Framework for testing bandwidth estimation.

BUG=
R=mflodman@webrtc.org, stefan@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/2317004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@5008 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
solenberg@webrtc.org
2013-10-21 14:23:26 +00:00
parent 29dd0de5b3
commit 8215106371
6 changed files with 1783 additions and 1 deletions

View File

@@ -174,9 +174,13 @@
'pacing/paced_sender_unittest.cc', 'pacing/paced_sender_unittest.cc',
'remote_bitrate_estimator/include/mock/mock_remote_bitrate_observer.h', 'remote_bitrate_estimator/include/mock/mock_remote_bitrate_observer.h',
'remote_bitrate_estimator/bitrate_estimator_unittest.cc', 'remote_bitrate_estimator/bitrate_estimator_unittest.cc',
'remote_bitrate_estimator/bwe_test_framework.cc',
'remote_bitrate_estimator/bwe_test_framework.h',
'remote_bitrate_estimator/bwe_test_framework_unittest.cc',
'remote_bitrate_estimator/remote_bitrate_estimator_single_stream_unittest.cc', 'remote_bitrate_estimator/remote_bitrate_estimator_single_stream_unittest.cc',
'remote_bitrate_estimator/remote_bitrate_estimator_unittest_helper.cc', 'remote_bitrate_estimator/remote_bitrate_estimator_unittest_helper.cc',
'remote_bitrate_estimator/remote_bitrate_estimator_unittest_helper.h', 'remote_bitrate_estimator/remote_bitrate_estimator_unittest_helper.h',
'remote_bitrate_estimator/remote_bitrate_estimators_test.cc',
'remote_bitrate_estimator/rtp_to_ntp_unittest.cc', 'remote_bitrate_estimator/rtp_to_ntp_unittest.cc',
'rtp_rtcp/source/mock/mock_rtp_payload_strategy.h', 'rtp_rtcp/source/mock/mock_rtp_payload_strategy.h',
'rtp_rtcp/source/fec_receiver_unittest.cc', 'rtp_rtcp/source/fec_receiver_unittest.cc',

View File

@@ -0,0 +1,30 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/remote_bitrate_estimator/bwe_test_framework.h"
namespace webrtc {
namespace testing {
namespace bwe {
bool IsTimeSorted(const Packets& packets) {
PacketsConstIt last_it = packets.begin();
for (PacketsConstIt it = last_it; it != packets.end(); ++it) {
if (it != last_it && *it < *last_it) {
return false;
}
last_it = it;
}
return true;
}
} // namespace bwe
} // namespace testing
} // namespace webrtc

View File

@@ -0,0 +1,489 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_REMOTE_BITRATE_ESTIMATOR_BWE_TEST_FRAMEWORK_H_
#define WEBRTC_MODULES_REMOTE_BITRATE_ESTIMATOR_BWE_TEST_FRAMEWORK_H_
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <list>
#include <numeric>
#include <string>
#include <vector>
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/interface/constructor_magic.h"
namespace webrtc {
namespace testing {
namespace bwe {
class Random {
public:
explicit Random(uint32_t seed)
: a_(0x531FDB97 ^ seed),
b_(0x6420ECA8 + seed) {
}
// Return semi-random number in the interval [0.0, 1.0].
float Rand() {
const float kScale = 1.0f / 0xffffffff;
float result = kScale * b_;
a_ ^= b_;
b_ += a_;
return result;
}
// Normal Distribution.
int Gaussian(int mean, int standard_deviation) {
// Creating a Normal distribution variable from two independent uniform
// variables based on the Box-Muller transform, which is defined on the
// interval (0, 1], hence the mask+add below.
const double kPi = 3.14159265358979323846;
const double kScale = 1.0 / 0x80000000ul;
double u1 = kScale * ((a_ & 0x7ffffffful) + 1);
double u2 = kScale * ((b_ & 0x7ffffffful) + 1);
a_ ^= b_;
b_ += a_;
return static_cast<int>(mean + standard_deviation *
std::sqrt(-2 * std::log(u1)) * std::cos(2 * kPi * u2));
}
private:
uint32_t a_;
uint32_t b_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Random);
};
template<typename T> class Stats {
public:
Stats()
: data_(),
last_mean_count_(0),
last_variance_count_(0),
last_minmax_count_(0),
mean_(0),
variance_(0),
min_(0),
max_(0) {
}
void Push(T data_point) {
data_.push_back(data_point);
}
T GetMean() {
if (last_mean_count_ != data_.size()) {
last_mean_count_ = data_.size();
mean_ = std::accumulate(data_.begin(), data_.end(), static_cast<T>(0));
assert(last_mean_count_ != 0);
mean_ /= static_cast<T>(last_mean_count_);
}
return mean_;
}
T GetVariance() {
if (last_variance_count_ != data_.size()) {
last_variance_count_ = data_.size();
T mean = GetMean();
variance_ = 0;
for (typename std::vector<T>::const_iterator it = data_.begin();
it != data_.end(); ++it) {
T diff = (*it - mean);
variance_ += diff * diff;
}
assert(last_variance_count_ != 0);
variance_ /= static_cast<T>(last_variance_count_);
}
return variance_;
}
T GetStdDev() {
return std::sqrt(static_cast<double>(GetVariance()));
}
T GetMin() {
RefreshMinMax();
return min_;
}
T GetMax() {
RefreshMinMax();
return max_;
}
void Log(const std::string& units) {
printf("%f %s\t+/-%f\t[%f,%f]",
GetMean(), units.c_str(), GetStdDev(), GetMin(), GetMax());
}
private:
void RefreshMinMax() {
if (last_minmax_count_ != data_.size()) {
last_minmax_count_ = data_.size();
min_ = max_ = 0;
if (data_.empty()) {
return;
}
typename std::vector<T>::const_iterator it = data_.begin();
min_ = max_ = *it;
while (++it != data_.end()) {
min_ = std::min(min_, *it);
max_ = std::max(max_, *it);
}
}
}
std::vector<T> data_;
typename std::vector<T>::size_type last_mean_count_;
typename std::vector<T>::size_type last_variance_count_;
typename std::vector<T>::size_type last_minmax_count_;
T mean_;
T variance_;
T min_;
T max_;
};
class BwePacket {
public:
BwePacket()
: send_time_us_(0),
payload_size_(0) {
memset(&header_, 0, sizeof(header_));
}
BwePacket(int64_t send_time_us, uint32_t payload_size,
const RTPHeader& header)
: send_time_us_(send_time_us),
payload_size_(payload_size),
header_(header) {
}
BwePacket(int64_t send_time_us, uint32_t sequence_number)
: send_time_us_(send_time_us),
payload_size_(0) {
memset(&header_, 0, sizeof(header_));
header_.sequenceNumber = sequence_number;
}
bool operator<(const BwePacket& rhs) const {
return send_time_us_ < rhs.send_time_us_;
}
void set_send_time_us(int64_t send_time_us) {
assert(send_time_us >= 0);
send_time_us_ = send_time_us;
}
int64_t send_time_us() const { return send_time_us_; }
uint32_t payload_size() const { return payload_size_; }
const RTPHeader& header() const { return header_; }
private:
int64_t send_time_us_; // Time the packet left last processor touching it.
uint32_t payload_size_; // Size of the (non-existent, simulated) payload.
RTPHeader header_; // Actual contents.
