Delay estimator improvements.

Robustness improvements to the delay estimator used in AECM and AEC. In AEC only for logging. Faster convergence.

TEST=audioproc_unittest + offline file tests.

output_data_fixed.pb updated despite unverified changes in r1112.
Review URL: http://webrtc-codereview.appspot.com/337006

git-svn-id: http://webrtc.googlecode.com/svn/trunk@1306 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
bjornv@webrtc.org 2011-12-29 14:51:21 +00:00
parent efd0a48c61
commit 70adcd46b2
8 changed files with 297 additions and 224 deletions

View File

@ -751,8 +751,7 @@ static void ProcessBlock(aec_t* aec) {
delay_estimate = WebRtc_DelayEstimatorProcessFloat(aec->delay_estimator,
abs_far_spectrum,
abs_near_spectrum,
PART_LEN1,
aec->echoState);
PART_LEN1);
if (delay_estimate >= 0) {
// Update delay estimate buffer.
aec->delay_histogram[delay_estimate]++;

View File

@ -1612,7 +1612,7 @@ int WebRtcAecm_ProcessBlock(AecmCore_t * aecm,
dfaNoisy,
PART_LEN1,
far_q,
aecm->currentVADValue);
zerosDBufNoisy);
if (delay == -1)
{
return -1;

