_time_rsd_threshold = 100;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialEncodeRsd(), EncodeRsd());
EXPECT_EQ(InitialRsd(), Rsd());
options_.low_encode_time_rsd_threshold = 20;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialEncodeRsd(), EncodeRsd());
EXPECT_EQ(InitialRsd(), Rsd());
}
// enable_encode_usage_method = true;
// low/high_encode_time_rsd_threshold >= 0
// EncodeUsagePercent() > high_encode_usage_threshold_percent ||
// EncodeRsd() > high_encode_time_rsd_threshold => overuse.
// EncodeUsagePercent() < low_encode_usage_threshold_percent &&
// EncodeRsd() < low_encode_time_rsd_threshold => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithEncodeRsd) {
// UsagePercent() > high_encode_usage_threshold_percent ||
// Rsd() > high_encode_time_rsd_threshold => overuse.
// UsagePercent() < low_encode_usage_threshold_percent &&
// Rsd() < low_encode_time_rsd_threshold => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithRsd) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.high_encode_time_rsd_threshold = 80;
overuse_detector_->SetOptions(options_);
// rsd > high, usage < high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithEncodeRsd(options_.high_threshold_consecutive_count);
EXPECT_LT(EncodeUsagePercent(), options_.high_encode_usage_threshold_percent);
TriggerOveruseWithRsd(options_.high_threshold_consecutive_count);
EXPECT_LT(UsagePercent(), options_.high_encode_usage_threshold_percent);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithEncodeRsd) {
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithRsd) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.low_encode_time_rsd_threshold = 25;
@ -452,14 +606,14 @@ TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithEncodeRsd) {
overuse_detector_->SetOptions(options_);
// rsd > high, usage < high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithEncodeRsd(options_.high_threshold_consecutive_count);
EXPECT_LT(EncodeUsagePercent(), options_.high_encode_usage_threshold_percent);
TriggerOveruseWithRsd(options_.high_threshold_consecutive_count);
EXPECT_LT(UsagePercent(), options_.high_encode_usage_threshold_percent);
// rsd < low, usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerNormalUsageWithEncodeTime();
TriggerUnderuseWithProcessingUsage();
}
TEST_F(OveruseFrameDetectorTest, NoUnderuseWithEncodeRsd_UsageGtLowThreshold) {
TEST_F(OveruseFrameDetectorTest, NoUnderuseWithRsd_UsageGtLowThreshold) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.low_encode_usage_threshold_percent = 1;
@ -468,12 +622,12 @@ TEST_F(OveruseFrameDetectorTest, NoUnderuseWithEncodeRsd_UsageGtLowThreshold) {
overuse_detector_->SetOptions(options_);
// rsd < low, usage > low => no underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsageWithEncodeTime();
EXPECT_LT(EncodeRsd(), options_.low_encode_time_rsd_threshold);
EXPECT_GT(EncodeUsagePercent(), options_.low_encode_usage_threshold_percent);
TriggerUnderuseWithProcessingUsage();
EXPECT_LT(Rsd(), options_.low_encode_time_rsd_threshold);
EXPECT_GT(UsagePercent(), options_.low_encode_usage_threshold_percent);
}
TEST_F(OveruseFrameDetectorTest, NoUnderuseWithEncodeRsd_RsdGtLowThreshold) {
TEST_F(OveruseFrameDetectorTest, NoUnderuseWithRsd_RsdGtLowThreshold) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.low_encode_usage_threshold_percent = 20;
@ -482,8 +636,8 @@ TEST_F(OveruseFrameDetectorTest, NoUnderuseWithEncodeRsd_RsdGtLowThreshold) {
overuse_detector_->SetOptions(options_);
// rsd > low, usage < low => no underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsageWithEncodeTime();
EXPECT_GT(EncodeRsd(), options_.low_encode_time_rsd_threshold);
EXPECT_LT(EncodeUsagePercent(), options_.low_encode_usage_threshold_percent);
TriggerUnderuseWithProcessingUsage();
EXPECT_GT(Rsd(), options_.low_encode_time_rsd_threshold);
EXPECT_LT(UsagePercent(), options_.low_encode_usage_threshold_percent);
}
} // namespace webrtc

View File

@ -343,6 +343,10 @@ void ViECapturer::OnIncomingCapturedFrame(const int32_t capture_id,
// the camera, and not when the camera actually captured the frame.
video_frame.set_render_time_ms(video_frame.render_time_ms() - FrameDelay());
overuse_detector_->FrameCaptured(video_frame.width(),
video_frame.height(),
video_frame.render_time_ms());
TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", video_frame.render_time_ms(),
"render_time", video_frame.render_time_ms());
@ -354,8 +358,6 @@ void ViECapturer::OnIncomingCapturedFrame(const int32_t capture_id,
captured_frame_->SwapFrame(&video_frame);
}
capture_event_.Set();
overuse_detector_->FrameCaptured(captured_frame_->width(),
captured_frame_->height());
}
void ViECapturer::OnCaptureDelayChanged(const int32_t id,
@ -450,11 +452,13 @@ bool ViECapturer::ViECaptureThreadFunction(void* obj) {
}
bool ViECapturer::ViECaptureProcess() {
int64_t capture_time = -1;
if (capture_event_.Wait(kThreadWaitTimeMs) == kEventSignaled) {
overuse_detector_->FrameProcessingStarted();
int64_t encode_start_time = -1;
deliver_cs_->Enter();
if (SwapCapturedAndDeliverFrameIfAvailable()) {
capture_time = deliver_frame_->render_time_ms();
encode_start_time = Clock::GetRealTimeClock()->TimeInMilliseconds();
DeliverI420Frame(deliver_frame_.get());
if (deliver_frame_->native_handle() != NULL)
@ -475,6 +479,9 @@ bool ViECapturer::ViECaptureProcess() {
}
}
// We're done!
if (capture_time != -1) {
overuse_detector_->FrameSent(capture_time);
}
return true;
}