};
typedef std::list<BwePacket> Packets;
typedef std::list<BwePacket>::iterator PacketsIt;
typedef std::list<BwePacket>::const_iterator PacketsConstIt;
bool IsTimeSorted(const Packets& packets);
class PacketProcessorInterface {
public:
virtual ~PacketProcessorInterface() {}
// Run simulation for |time_ms| micro seconds, consuming packets from, and
// producing packets into in_out. The outgoing packet list must be sorted on
// |send_time_us_|. The simulation time |time_ms| is optional to use.
virtual void RunFor(int64_t time_ms, Packets* in_out) = 0;
};
class VideoSender : public PacketProcessorInterface {
public:
VideoSender(float fps, uint32_t kbps, uint32_t ssrc, float first_frame_offset)
: kMaxPayloadSizeBytes(1000),
kTimestampBase(0xff80ff00ul),
frame_period_ms_(1000.0 / fps),
next_frame_ms_(frame_period_ms_ * first_frame_offset),
now_ms_(0.0),
bytes_per_second_(1000 * kbps / 8),
frame_size_bytes_(bytes_per_second_ / fps),
prototype_header_() {
assert(first_frame_offset >= 0.0f);
assert(first_frame_offset < 1.0f);
memset(&prototype_header_, 0, sizeof(prototype_header_));
prototype_header_.ssrc = ssrc;
prototype_header_.sequenceNumber = 0xf000u;
}
virtual ~VideoSender() {}
uint32_t max_payload_size_bytes() const { return kMaxPayloadSizeBytes; }
uint32_t bytes_per_second() const { return bytes_per_second_; }
virtual void RunFor(int64_t time_ms, Packets* in_out) {
assert(in_out);
now_ms_ += time_ms;
Packets newPackets;
while (now_ms_ >= next_frame_ms_) {
prototype_header_.sequenceNumber++;
prototype_header_.timestamp = kTimestampBase +
static_cast<uint32_t>(next_frame_ms_ * 90.0);
prototype_header_.extension.absoluteSendTime = (kTimestampBase +
((static_cast<int64_t>(next_frame_ms_ * (1 << 18)) + 500) / 1000)) &
0x00fffffful;
prototype_header_.extension.transmissionTimeOffset = 0;
// Generate new packets for this frame, all with the same timestamp,
// but the payload size is capped, so if the whole frame doesn't fit in
// one packet, we will see a number of equally sized packets followed by
// one smaller at the tail.
int64_t send_time_us = next_frame_ms_ * 1000.0;
uint32_t payload_size = frame_size_bytes_;
while (payload_size > 0) {
uint32_t size = std::min(kMaxPayloadSizeBytes, payload_size);
newPackets.push_back(BwePacket(send_time_us, size, prototype_header_));
payload_size -= size;
}
next_frame_ms_ += frame_period_ms_;
}
in_out->merge(newPackets);
}
private:
const uint32_t kMaxPayloadSizeBytes;
const uint32_t kTimestampBase;
double frame_period_ms_;
double next_frame_ms_;
double now_ms_;
uint32_t bytes_per_second_;
uint32_t frame_size_bytes_;
RTPHeader prototype_header_;
DISALLOW_IMPLICIT_CONSTRUCTORS(VideoSender);
};
class RateCounterFilter : public PacketProcessorInterface {
public:
RateCounterFilter()
: kWindowSizeUs(1000000),
packets_per_second_(0),
bytes_per_second_(0),
last_accumulated_us_(0),
window_(),
pps_stats_(),
kbps_stats_() {
}
virtual ~RateCounterFilter() {
LogStats();
}
uint32_t packets_per_second() const { return packets_per_second_; }
uint32_t bits_per_second() const { return bytes_per_second_ * 8; }
void LogStats() {
printf("RateCounterFilter ");
pps_stats_.Log("pps");
printf("\n");
printf("RateCounterFilter ");
kbps_stats_.Log("kbps");
printf("\n");
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsConstIt it = in_out->begin(); it != in_out->end(); ++it) {
packets_per_second_++;
bytes_per_second_ += it->payload_size();
last_accumulated_us_ = it->send_time_us();
}
window_.insert(window_.end(), in_out->begin(), in_out->end());
while (!window_.empty()) {
const BwePacket& packet = window_.front();
if (packet.send_time_us() > (last_accumulated_us_ - kWindowSizeUs)) {
break;
}
assert(packets_per_second_ >= 1);
assert(bytes_per_second_ >= packet.payload_size());
packets_per_second_--;
bytes_per_second_ -= packet.payload_size();
window_.pop_front();
}
pps_stats_.Push(packets_per_second_);
kbps_stats_.Push((bytes_per_second_ * 8) / 1000.0);
}
private:
const int64_t kWindowSizeUs;
uint32_t packets_per_second_;
uint32_t bytes_per_second_;
int64_t last_accumulated_us_;
Packets window_;
Stats<double> pps_stats_;
Stats<double> kbps_stats_;
DISALLOW_COPY_AND_ASSIGN(RateCounterFilter);
};
class LossFilter : public PacketProcessorInterface {
public:
LossFilter() : random_(0x12345678), loss_fraction_(0.0f) {}
virtual ~LossFilter() {}
void SetLoss(float loss_percent) {
assert(loss_percent >= 0.0f);
assert(loss_percent <= 100.0f);
loss_fraction_ = loss_percent * 0.01f;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ) {
if (random_.Rand() < loss_fraction_) {
it = in_out->erase(it);
} else {
++it;
}
}
}
private:
Random random_;
float loss_fraction_;
DISALLOW_COPY_AND_ASSIGN(LossFilter);
};
class DelayFilter : public PacketProcessorInterface {
public:
DelayFilter() : delay_us_(0), last_send_time_us_(0) {}
virtual ~DelayFilter() {}
void SetDelay(int64_t delay_ms) {
assert(delay_ms >= 0);
delay_us_ = delay_ms * 1000;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ++it) {
int64_t new_send_time_us = it->send_time_us() + delay_us_;
last_send_time_us_ = std::max(last_send_time_us_, new_send_time_us);
it->set_send_time_us(last_send_time_us_);
}
}
private:
int64_t delay_us_;
int64_t last_send_time_us_;
DISALLOW_COPY_AND_ASSIGN(DelayFilter);
};
class JitterFilter : public PacketProcessorInterface {
public:
JitterFilter()
: random_(0x89674523),
stddev_jitter_us_(0),
last_send_time_us_(0) {
}
virtual ~JitterFilter() {}
void SetJitter(int64_t stddev_jitter_ms) {
assert(stddev_jitter_ms >= 0);
stddev_jitter_us_ = stddev_jitter_ms * 1000;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ++it) {
int64_t new_send_time_us = it->send_time_us();
new_send_time_us += random_.Gaussian(0, stddev_jitter_us_);
last_send_time_us_ = std::max(last_send_time_us_, new_send_time_us);
it->set_send_time_us(last_send_time_us_);
}
}
private:
Random random_;
int64_t stddev_jitter_us_;
int64_t last_send_time_us_;
DISALLOW_COPY_AND_ASSIGN(JitterFilter);
};
class ReorderFilter : public PacketProcessorInterface {
public:
ReorderFilter() : random_(0x27452389), reorder_fraction_(0.0f) {}
virtual ~ReorderFilter() {}
void SetReorder(float reorder_percent) {
assert(reorder_percent >= 0.0f);
assert(reorder_percent <= 100.0f);
reorder_fraction_ = reorder_percent * 0.01f;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
if (in_out->size() >= 2) {
PacketsIt last_it = in_out->begin();
PacketsIt it = last_it;
while (++it != in_out->end()) {
if (random_.Rand() < reorder_fraction_) {
int64_t t1 = last_it->send_time_us();
int64_t t2 = it->send_time_us();
std::swap(*last_it, *it);
last_it->set_send_time_us(t1);
it->set_send_time_us(t2);
}
last_it = it;
}
}
}
private:
Random random_;
float reorder_fraction_;
DISALLOW_COPY_AND_ASSIGN(ReorderFilter);
};
// Apply a bitrate choke with an infinite queue on the packet stream.