View File

@ -14,7 +14,25 @@
#include <stdlib.h>
#include <string.h>
#include "signal_processing_library.h"
// Number of right shifts for scaling is linearly depending on number of bits in
// the far-end binary spectrum.
static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum.
static const int kShiftsLinearSlope = 3;
static const int32_t kProbabilityOffset = 1024; // 2 in Q9.
static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9.
static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9.
// Counts and returns number of bits of a 32-bit word.
static int BitCount(uint32_t u32) {
uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) -
((u32 >> 2) & 011111111111);
tmp = ((tmp + (tmp >> 3)) & 030707070707);
tmp = (tmp + (tmp >> 6));
tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
return ((int) tmp);
}
// Compares the |binary_vector| with all rows of the |binary_matrix| and counts
// per row the number of times they have the same value.
@ -34,23 +52,14 @@ static void BitCountComparison(uint32_t binary_vector,
int matrix_size,
int32_t* bit_counts) {
int n = 0;
uint32_t a = binary_vector;
register uint32_t tmp;
// compare |binary_vector| with all rows of the |binary_matrix|
// Compare |binary_vector| with all rows of the |binary_matrix|
for (; n < matrix_size; n++) {
a = (binary_vector ^ binary_matrix[n]);
// Returns bit counts in tmp
tmp = a - ((a >> 1) & 033333333333) - ((a >> 2) & 011111111111);
tmp = ((tmp + (tmp >> 3)) & 030707070707);
tmp = (tmp + (tmp >> 6));
tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
bit_counts[n] = (int32_t) tmp;
bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]);
}
}
int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator_t* handle) {
int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* handle) {
assert(handle != NULL);
if (handle->mean_bit_counts != NULL) {
@ -69,9 +78,9 @@ int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator_t* handle) {
free(handle->binary_near_history);
handle->binary_near_history = NULL;
}
if (handle->delay_histogram != NULL) {
free(handle->delay_histogram);
handle->delay_histogram = NULL;
if (handle->far_bit_counts != NULL) {
free(handle->far_bit_counts);
handle->far_bit_counts = NULL;
}
free(handle);
@ -79,10 +88,10 @@ int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator_t* handle) {
return 0;
}
int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator_t** handle,
int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator** handle,
int max_delay,
int lookahead) {
BinaryDelayEstimator_t* self = NULL;
BinaryDelayEstimator* self = NULL;
int history_size = max_delay + lookahead;
if (handle == NULL) {
@ -99,7 +108,7 @@ int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator_t** handle,
return -1;
}
self = malloc(sizeof(BinaryDelayEstimator_t));
self = malloc(sizeof(BinaryDelayEstimator));
*handle = self;
if (self == NULL) {
return -1;
@ -108,12 +117,12 @@ int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator_t** handle,
self->mean_bit_counts = NULL;
self->bit_counts = NULL;
self->binary_far_history = NULL;
self->delay_histogram = NULL;
self->far_bit_counts = NULL;
self->history_size = history_size;
self->near_history_size = lookahead + 1;
// Allocate memory for spectrum buffers
// Allocate memory for spectrum buffers.
self->mean_bit_counts = malloc(history_size * sizeof(int32_t));
if (self->mean_bit_counts == NULL) {
WebRtc_FreeBinaryDelayEstimator(self);
@ -126,7 +135,7 @@ int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator_t** handle,
self = NULL;
return -1;
}
// Allocate memory for history buffers
// Allocate memory for history buffers.
self->binary_far_history = malloc(history_size * sizeof(uint32_t));
if (self->binary_far_history == NULL) {
WebRtc_FreeBinaryDelayEstimator(self);
@ -140,8 +149,8 @@ int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator_t** handle,
self = NULL;
return -1;
}
self->delay_histogram = malloc(history_size * sizeof(int));
if (self->delay_histogram == NULL) {
self->far_bit_counts = malloc(history_size * sizeof(int));
if (self->far_bit_counts == NULL) {
WebRtc_FreeBinaryDelayEstimator(self);
self = NULL;
return -1;
@ -150,48 +159,52 @@ int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator_t** handle,
return 0;
}
int WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator_t* handle) {
int WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* handle) {
int i = 0;
assert(handle != NULL);
memset(handle->mean_bit_counts, 0, sizeof(int32_t) * handle->history_size);
memset(handle->bit_counts, 0, sizeof(int32_t) * handle->history_size);
memset(handle->binary_far_history, 0,
sizeof(uint32_t) * handle->history_size);
memset(handle->binary_near_history, 0,
sizeof(uint32_t) * handle->near_history_size);
memset(handle->delay_histogram, 0, sizeof(int) * handle->history_size);
memset(handle->far_bit_counts, 0, sizeof(int) * handle->history_size);
for (i = 0; i < handle->history_size; ++i) {
handle->mean_bit_counts[i] = (20 << 9); // 20 in Q9.
}
handle->minimum_probability = (32 << 9); // 32 in Q9.
handle->last_delay_probability = (32 << 9); // 32 in Q9.
handle->vad_counter = 0;
// Default value to return if we're unable to estimate. -1 is used for
// errors.
// Default return value if we're unable to estimate. -1 is used for errors.
handle->last_delay = -2;
return 0;
}
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator_t* handle,
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* handle,
uint32_t binary_far_spectrum,
uint32_t binary_near_spectrum,
int vad_value) {
const int kVadCountThreshold = 25;
const int kMaxHistogram = 600;
int histogram_bin = 0;
uint32_t binary_near_spectrum) {
int i = 0;
int max_histogram_level = 0;
int min_position = -1;
int candidate_delay = -1;
int32_t bit_counts_tmp = 0;
int32_t value_best_candidate = 16384; // 32 in Q9, (max |mean_bit_counts|).
int32_t value_worst_candidate = 0;
assert(handle != NULL);
// Shift binary spectrum history
// Shift binary spectrum history and insert current |binary_far_spectrum|.
memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
(handle->history_size - 1) * sizeof(uint32_t));
// Insert new binary spectrum
