audio_processing/aec: make delay estimator aware of starving farend buffer
We've seen that if we get a buffer underrun followed by a sudden buffer build up the DA-AEC can't really catch up even though it should be possible to estimate the upcoming difference. We have a feature for this already, but that is only used in the regular AEC. This CL turns that feature on also for DA-AEC. - Adds a helper function MoveFarReadPtrWithoutSystemDelayUpdate() - Only apply conservative correction for positive delays, where we can put the AEC into a non-causal state - Stuff the farend buffer if we don't have enough data to process w.r.t. to current nearend buffer. - Always run delay estimation based on reported delays to catch buffer starvation. BUG= R=henrik.lundin@webrtc.org Review URL: https://codereview.webrtc.org/1180423006. Cr-Commit-Position: refs/heads/master@{#9452}
This commit is contained in:
parent
979e0b30f1
commit
9002cc426d
@ -857,6 +857,14 @@ static void TimeToFrequency(float time_data[PART_LEN2],
|
||||
}
|
||||
}
|
||||
|
||||
static int MoveFarReadPtrWithoutSystemDelayUpdate(AecCore* self, int elements) {
|
||||
WebRtc_MoveReadPtr(self->far_buf_windowed, elements);
|
||||
#ifdef WEBRTC_AEC_DEBUG_DUMP
|
||||
WebRtc_MoveReadPtr(self->far_time_buf, elements);
|
||||
#endif
|
||||
return WebRtc_MoveReadPtr(self->far_buf, elements);
|
||||
}
|
||||
|
||||
static int SignalBasedDelayCorrection(AecCore* self) {
|
||||
int delay_correction = 0;
|
||||
int last_delay = -2;
|
||||
@ -897,9 +905,13 @@ static int SignalBasedDelayCorrection(AecCore* self) {
|
||||
const int do_correction = delay <= lower_bound || delay > upper_bound;
|
||||
if (do_correction == 1) {
|
||||
int available_read = (int)WebRtc_available_read(self->far_buf);
|
||||
// Adjust w.r.t. a |shift_offset| to account for not as reliable estimates
|
||||
// in the beginning, hence we are more conservative.
|
||||
delay_correction = -(delay - self->shift_offset);
|
||||
// With |shift_offset| we gradually rely on the delay estimates. For
|
||||
// positive delays we reduce the correction by |shift_offset| to lower the
|
||||
// risk of pushing the AEC into a non causal state. For negative delays
|
||||
// we rely on the values up to a rounding error, hence compensate by 1
|
||||
// element to make sure to push the delay into the causal region.
|
||||
delay_correction = -delay;
|
||||
delay_correction += delay > self->shift_offset ? self->shift_offset : 1;
|
||||
self->shift_offset--;
|
||||
self->shift_offset = (self->shift_offset <= 1 ? 1 : self->shift_offset);
|
||||
if (delay_correction > available_read - self->mult - 1) {
|
||||
@ -1715,11 +1727,7 @@ void WebRtcAec_BufferFarendPartition(AecCore* aec, const float* farend) {
|
||||
}
|
||||
|
||||
int WebRtcAec_MoveFarReadPtr(AecCore* aec, int elements) {
|
||||
int elements_moved = WebRtc_MoveReadPtr(aec->far_buf_windowed, elements);
|
||||
WebRtc_MoveReadPtr(aec->far_buf, elements);
|
||||
#ifdef WEBRTC_AEC_DEBUG_DUMP
|
||||
WebRtc_MoveReadPtr(aec->far_time_buf, elements);
|
||||
#endif
|
||||
int elements_moved = MoveFarReadPtrWithoutSystemDelayUpdate(aec, elements);
|
||||
aec->system_delay -= elements_moved * PART_LEN;
|
||||
return elements_moved;
|
||||
}
|
||||
@ -1792,42 +1800,27 @@ void WebRtcAec_ProcessFrames(AecCore* aec,
|
||||
// which should be investigated. Maybe, allow for a non-symmetric
|
||||
// rounding, like -16.