class ChokeFilter : public PacketProcessorInterface {
public:
ChokeFilter() : kbps_(1200), last_send_time_us_(0) {}
virtual ~ChokeFilter() {}
void SetCapacity(uint32_t kbps) {
kbps_ = kbps;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ++it) {
int64_t earliest_send_time_us = last_send_time_us_ +
(it->payload_size() * 8 * 1000 + kbps_ / 2) / kbps_;
last_send_time_us_ = std::max(it->send_time_us(), earliest_send_time_us);
it->set_send_time_us(last_send_time_us_);
}
}
private:
uint32_t kbps_;
int64_t last_send_time_us_;
DISALLOW_COPY_AND_ASSIGN(ChokeFilter);
};
} // namespace bwe
} // namespace testing
} // namespace webrtc
#endif // WEBRTC_MODULES_REMOTE_BITRATE_ESTIMATOR_BWE_TEST_FRAMEWORK_H_

View File

@@ -0,0 +1,814 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/remote_bitrate_estimator/bwe_test_framework.h"
#include <numeric>
#include "gtest/gtest.h"
#include "webrtc/system_wrappers/interface/constructor_magic.h"
using std::vector;
namespace webrtc {
namespace testing {
namespace bwe {
TEST(BweTestFramework_RandomTest, Gaussian) {
enum {
kN = 100000,
kBuckets = 100,
kMean = 49,
kStddev = 10
};
Random random(0x12345678);
int buckets[kBuckets] = {0};
for (int i = 0; i < kN; ++i) {
int index = random.Gaussian(kMean, kStddev);
if (index >= 0 && index < kBuckets) {
buckets[index]++;
}
}
const double kPi = 3.14159265358979323846;
const double kScale = kN / (kStddev * std::sqrt(2.0 * kPi));
const double kDiv = -2.0 * kStddev * kStddev;
double self_corr = 0.0;
double bucket_corr = 0.0;
for (int n = 0; n < kBuckets; ++n) {
double normal_dist = kScale * std::exp((n - kMean) * (n - kMean) / kDiv);
self_corr += normal_dist * normal_dist;
bucket_corr += normal_dist * buckets[n];
}
printf("Correlation: %f (random sample), %f (self), %f (quotient)\n",
bucket_corr, self_corr, bucket_corr / self_corr);
EXPECT_NEAR(1.0, bucket_corr / self_corr, 0.0004);
}
static bool IsSequenceNumberSorted(const Packets& packets) {
PacketsConstIt last_it = packets.begin();
for (PacketsConstIt it = last_it; it != packets.end(); ++it) {
if (IsNewerSequenceNumber(last_it->header().sequenceNumber,
it->header().sequenceNumber)) {
return false;
}
last_it = it;
}
return true;
}
TEST(BweTestFramework_BwePacketTest, IsTimeSorted) {
Packets packets;
// Insert some packets in order...
EXPECT_TRUE(IsTimeSorted(packets));
packets.push_back(BwePacket(100, 0));
EXPECT_TRUE(IsTimeSorted(packets));
packets.push_back(BwePacket(110, 0));
EXPECT_TRUE(IsTimeSorted(packets));
// ...and one out-of-order...
packets.push_back(BwePacket(100, 0));
EXPECT_FALSE(IsTimeSorted(packets));
// ...remove the out-of-order packet, insert another in-order packet.
packets.pop_back();
packets.push_back(BwePacket(120, 0));
EXPECT_TRUE(IsTimeSorted(packets));
}
TEST(BweTestFramework_BwePacketTest, IsSequenceNumberSorted) {
Packets packets;
// Insert some packets in order...
EXPECT_TRUE(IsSequenceNumberSorted(packets));
packets.push_back(BwePacket(0, 100));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
packets.push_back(BwePacket(0, 110));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
// ...and one out-of-order...
packets.push_back(BwePacket(0, 100));
EXPECT_FALSE(IsSequenceNumberSorted(packets));
// ...remove the out-of-order packet, insert another in-order packet.
packets.pop_back();
packets.push_back(BwePacket(0, 120));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
}
TEST(BweTestFramework_StatsTest, Mean) {
Stats<int32_t> stats;
EXPECT_EQ(0, stats.GetMean());
stats.Push(1);
stats.Push(3);
EXPECT_EQ(2, stats.GetMean());
// Integer division rounds (1+3-3)/3 to 0.
stats.Push(-3);
EXPECT_EQ(0, stats.GetMean());
}
TEST(BweTestFramework_StatsTest, Variance) {
Stats<int32_t> stats;
EXPECT_EQ(0, stats.GetVariance());
// Mean is 2 ; ((1-2)*(1-2)+(3-2)*(3-2))/2 = (1+1)/2 = 1
stats.Push(1);
stats.Push(3);
EXPECT_EQ(1, stats.GetVariance());
// Integer division rounds 26/3 to 8
// Mean is 0 ; (1*1+3*3+(-4)*(-4))/3 = (1+9+16)/3 = 8
stats.Push(-4);
EXPECT_EQ(8, stats.GetVariance());
}
TEST(BweTestFramework_StatsTest, StdDev) {
Stats<int32_t> stats;
EXPECT_EQ(0, stats.GetStdDev());
// Variance is 1 ; sqrt(1) = 1
stats.Push(1);
stats.Push(3);
EXPECT_EQ(1, stats.GetStdDev());
// Variance is 8 ; sqrt(8) = 2 with integers.
stats.Push(-4);
EXPECT_EQ(2, stats.GetStdDev());
}
TEST(BweTestFramework_StatsTest, MinMax) {
Stats<int32_t> stats;
EXPECT_EQ(0, stats.GetMin());
EXPECT_EQ(0, stats.GetMax());
stats.Push(1);
EXPECT_EQ(1, stats.GetMin());
EXPECT_EQ(1, stats.GetMax());
stats.Push(3);
EXPECT_EQ(1, stats.GetMin());
EXPECT_EQ(3, stats.GetMax());
stats.Push(-4);
EXPECT_EQ(-4, stats.GetMin());
EXPECT_EQ(3, stats.GetMax());
}
void TestVideoSender(VideoSender* sender, int64_t run_for_ms,
uint32_t expected_packets,
uint32_t expected_payload_size,
uint32_t expected_total_payload_size) {
assert(sender);
Packets packets;
sender->RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(expected_packets, packets.size());
int64_t send_time_us = -1;
uint32_t total_payload_size = 0;
uint32_t absolute_send_time = 0;
uint32_t absolute_send_time_wraps = 0;
uint32_t rtp_timestamp = 0;
uint32_t rtp_timestamp_wraps = 0;
for (PacketsIt it = packets.begin(); it != packets.end(); ++it) {
EXPECT_LE(send_time_us, it->send_time_us());
send_time_us = it->send_time_us();
if (sender->max_payload_size_bytes() != it->payload_size()) {
EXPECT_EQ(expected_payload_size, it->payload_size());
}
total_payload_size += it->payload_size();
if (absolute_send_time > it->header().extension.absoluteSendTime) {
absolute_send_time_wraps++;
}
absolute_send_time = it->header().extension.absoluteSendTime;
if (rtp_timestamp > it->header().timestamp) {
rtp_timestamp_wraps++;
}
rtp_timestamp = it->header().timestamp;
}
EXPECT_EQ(expected_total_payload_size, total_payload_size);
EXPECT_GE(1u, absolute_send_time_wraps);
EXPECT_GE(1u, rtp_timestamp_wraps);
}
TEST(BweTestFramework_VideoSenderTest, Fps1Kpbs80_1s) {
// 1 fps, 80 kbps
VideoSender sender(1.0f, 80, 0x1234, 0);
EXPECT_EQ(10000u, sender.bytes_per_second());
// We're at 1 fps, so all packets should be generated on first call, giving 10
// packets of each 1000 bytes, total 10000 bytes.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 999ms, should see no output here.