handle->binary_far_history[0] = binary_far_spectrum;
// Shift history of far-end binary spectrum bit counts and insert bit count
// of current |binary_far_spectrum|.
memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
(handle->history_size - 1) * sizeof(int));
handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
if (handle->near_history_size > 1) {
// If we apply lookahead, shift near-end binary spectrum history. Insert
// current |binary_near_spectrum| and pull out the delayed one.
memmove(&(handle->binary_near_history[1]),
&(handle->binary_near_history[0]),
(handle->near_history_size - 1) * sizeof(uint32_t));
@ -200,66 +213,93 @@ int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator_t* handle,
handle->binary_near_history[handle->near_history_size - 1];
}
// Compare with delayed spectra
// Compare with delayed spectra and store the |bit_counts| for each delay.
BitCountComparison(binary_near_spectrum,
handle->binary_far_history,
handle->history_size,
handle->bit_counts);
// Smooth bit count curve
// Update |mean_bit_counts|, which is the smoothed version of |bit_counts|.
for (i = 0; i < handle->history_size; i++) {
// Update sum
// |bit_counts| is constrained to [0, 32], meaning we can smooth with a
// factor up to 2^26. We use Q9.
bit_counts_tmp = WEBRTC_SPL_LSHIFT_W32(handle->bit_counts[i], 9); // Q9
WebRtc_MeanEstimatorFix(bit_counts_tmp, 9, &(handle->mean_bit_counts[i]));
int32_t bit_count = (handle->bit_counts[i] << 9); // Q9.
// Update |mean_bit_counts| only when far-end signal has something to
// contribute. If |far_bit_counts| is zero the far-end signal is weak and
// we likely have a poor echo condition, hence don't update.
if (handle->far_bit_counts[i] > 0) {
// Make number of right shifts piecewise linear w.r.t. |far_bit_counts|.
int shifts = kShiftsAtZero;
shifts -= (kShiftsLinearSlope * handle->far_bit_counts[i]) >> 4;
WebRtc_MeanEstimatorFix(bit_count, shifts, &(handle->mean_bit_counts[i]));
}
}
// Find minimum position of bit count curve
min_position = (int) WebRtcSpl_MinIndexW32(handle->mean_bit_counts,
(int16_t) handle->history_size);
// If the far end has been active sufficiently long, begin accumulating a
// histogram of the minimum positions. Search for the maximum bin to
// determine the delay.
if (vad_value == 1) {
if (handle->vad_counter >= kVadCountThreshold) {
// Increment the histogram at the current minimum position.
if (handle->delay_histogram[min_position] < kMaxHistogram) {
handle->delay_histogram[min_position] += 3;
}
for (i = 0; i < handle->history_size; i++) {
histogram_bin = handle->delay_histogram[i];
// Decrement the histogram bin.
if (histogram_bin > 0) {
histogram_bin--;
handle->delay_histogram[i] = histogram_bin;
// Select the histogram index corresponding to the maximum bin as the
// delay.
if (histogram_bin > max_histogram_level) {
max_histogram_level = histogram_bin;
handle->last_delay = i;
}
}
}
} else {
handle->vad_counter++;
// Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate|
// of |mean_bit_counts|.
for (i = 0; i < handle->history_size; i++) {
if (handle->mean_bit_counts[i] < value_best_candidate) {
value_best_candidate = handle->mean_bit_counts[i];
candidate_delay = i;
}
if (handle->mean_bit_counts[i] > value_worst_candidate) {
value_worst_candidate = handle->mean_bit_counts[i];
}
}
// The |value_best_candidate| is a good indicator on the probability of
// |candidate_delay| being an accurate delay (a small |value_best_candidate|
// means a good binary match). In the following sections we make a decision
// whether to update |last_delay| or not.
// 1) If the difference bit counts between the best and the worst delay
// candidates is too small we consider the situation to be unreliable and
// don't update |last_delay|.
// 2) If the situation is reliable we update |last_delay| if the value of the
// best candidate delay has a value less than
// i) an adaptive threshold |minimum_probability|, or
// ii) this corresponding value |last_delay_probability|, but updated at
// this time instant.
// Update |minimum_probability|.
if ((handle->minimum_probability > kProbabilityLowerLimit) &&
(value_worst_candidate - value_best_candidate > kProbabilityMinSpread)) {
// The "hard" threshold can't be lower than 17 (in Q9).
// The valley in the curve also has to be distinct, i.e., the
// difference between |value_worst_candidate| and |value_best_candidate| has
// to be large enough.
int32_t threshold = value_best_candidate + kProbabilityOffset;
if (threshold < kProbabilityLowerLimit) {
threshold = kProbabilityLowerLimit;
}
if (handle->minimum_probability > threshold) {
handle->minimum_probability = threshold;
}
}
// Update |last_delay_probability|.
// We use a Markov type model, i.e., a slowly increasing level over time.
handle->last_delay_probability++;
if (value_worst_candidate > value_best_candidate + kProbabilityOffset) {
// Reliable delay value for usage.
if (value_best_candidate < handle->minimum_probability) {
handle->last_delay = candidate_delay;
}
if (value_best_candidate < handle->last_delay_probability) {
handle->last_delay = candidate_delay;
// Reset |last_delay_probability|.
handle->last_delay_probability = value_best_candidate;
}
} else {
handle->vad_counter = 0;
}
return handle->last_delay;
}
int WebRtc_binary_last_delay(BinaryDelayEstimator_t* handle) {
int WebRtc_binary_last_delay(BinaryDelayEstimator* handle) {
assert(handle != NULL);
return handle->last_delay;
}
int WebRtc_history_size(BinaryDelayEstimator_t* handle) {
int WebRtc_history_size(BinaryDelayEstimator* handle) {
assert(handle != NULL);
return handle->history_size;
}
@ -267,16 +307,13 @@ int WebRtc_history_size(BinaryDelayEstimator_t* handle) {
void WebRtc_MeanEstimatorFix(int32_t new_value,
int factor,
int32_t* mean_value) {
int32_t mean_new = *mean_value;
int32_t diff = new_value - mean_new;
int32_t diff = new_value - *mean_value;
// mean_new = mean_value + ((new_value - mean_value) >> factor);
if (diff < 0) {
diff = -WEBRTC_SPL_RSHIFT_W32(-diff, factor);
diff = -((-diff) >> factor);
} else {
diff = WEBRTC_SPL_RSHIFT_W32(diff, factor);
diff = (diff >> factor);
}
mean_new += diff;
*mean_value = mean_new;
*mean_value += diff;
}