|
||||
int move_elements = (aec->knownDelay - knownDelay - 32) / PART_LEN;
|
||||
int moved_elements = WebRtc_MoveReadPtr(aec->far_buf, move_elements);
|
||||
WebRtc_MoveReadPtr(aec->far_buf_windowed, move_elements);
|
||||
int moved_elements =
|
||||
MoveFarReadPtrWithoutSystemDelayUpdate(aec, move_elements);
|
||||
aec->knownDelay -= moved_elements * PART_LEN;
|
||||
#ifdef WEBRTC_AEC_DEBUG_DUMP
|
||||
WebRtc_MoveReadPtr(aec->far_time_buf, move_elements);
|
||||
#endif
|
||||
} else {
|
||||
// 2 b) Apply signal based delay correction.
|
||||
int move_elements = SignalBasedDelayCorrection(aec);
|
||||
int moved_elements = WebRtc_MoveReadPtr(aec->far_buf, move_elements);
|
||||
WebRtc_MoveReadPtr(aec->far_buf_windowed, move_elements);
|
||||
#ifdef WEBRTC_AEC_DEBUG_DUMP
|
||||
WebRtc_MoveReadPtr(aec->far_time_buf, move_elements);
|
||||
#endif
|
||||
int moved_elements =
|
||||
MoveFarReadPtrWithoutSystemDelayUpdate(aec, move_elements);
|
||||
int far_near_buffer_diff = WebRtc_available_read(aec->far_buf) -
|
||||
WebRtc_available_read(aec->nearFrBuf) / PART_LEN;
|
||||
WebRtc_SoftResetDelayEstimator(aec->delay_estimator, moved_elements);
|
||||
WebRtc_SoftResetDelayEstimatorFarend(aec->delay_estimator_farend,
|
||||
moved_elements);
|
||||
aec->signal_delay_correction += moved_elements;
|
||||
// TODO(bjornv): Investigate if this is reasonable. I had to add this
|
||||
// guard when the signal based delay correction replaces the system based
|
||||
// one. Otherwise there was a buffer underrun in the "qa-new/01/"
|
||||
// recording when adding 44 ms extra delay. This was not seen if we kept
|
||||
// both delay correction algorithms running in parallel.
|
||||
// A first investigation showed that we have a drift in this case that
|
||||
// causes the buffer underrun. Compared to when delay correction was
|
||||
// turned off, we get buffer underrun as well which was triggered in 1)
|
||||
// above. In addition there was a shift in |knownDelay| later increasing
|
||||
// the buffer. When running in parallel, this if statement was not
|
||||
// triggered. This suggests two alternatives; (a) use both algorithms, or
|
||||
// (b) allow for smaller delay corrections when we operate close to the
|
||||
// buffer limit. At the time of testing we required a change of 6 blocks,
|
||||
// but could change it to, e.g., 2 blocks. It requires some testing
|
||||
// though.
|
||||
if ((int)WebRtc_available_read(aec->far_buf) < (aec->mult + 1)) {
|
||||
// We don't have enough data so we stuff the far-end buffers.
|
||||
WebRtcAec_MoveFarReadPtr(aec, -(aec->mult + 1));
|
||||
// If we rely on reported system delay values only, a buffer underrun here
|
||||
// can never occur since we've taken care of that in 1) above. Here, we
|
||||
// apply signal based delay correction and can therefore end up with
|
||||
// buffer underruns since the delay estimation can be wrong. We therefore
|
||||
// stuff the buffer with enough elements if needed.
|
||||
if (far_near_buffer_diff < 0) {
|
||||
WebRtcAec_MoveFarReadPtr(aec, far_near_buffer_diff);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -718,9 +718,7 @@ static int ProcessNormal(Aec* aecpc,
|
||||
}
|
||||
} else {
|
||||
// AEC is enabled.
|
||||
if (WebRtcAec_reported_delay_enabled(aecpc->aec)) {
|
||||
EstBufDelayNormal(aecpc);
|
||||
}
|
||||
EstBufDelayNormal(aecpc);
|
||||
|
||||
// Call the AEC.
|
||||
// TODO(bjornv): Re-structure such that we don't have to pass
|
||||
@ -795,9 +793,7 @@ static void ProcessExtended(Aec* self,
|
||||
self->startup_phase = 0;
|
||||
}
|
||||
|
||||
if (WebRtcAec_reported_delay_enabled(self->aec)) {
|
||||
EstBufDelayExtended(self);
|
||||
}
|
||||
EstBufDelayExtended(self);
|
||||
|
||||
{
|
||||
// |delay_diff_offset| gives us the option to manually rewind the delay on
|
||||
|
Loading…
Reference in New Issue
Block a user