TestVideoSender(&sender, 998, 0, 0, 0);
// 1999ms, should get data for one more frame.
TestVideoSender(&sender, 1000, 10, 1000, 10000);
// 2000ms, one more frame.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 2999ms, should see nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps1Kpbs80_1s_Offset) {
// 1 fps, 80 kbps, offset 0.5 of a frame period, ==0.5s in this case.
VideoSender sender(1.0f, 80, 0x1234, 0.5f);
EXPECT_EQ(10000u, sender.bytes_per_second());
// 499ms, no output.
TestVideoSender(&sender, 499, 0, 0, 0);
// 500ms, first frame (this is the offset we set), 10 packets of 1000 bytes.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 1499ms, nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
// 1999ms, second frame.
TestVideoSender(&sender, 500, 10, 1000, 10000);
// 2499ms, nothing.
TestVideoSender(&sender, 500, 0, 0, 0);
// 2500ms, third frame.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 3499ms, nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps50Kpbs80_11s) {
// 50 fps, 80 kbps.
VideoSender sender(50.0f, 80, 0x1234, 0);
EXPECT_EQ(10000u, sender.bytes_per_second());
// 9998ms, should see 500 frames, 200 byte payloads, total 100000 bytes.
TestVideoSender(&sender, 9998, 500, 200, 100000);
// 9999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 10000ms, 501st frame as a single packet.
TestVideoSender(&sender, 1, 1, 200, 200);
// 10998ms, 49 more frames.
TestVideoSender(&sender, 998, 49, 200, 9800);
// 10999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps10Kpbs120_1s) {
// 20 fps, 120 kbps.
VideoSender sender(20.0f, 120, 0x1234, 0);
EXPECT_EQ(15000u, sender.bytes_per_second());
// 498ms, 10 frames with 750 byte payloads, total 7500 bytes.
TestVideoSender(&sender, 498, 10, 750, 7500);
// 499ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 500ms, one more frame.
TestVideoSender(&sender, 1, 1, 750, 750);
// 998ms, 9 more frames.
TestVideoSender(&sender, 498, 9, 750, 6750);
// 999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps30Kpbs800_20s) {
// 20 fps, 820 kbps.
VideoSender sender(25.0f, 820, 0x1234, 0);
EXPECT_EQ(102500u, sender.bytes_per_second());
// 9998ms, 250 frames. 820 kbps = 102500 bytes/s, so total should be 1025000.
// Each frame is 102500/25=4100 bytes, or 5 packets (4 @1000 bytes, 1 @100),
// so packet count should be 5*250=1250 and last packet of each frame has
// 100 bytes of payload.
TestVideoSender(&sender, 9998, 1250, 100, 1025000);
// 9999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 19998ms, 250 more frames.
TestVideoSender(&sender, 9999, 1250, 100, 1025000);
// 19999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 20038ms, one more frame, as described above (25fps == 40ms/frame).
TestVideoSender(&sender, 39, 5, 100, 4100);
// 20039ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, TestAppendInOrder) {
// 1 fps, 80 kbps, 250ms offset.
VideoSender sender1(1.0f, 80, 0x1234, 0.25f);
EXPECT_EQ(10000u, sender1.bytes_per_second());
Packets packets;
// Generate some packets, verify they are sorted.
sender1.RunFor(999, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(10u, packets.size());
// Generate some more packets and verify they are appended to end of list.
sender1.RunFor(1000, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(20u, packets.size());
// Another sender, 2 fps, 160 kpbs, 150ms offset
VideoSender sender2(2.0f, 160, 0x2234, 0.30f);
EXPECT_EQ(20000u, sender2.bytes_per_second());
// Generate some packets, verify that they are merged with the packets already
// on the list.
sender2.RunFor(999, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(40u, packets.size());
// Generate some more.
sender2.RunFor(1000, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(60u, packets.size());
}
class BweTestFramework_RateCounterFilterTest : public ::testing::Test {
public:
BweTestFramework_RateCounterFilterTest()
: filter_(),
now_ms_(0) {
}
virtual ~BweTestFramework_RateCounterFilterTest() {}
protected:
void TestRateCounter(int64_t run_for_ms, uint32_t payload_bits,
uint32_t expected_pps, uint32_t expected_bps) {
Packets packets;
RTPHeader header = {0};
// "Send" a packet every 10 ms.
for (int64_t i = 0; i < run_for_ms; i += 10, now_ms_ += 10) {
packets.push_back(BwePacket(now_ms_ * 1000, payload_bits / 8, header));
}
filter_.RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(expected_pps, filter_.packets_per_second());
EXPECT_EQ(expected_bps, filter_.bits_per_second());
}
private:
RateCounterFilter filter_;
int64_t now_ms_;
DISALLOW_COPY_AND_ASSIGN(BweTestFramework_RateCounterFilterTest);
};
TEST_F(BweTestFramework_RateCounterFilterTest, Short) {
// 100ms, 100 bytes per packet, should result in 10 pps and 8 kbps. We're
// generating one packet every 10 ms ; 10 * 800 = 8k
TestRateCounter(100, 800, 10, 8000);
}
TEST_F(BweTestFramework_RateCounterFilterTest, Medium) {
// 100ms, like above.
TestRateCounter(100, 800, 10, 8000);
// 1000ms, 100 bpp, should result in 100 pps and 80 kbps. We're still
// generating packets every 10 ms.
TestRateCounter(900, 800, 100, 80000);
}
TEST_F(BweTestFramework_RateCounterFilterTest, Long) {
// 100ms, 1000ms, like above.
TestRateCounter(100, 800, 10, 8000);
TestRateCounter(900, 800, 100, 80000);
// 2000ms, should only see rate of last second, so 100 pps, and 40 kbps now.
TestRateCounter(1000, 400, 100, 40000);
// 2500ms, half a second with zero payload size. We should get same pps as
// before, but kbps should drop to half of previous rate.
TestRateCounter(500, 0, 100, 20000);
// Another half second with zero payload size. Now the kbps rate should drop
// to zero.
TestRateCounter(500, 0, 100, 0);
// Increate payload size again. 200 * 100 * 0.5 = 10 kbps.
TestRateCounter(500, 200, 100, 10000);
}
static void TestLossFilter(float loss_percent, bool zero_tolerance) {
LossFilter filter;
filter.SetLoss(loss_percent);
Packets::size_type sent_packets = 0;
Packets::size_type remaining_packets = 0;
// No input should yield no output
{
Packets packets;
sent_packets += packets.size();
filter.RunFor(0, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
remaining_packets += packets.size();
EXPECT_EQ(0u, sent_packets);
EXPECT_EQ(0u, remaining_packets);
}
// Generate and process 10000 packets in different batch sizes (some empty)
for (int i = 0; i < 2225; ++i) {
Packets packets;
packets.insert(packets.end(), i % 10, BwePacket());
sent_packets += packets.size();
filter.RunFor(0, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
remaining_packets += packets.size();
}
float loss_fraction = 0.01f * (100.0f - loss_percent);
Packets::size_type expected_packets = loss_fraction * sent_packets;
if (zero_tolerance) {
EXPECT_EQ(expected_packets, remaining_packets);
} else {
// Require within 1% of expected
EXPECT_NEAR(expected_packets, remaining_packets, 100);
}
}
TEST(BweTestFramework_LossFilterTest, Loss0) {
// With 0% loss, the result should be exact (no loss).
TestLossFilter(0.0f, true);
}
TEST(BweTestFramework_LossFilterTest, Loss10) {
TestLossFilter(10.0f, false);
}
TEST(BweTestFramework_LossFilterTest, Loss50) {
TestLossFilter(50.0f, false);
}
TEST(BweTestFramework_LossFilterTest, Loss100) {
// With 100% loss, the result should be exact (no packets out).
TestLossFilter(100.0f, true);
}
class BweTestFramework_DelayFilterTest : public ::testing::Test {
public:
BweTestFramework_DelayFilterTest()
: filter_(),
now_ms_(0),
sequence_number_(0) {
}
virtual ~BweTestFramework_DelayFilterTest() {}
protected:
void TestDelayFilter(int64_t run_for_ms, uint32_t in_packets,
uint32_t out_packets) {
Packets packets;
for (uint32_t i = 0; i < in_packets; ++i) {
packets.push_back(BwePacket(now_ms_ * 1000 + (sequence_number_ >> 4),
sequence_number_));
sequence_number_++;
}
filter_.RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
for (PacketsConstIt it = packets.begin(); it != packets.end(); ++it) {
EXPECT_LE(now_ms_ * 1000, it->send_time_us());
}
EXPECT_EQ(out_packets, packets.size());
accumulated_packets_.splice(accumulated_packets_.end(), packets);
now_ms_ += run_for_ms;
}
void TestDelayFilter(int64_t delay_ms) {
filter_.SetDelay(delay_ms);
TestDelayFilter(1, 0, 0); // No input should yield no output
// Single packet
TestDelayFilter(0, 1, 1);
TestDelayFilter(delay_ms, 0, 0);
for (int i = 0; i < delay_ms; ++i) {
filter_.SetDelay(i);
TestDelayFilter(1, 10, 10);
}
TestDelayFilter(0, 0, 0);
TestDelayFilter(delay_ms, 0, 0);
// Wait a little longer - should still see no output
TestDelayFilter(delay_ms, 0, 0);
for (int i = 1; i < delay_ms + 1; ++i) {
filter_.SetDelay(i);
TestDelayFilter(1, 5, 5);
}
TestDelayFilter(0, 0, 0);
filter_.SetDelay(2 * delay_ms);
TestDelayFilter(1, 0, 0);
TestDelayFilter(delay_ms, 13, 13);
TestDelayFilter(delay_ms, 0, 0);
// Wait a little longer - should still see no output
TestDelayFilter(delay_ms, 0, 0);
for (int i = 0; i < 2 * delay_ms; ++i) {
filter_.SetDelay(2 * delay_ms - i - 1);
TestDelayFilter(1, 5, 5);
}
TestDelayFilter(0, 0, 0);
filter_.SetDelay(0);
TestDelayFilter(0, 7, 7);
ASSERT_TRUE(IsTimeSorted(accumulated_packets_));
ASSERT_TRUE(IsSequenceNumberSorted(accumulated_packets_));
}
DelayFilter filter_;
Packets accumulated_packets_;
private:
int64_t now_ms_;
uint32_t sequence_number_;
DISALLOW_COPY_AND_ASSIGN(BweTestFramework_DelayFilterTest);
};
TEST_F(BweTestFramework_DelayFilterTest, Delay0) {
TestDelayFilter(1, 0, 0); // No input should yield no output
TestDelayFilter(1, 10, 10); // Expect no delay (delay time is zero)
TestDelayFilter(1, 0, 0); // Check no packets are still in buffer
filter_.SetDelay(0);
TestDelayFilter(1, 5, 5); // Expect no delay (delay time is zero)
TestDelayFilter(1, 0, 0); // Check no packets are still in buffer
}
TEST_F(BweTestFramework_DelayFilterTest, Delay1) {
TestDelayFilter(1);
}
TEST_F(BweTestFramework_DelayFilterTest, Delay2) {
TestDelayFilter(2);
}
TEST_F(BweTestFramework_DelayFilterTest, Delay20) {
TestDelayFilter(20);
}
TEST_F(BweTestFramework_DelayFilterTest, Delay100) {
TestDelayFilter(100);
}
TEST_F(BweTestFramework_DelayFilterTest, JumpToZeroDelay) {
DelayFilter delay;
Packets acc;
Packets packets;
// Delay a bunch of packets, accumulate them to the 'acc' list.
delay.SetDelay(100.0f);
for (uint32_t i = 0; i < 10; ++i) {
packets.push_back(BwePacket(i * 100, i));
}
delay.RunFor(1000, &packets);
acc.splice(acc.end(), packets);
ASSERT_TRUE(IsTimeSorted(acc));
ASSERT_TRUE(IsSequenceNumberSorted(acc));
// Drop delay to zero, send a few more packets through the delay, append them
// to the 'acc' list and verify that it is all sorted.
delay.SetDelay(0.0f);
for (uint32_t i = 10; i < 50; ++i) {
packets.push_back(BwePacket(i * 100, i));
}
delay.RunFor(1000, &packets);
acc.splice(acc.end(), packets);
ASSERT_TRUE(IsTimeSorted(acc));
ASSERT_TRUE(IsSequenceNumberSorted(acc));
}
TEST_F(BweTestFramework_DelayFilterTest, IncreasingDelay) {
// Gradually increase delay.
for (int i = 1; i < 50; i += 4) {
TestDelayFilter(i);
}
// Reach a steady state.
filter_.SetDelay(100);
TestDelayFilter(1, 20, 20);
TestDelayFilter(2, 0, 0);
TestDelayFilter(99, 20, 20);
// Drop delay back down to zero.
filter_.SetDelay(0);
TestDelayFilter(1, 100, 100);
TestDelayFilter(23010, 0, 0);
ASSERT_TRUE(IsTimeSorted(accumulated_packets_));
ASSERT_TRUE(IsSequenceNumberSorted(accumulated_packets_));
}
static void TestJitterFilter(int64_t stddev_jitter_ms) {
JitterFilter filter;
filter.SetJitter(stddev_jitter_ms);
int64_t now_ms = 0;
uint32_t sequence_number = 0;
// Generate packets, add jitter to them, accumulate the altered packets.
Packets original;
Packets jittered;
for (uint32_t i = 0; i < 1000; ++i) {
Packets packets;
for (uint32_t j = 0; j < i % 100; ++j) {
packets.push_back(BwePacket(now_ms * 1000, sequence_number++));
now_ms += 5 * stddev_jitter_ms;
}
original.insert(original.end(), packets.begin(), packets.end());
filter.RunFor(stddev_jitter_ms, &packets);
jittered.splice(jittered.end(), packets);
}
// Jittered packets should still be in order.
ASSERT_TRUE(IsTimeSorted(original));
ASSERT_TRUE(IsTimeSorted(jittered));
ASSERT_TRUE(IsSequenceNumberSorted(original));
ASSERT_TRUE(IsSequenceNumberSorted(jittered));
EXPECT_EQ(original.size(), jittered.size());
// Make sure jittered and original packets are in same order. Collect time
// difference (jitter) in stats, then check that mean jitter is close to zero
// and standard deviation of jitter is what we set it to.
Stats<double> jitter_us;
for (PacketsIt it1 = original.begin(), it2 = jittered.begin();
it1 != original.end() && it2 != jittered.end(); ++it1, ++it2) {
EXPECT_EQ(it1->header().sequenceNumber, it2->header().sequenceNumber);
jitter_us.Push(it2->send_time_us() - it1->send_time_us());
}
EXPECT_NEAR(0.0, jitter_us.GetMean(), stddev_jitter_ms * 1000.0 * 0.008);
EXPECT_NEAR(stddev_jitter_ms * 1000.0, jitter_us.GetStdDev(),
stddev_jitter_ms * 1000.0 * 0.02);
}
TEST(BweTestFramework_JitterFilterTest, Jitter0) {
TestJitterFilter(0);
}
TEST(BweTestFramework_JitterFilterTest, Jitter1) {
TestJitterFilter(1);
}
TEST(BweTestFramework_JitterFilterTest, Jitter5) {
TestJitterFilter(5);
}
TEST(BweTestFramework_JitterFilterTest, Jitter10) {
TestJitterFilter(10);
}
TEST(BweTestFramework_JitterFilterTest, Jitter1031) {
TestJitterFilter(1031);
}
static void TestReorderFilter(uint32_t reorder_percent, uint32_t near) {
const uint32_t kPacketCount = 10000;
// Generate packets with 10 ms interval.
Packets packets;
int64_t now_ms = 0;
uint32_t sequence_number = 1;
for (uint32_t i = 0; i < kPacketCount; ++i, now_ms += 10) {
packets.push_back(BwePacket(now_ms * 1000, sequence_number++));
}
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
// Reorder packets, verify that send times are still in order.
ReorderFilter filter;
filter.SetReorder(reorder_percent);
filter.RunFor(now_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
// We measure the amount of reordering by summing the distance by which out-
// of-order packets have been moved in the stream.
uint32_t distance = 0;
uint32_t last_sequence_number = 0;
for (PacketsIt it = packets.begin(); it != packets.end(); ++it) {
uint32_t sequence_number = it->header().sequenceNumber;
if (sequence_number < last_sequence_number) {
distance += last_sequence_number - sequence_number;
}
last_sequence_number = sequence_number;
}
// Because reordering is random, we allow a threshold when comparing. The
// maximum distance a packet can be moved is PacketCount - 1.
EXPECT_NEAR(((kPacketCount - 1) * reorder_percent) / 100, distance, near);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder0) {
// For 0% reordering, no packets should have been moved, so result is exact.
TestReorderFilter(0, 0);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder10) {
TestReorderFilter(10, 30);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder20) {
TestReorderFilter(20, 20);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder50) {
TestReorderFilter(50, 20);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder70) {
TestReorderFilter(70, 20);
}
TEST(BweTestFramework_ReorderFilterTest, Reorder100) {
// Note that because the implementation works by optionally swapping two
// adjacent packets, when the likelihood of a swap is 1.0, a swap will always
// occur, so the stream will be in order except for the first packet, which
// has been moved to the end. Therefore we expect the result to be exact here.
TestReorderFilter(100.0, 0);
}
class BweTestFramework_ChokeFilterTest : public ::testing::Test {
public:
BweTestFramework_ChokeFilterTest()
: filter_(),
now_ms_(0),
sequence_number_(0),
output_packets_() {
}
virtual ~BweTestFramework_ChokeFilterTest() {}
protected:
void TestChoke(int64_t run_for_ms, uint32_t packets_to_generate,
uint32_t choke_kbps, uint32_t expected_kbit_transmitted) {
// Generate a bunch of packets, apply choke, verify output is ordered.
Packets packets;
RTPHeader header = {0};
for (uint32_t i = 0; i < packets_to_generate; ++i) {
int64_t send_time_ms = now_ms_ + (i * run_for_ms) / packets_to_generate;
header.sequenceNumber = sequence_number_++;
// Payload is 1000 bits.
packets.push_back(BwePacket(send_time_ms * 1000, 125, header));
}
ASSERT_TRUE(IsTimeSorted(packets));
filter_.SetCapacity(choke_kbps);
filter_.RunFor(run_for_ms, &packets);
now_ms_ += run_for_ms;
output_packets_.splice(output_packets_.end(), packets);
ASSERT_TRUE(IsTimeSorted(output_packets_));
ASSERT_TRUE(IsSequenceNumberSorted(output_packets_));
// Sum up the transmitted bytes up until the current time.
uint32_t bytes_transmitted = 0;
while (!output_packets_.empty()) {
const BwePacket& packet = output_packets_.front();
if (packet.send_time_us() > now_ms_ * 1000) {
break;
}
bytes_transmitted += packet.payload_size();
output_packets_.pop_front();
}
EXPECT_EQ(expected_kbit_transmitted, (bytes_transmitted * 8) / 1000);
}
private:
ChokeFilter filter_;
int64_t now_ms_;
uint32_t sequence_number_;
Packets output_packets_;
DISALLOW_COPY_AND_ASSIGN(BweTestFramework_ChokeFilterTest);
};
TEST_F(BweTestFramework_ChokeFilterTest, Short) {
// 100ms, 100 packets, 10 kbps choke -> 1 kbit of data should have propagated.
// That is actually just a single packet, since each packet has 1000 bits of
// payload.
TestChoke(100, 100, 10, 1);
}
TEST_F(BweTestFramework_ChokeFilterTest, Medium) {
// 100ms, 10 packets, 10 kbps choke -> 1 packet through, or 1 kbit.
TestChoke(100, 10, 10, 1);
// 200ms, no new packets, same choke -> another packet through.
TestChoke(100, 0, 10, 1);
// 1000ms, no new packets, same choke -> 8 more packets.
TestChoke(800, 0, 10, 8);
// 2000ms, no new packets, same choke -> queue is empty so no output.
TestChoke(1000, 0, 10, 0);
}
TEST_F(BweTestFramework_ChokeFilterTest, Long) {
// 100ms, 100 packets in queue, 10 kbps choke -> 1 packet through, or 1 kbit.
TestChoke(100, 100, 10, 1);
// 200ms, no input, another packet through.
TestChoke(100, 0, 10, 1);
// 1000ms, no input, 8 packets through.
TestChoke(800, 0, 10, 8);
// 10000ms, no input, raise choke to 100 kbps. Remaining 90 packets in queue
// should be propagated, for a total of 90 kbps.
TestChoke(9000, 0, 100, 90);
// 10100ms, 20 more packets, 100 kbps choke -> 10 packets or 10 kbit through.
TestChoke(100, 20, 100, 10);
// 10300ms, 10 more packets, same choke -> 20 packets out.
TestChoke(200, 10, 100, 20);
// 11300ms, no input, queue should be empty.
TestChoke(1000, 0, 10, 0);
}
} // namespace bwe
} // namespace testing
} // namespace webrtc

View File

@@ -72,7 +72,8 @@ struct RemoteBitrateEstimatorFactory {
Clock* clock) const; Clock* clock) const;
}; };
struct AbsoluteSendTimeRemoteBitrateEstimatorFactory { struct AbsoluteSendTimeRemoteBitrateEstimatorFactory
: public RemoteBitrateEstimatorFactory {
AbsoluteSendTimeRemoteBitrateEstimatorFactory() {} AbsoluteSendTimeRemoteBitrateEstimatorFactory() {}
virtual ~AbsoluteSendTimeRemoteBitrateEstimatorFactory() {} virtual ~AbsoluteSendTimeRemoteBitrateEstimatorFactory() {}

View File

@@ -0,0 +1,444 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "gtest/gtest.h"
#include "webrtc/modules/remote_bitrate_estimator/bwe_test_framework.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/constructor_magic.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#define ENABLE_1_SENDER 1
#define ENABLE_3_SENDERS 1
#define ENABLE_10_SENDERS 1
#define ENABLE_BASIC_TESTS 1
#define ENABLE_LOSS_TESTS 0
#define ENABLE_DELAY_TESTS 0
#define ENABLE_JITTER_TESTS 0
#define ENABLE_REORDER_TESTS 0
#define ENABLE_CHOKE_TESTS 0
#define ENABLE_MULTI_TESTS 0
#define ENABLE_TOF_ESTIMATOR 1
#define ENABLE_AST_ESTIMATOR 1
using std::vector;
namespace webrtc {
namespace testing {
namespace bwe {
const int64_t kSimulationIntervalMs = 1000;
namespace stl_helpers {
template<typename T> void DeleteElements(T* container) {
if (!container) return;
for (typename T::iterator it = container->begin(); it != container->end();
++it) {
delete *it;
}
container->clear();
}
} // namespace stl_helpers
class TestedEstimator : public RemoteBitrateObserver {
public:
TestedEstimator(const std::string& debug_name,
const RemoteBitrateEstimatorFactory& factory)
: debug_name_(debug_name),
clock_(0),
stats_(),
relative_estimator_stats_(),
latest_estimate_kbps_(-1.0),
estimator_(factory.Create(this, &clock_)),
relative_estimator_(NULL) {
assert(estimator_.get());
// Default RTT in RemoteRateControl is 200 ms ; 50 ms is more realistic.
estimator_->OnRttUpdate(50);
}
void SetRelativeEstimator(TestedEstimator* relative_estimator) {
relative_estimator_ = relative_estimator;
}
void EatPacket(const BwePacket& packet) {
latest_estimate_kbps_ = -1.0;
// We're treating the send time (from previous filter) as the arrival
// time once packet reaches the estimator.
int64_t packet_time_ms = (packet.send_time_us() + 500) / 1000;
int64_t step_ms = estimator_->TimeUntilNextProcess();
while ((clock_.TimeInMilliseconds() + step_ms) < packet_time_ms) {
clock_.AdvanceTimeMilliseconds(step_ms);
estimator_->Process();
step_ms = estimator_->TimeUntilNextProcess();
}
estimator_->IncomingPacket(packet_time_ms, packet.payload_size(),
packet.header());
clock_.AdvanceTimeMilliseconds(packet_time_ms -
clock_.TimeInMilliseconds());
ASSERT_TRUE(packet_time_ms == clock_.TimeInMilliseconds());
}
void CheckEstimate() {
double estimated_kbps = 0.0;
if (LatestEstimate(&estimated_kbps)) {
stats_.Push(estimated_kbps);
double relative_estimate_kbps = 0.0;
if (relative_estimator_ &&
relative_estimator_->LatestEstimate(&relative_estimate_kbps)) {
relative_estimator_stats_.Push(estimated_kbps - relative_estimate_kbps);
}
}
}
void LogStats() {
printf("%s Mean ", debug_name_.c_str());
stats_.Log("kbps");
printf("\n");
if (relative_estimator_) {
printf("%s Diff ", debug_name_.c_str());
relative_estimator_stats_.Log("kbps");
printf("\n");
}
}
virtual void OnReceiveBitrateChanged(const vector<unsigned int>& ssrcs,
unsigned int bitrate) {
}
private:
bool LatestEstimate(double* estimate_kbps) {
if (latest_estimate_kbps_ < 0.0) {
vector<unsigned int> ssrcs;
unsigned int bps = 0;
if (!estimator_->LatestEstimate(&ssrcs, &bps)) {
return false;
}
latest_estimate_kbps_ = bps / 1000.0;
}
*estimate_kbps = latest_estimate_kbps_;
return true;
}
std::string debug_name_;
bool log_estimates_;
SimulatedClock clock_;
Stats<double> stats_;
Stats<double> relative_estimator_stats_;
double latest_estimate_kbps_;
scoped_ptr<RemoteBitrateEstimator> estimator_;
TestedEstimator* relative_estimator_;
DISALLOW_IMPLICIT_CONSTRUCTORS(TestedEstimator);
};
class RemoteBitrateEstimatorsTest : public ::testing::Test {
public:
RemoteBitrateEstimatorsTest()
: run_time_ms_(0),
estimators_(),
previous_packets_(),
processors_(),
video_senders_() {
}
virtual ~RemoteBitrateEstimatorsTest() {
stl_helpers::DeleteElements(&estimators_);
stl_helpers::DeleteElements(&video_senders_);
}
virtual void SetUp() {
#if ENABLE_TOF_ESTIMATOR
estimators_.push_back(new TestedEstimator("TOF",
RemoteBitrateEstimatorFactory()));
#endif
#if ENABLE_AST_ESTIMATOR
estimators_.push_back(new TestedEstimator("AST",
AbsoluteSendTimeRemoteBitrateEstimatorFactory()));
#endif
// Set all estimators as relative to the first one.
for (uint32_t i = 1; i < estimators_.size(); ++i) {
estimators_[i]->SetRelativeEstimator(estimators_[0]);
}
}
protected:
void RunFor(int64_t time_ms) {
for (run_time_ms_ += time_ms; run_time_ms_ >= kSimulationIntervalMs;
run_time_ms_ -= kSimulationIntervalMs) {
Packets packets;
for (vector<PacketProcessorInterface*>::const_iterator it =
processors_.begin(); it != processors_.end(); ++it) {
(*it)->RunFor(kSimulationIntervalMs, &packets);
}
// Verify packets are in order between batches.
if (!packets.empty() && !previous_packets_.empty()) {
packets.splice(packets.begin(), previous_packets_,
--previous_packets_.end());
ASSERT_TRUE(IsTimeSorted(packets));
packets.erase(packets.begin());
} else {
ASSERT_TRUE(IsTimeSorted(packets));
}
for (PacketsConstIt pit = packets.begin(); pit != packets.end(); ++pit) {
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
(*eit)->EatPacket(*pit);
}
}
previous_packets_.swap(packets);
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
(*eit)->CheckEstimate();
}
}
}
void AddVideoSenders(uint32_t count) {
struct { float fps; uint32_t kbps; uint32_t ssrc; float frame_offset; }
configs[] = {
{ 30.00f, 150, 0x1234, 0.13f },
{ 15.00f, 500, 0x2345, 0.16f },
{ 30.00f, 1200, 0x3456, 0.26f },
{ 7.49f, 150, 0x4567, 0.05f },
{ 7.50f, 150, 0x5678, 0.15f },
{ 7.51f, 150, 0x6789, 0.25f },
{ 15.02f, 150, 0x7890, 0.27f },
{ 15.03f, 150, 0x8901, 0.38f },
{ 30.02f, 150, 0x9012, 0.39f },
{ 30.03f, 150, 0x0123, 0.52f }
};
assert(count <= sizeof(configs) / sizeof(configs[0]));
uint32_t total_capacity = 0;
for (uint32_t i = 0; i < count; ++i) {
video_senders_.push_back(new VideoSender(configs[i].fps, configs[i].kbps,
configs[i].ssrc, configs[i].frame_offset));
processors_.push_back(video_senders_.back());
total_capacity += configs[i].kbps;
}
printf("RequiredLinkCapacity %d kbps\n", total_capacity);
}
void LogStats() {
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
(*eit)->LogStats();
}
}
void UnlimitedSpeedTest() {
RunFor(10 * 60 * 1000);
}
void SteadyLossTest() {
LossFilter loss;
processors_.push_back(&loss);
loss.SetLoss(20.0);
RunFor(10 * 60 * 1000);
}
void IncreasingLoss1Test() {
LossFilter loss;
processors_.push_back(&loss);
for (int i = 0; i < 76; ++i) {
loss.SetLoss(i);
RunFor(5000);
}
}
void SteadyDelayTest() {
DelayFilter delay;
processors_.push_back(&delay);
delay.SetDelay(1000);
RunFor(10 * 60 * 1000);
}
void IncreasingDelay1Test() {
DelayFilter delay;
processors_.push_back(&delay);
RunFor(10 * 60 * 1000);
for (int i = 0; i < 30 * 2; ++i) {
delay.SetDelay(i);
RunFor(10 * 1000);
}
RunFor(10 * 60 * 1000);
}
void IncreasingDelay2Test() {
DelayFilter delay;
RateCounterFilter counter;
processors_.push_back(&delay);
processors_.push_back(&counter);
RunFor(1 * 60 * 1000);
for (int i = 1; i < 51; ++i) {
delay.SetDelay(10.0f * i);
RunFor(10 * 1000);
}
delay.SetDelay(0.0f);
RunFor(10 * 60 * 1000);
}
void JumpyDelay1Test() {
DelayFilter delay;
processors_.push_back(&delay);
RunFor(10 * 60 * 1000);
for (int i = 1; i < 200; ++i) {
delay.SetDelay((10 * i) % 500);
RunFor(1000);
delay.SetDelay(1.0f);
RunFor(1000);
}
delay.SetDelay(0.0f);
RunFor(10 * 60 * 1000);
}
void SteadyJitterTest() {
JitterFilter jitter;
RateCounterFilter counter;
processors_.push_back(&jitter);
processors_.push_back(&counter);
jitter.SetJitter(120);
RunFor(10 * 60 * 1000);
}
void IncreasingJitter1Test() {
JitterFilter jitter;
processors_.push_back(&jitter);
for (int i = 0; i < 2 * 60 * 2; ++i) {
jitter.SetJitter(i);
RunFor(10 * 1000);
}
RunFor(10 * 60 * 1000);
}
void IncreasingJitter2Test() {
JitterFilter jitter;
processors_.push_back(&jitter);
RunFor(30 * 1000);
for (int i = 1; i < 51; ++i) {
jitter.SetJitter(10.0f * i);
RunFor(10 * 1000);
}
jitter.SetJitter(0.0f);
RunFor(10 * 60 * 1000);
}
void SteadyReorderTest() {
ReorderFilter reorder;
processors_.push_back(&reorder);
reorder.SetReorder(20.0);
RunFor(10 * 60 * 1000);
}
void IncreasingReorder1Test() {
ReorderFilter reorder;
processors_.push_back(&reorder);
for (int i = 0; i < 76; ++i) {
reorder.SetReorder(i);
RunFor(5000);
}
}
void SteadyChokeTest() {
ChokeFilter choke;
processors_.push_back(&choke);
choke.SetCapacity(140);
RunFor(10 * 60 * 1000);
}
void IncreasingChoke1Test() {
ChokeFilter choke;
processors_.push_back(&choke);
for (int i = 1200; i >= 100; i -= 100) {
choke.SetCapacity(i);
RunFor(5000);
}
}
void IncreasingChoke2Test() {
ChokeFilter choke;
processors_.push_back(&choke);
RunFor(60 * 1000);
for (int i = 1200; i >= 100; i -= 20) {
choke.SetCapacity(i);
RunFor(1000);
}
}
void Multi1Test() {
DelayFilter delay;
ChokeFilter choke;
RateCounterFilter counter;
processors_.push_back(&delay);
processors_.push_back(&choke);
processors_.push_back(&counter);
choke.SetCapacity(1000);
RunFor(1 * 60 * 1000);
for (int i = 1; i < 51; ++i) {
delay.SetDelay(100.0f * i);
RunFor(10 * 1000);
}
delay.SetDelay(0.0f);
RunFor(5 * 60 * 1000);
}
void Multi2Test() {
ChokeFilter choke;
JitterFilter jitter;
RateCounterFilter counter;
processors_.push_back(&choke);
processors_.push_back(&jitter);
processors_.push_back(&counter);
choke.SetCapacity(2000);
jitter.SetJitter(120);
RunFor(5 * 60 * 1000);
}
private:
int64_t run_time_ms_;
vector<TestedEstimator*> estimators_;
Packets previous_packets_;
vector<PacketProcessorInterface*> processors_;
vector<VideoSender*> video_senders_;
DISALLOW_COPY_AND_ASSIGN(RemoteBitrateEstimatorsTest);
};
#define SINGLE_TEST(enabled, test_name, video_senders)\
TEST_F(RemoteBitrateEstimatorsTest, test_name##_##video_senders##Sender) {\
if (enabled) {\
AddVideoSenders(video_senders);\
test_name##Test();\
LogStats();\
}\
}
#define MULTI_TEST(enabled, test_name)\
SINGLE_TEST((enabled) && ENABLE_1_SENDER, test_name, 1)\
SINGLE_TEST((enabled) && ENABLE_3_SENDERS, test_name, 3)\
SINGLE_TEST((enabled) && ENABLE_10_SENDERS, test_name, 10)
MULTI_TEST(ENABLE_BASIC_TESTS, UnlimitedSpeed)
MULTI_TEST(ENABLE_LOSS_TESTS, SteadyLoss)
MULTI_TEST(ENABLE_LOSS_TESTS, IncreasingLoss1)
MULTI_TEST(ENABLE_DELAY_TESTS, SteadyDelay)
MULTI_TEST(ENABLE_DELAY_TESTS, IncreasingDelay1)
MULTI_TEST(ENABLE_DELAY_TESTS, IncreasingDelay2)
MULTI_TEST(ENABLE_DELAY_TESTS, JumpyDelay1)
MULTI_TEST(ENABLE_JITTER_TESTS, SteadyJitter)
MULTI_TEST(ENABLE_JITTER_TESTS, IncreasingJitter1)
MULTI_TEST(ENABLE_JITTER_TESTS, IncreasingJitter2)
MULTI_TEST(ENABLE_REORDER_TESTS, SteadyReorder)
MULTI_TEST(ENABLE_REORDER_TESTS, IncreasingReorder1)
MULTI_TEST(ENABLE_CHOKE_TESTS, SteadyChoke)
MULTI_TEST(ENABLE_CHOKE_TESTS, IncreasingChoke1)
MULTI_TEST(ENABLE_CHOKE_TESTS, IncreasingChoke2)
MULTI_TEST(ENABLE_MULTI_TESTS, Multi1)
MULTI_TEST(ENABLE_MULTI_TESTS, Multi2)
} // namespace bwe
} // namespace testing
} // namespace webrtc