View File

@ -14,12 +14,12 @@
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
#include "signal_processing_library.h"
#include "typedefs.h"
typedef struct {
// Pointer to bit counts
// Pointer to bit counts.
int32_t* mean_bit_counts;
int* far_bit_counts;
// Array only used locally in ProcessBinarySpectrum() but whose size is
// determined at run-time.
@ -29,9 +29,9 @@ typedef struct {
uint32_t* binary_far_history;
uint32_t* binary_near_history;
// Delay histogram variables.
int* delay_histogram;
int vad_counter;
// Delay estimation variables.
int32_t minimum_probability;
int last_delay_probability;
// Delay memory.
int last_delay;
@ -41,75 +41,73 @@ typedef struct {
// Near-end buffer size.
int near_history_size;
} BinaryDelayEstimator_t;
} BinaryDelayEstimator;
// Releases the memory allocated by WebRtc_CreateBinaryDelayEstimator(...)
// Releases the memory allocated by WebRtc_CreateBinaryDelayEstimator(...).
// Input:
// - handle : Pointer to the delay estimation instance
// - handle : Pointer to the delay estimation instance.
//
int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator_t* handle);
int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* handle);
// Refer to WebRtc_CreateDelayEstimator() in delay_estimator_wrapper.h
int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator_t** handle,
// Refer to WebRtc_CreateDelayEstimator() in delay_estimator_wrapper.h.
int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator** handle,
int max_delay,
int lookahead);
// Initializes the delay estimation instance created with
// WebRtc_CreateBinaryDelayEstimator(...)
// WebRtc_CreateBinaryDelayEstimator(...).
// Input:
// - handle : Pointer to the delay estimation instance
// - handle : Pointer to the delay estimation instance.
//
// Output:
// - handle : Initialized instance
// - handle : Initialized instance.
//
int WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator_t* handle);
int WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* handle);
// Estimates and returns the delay between the binary far-end and binary near-
// end spectra. The value will be offset by the lookahead (i.e. the lookahead
// should be subtracted from the returned value).
// Inputs:
// - handle : Pointer to the delay estimation instance
// - binary_far_spectrum : Far-end binary spectrum
// - binary_near_spectrum : Near-end binary spectrum of the current block
// - vad_value : The VAD decision of the current block
// - handle : Pointer to the delay estimation instance.
// - binary_far_spectrum : Far-end binary spectrum.
// - binary_near_spectrum : Near-end binary spectrum of the current block.
//
// Output:
// - handle : Updated instance
// - handle : Updated instance.
//
// Return value:
// - delay : >= 0 - Calculated delay value
// -1 - Error
// - delay : >= 0 - Calculated delay value.
// -1 - Error.
// -2 - Insufficient data for estimation.
//
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator_t* handle,
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* handle,
uint32_t binary_far_spectrum,
uint32_t binary_near_spectrum,
int vad_value);
uint32_t binary_near_spectrum);
// Returns the last calculated delay updated by the function
// WebRtc_ProcessBinarySpectrum(...)
// WebRtc_ProcessBinarySpectrum(...).
//
// Input:
// - handle : Pointer to the delay estimation instance
// - handle : Pointer to the delay estimation instance.
//
// Return value:
// - delay : >= 0 - Last calculated delay value
// -1 - Error
// -2 - Insufficient data for estimation.
//
int WebRtc_binary_last_delay(BinaryDelayEstimator_t* handle);
int WebRtc_binary_last_delay(BinaryDelayEstimator* handle);
// Returns the history size used in the far-end buffers to calculate the delay
// over.
//
// Input:
// - handle : Pointer to the delay estimation instance
// - handle : Pointer to the delay estimation instance.
//
// Return value:
// - history_size : > 0 - Far-end history size
// -1 - Error
// - history_size : > 0 - Far-end history size.
// -1 - Error.
//
int WebRtc_history_size(BinaryDelayEstimator_t* handle);
int WebRtc_history_size(BinaryDelayEstimator* handle);
// Updates the |mean_value| recursively with a step size of 2^-|factor|. This
// function is used internally in the Binary Delay Estimator as well as the

View File

@ -15,32 +15,33 @@
#include <string.h>
#include "delay_estimator.h"
#include "signal_processing_library.h"
typedef union {
float float_;
int32_t int32_;
} SpectrumType_t;
} SpectrumType;
typedef struct {
// Pointers to mean values of spectrum
SpectrumType_t* mean_far_spectrum;
SpectrumType_t* mean_near_spectrum;
// Pointers to mean values of spectrum.
SpectrumType* mean_far_spectrum;
SpectrumType* mean_near_spectrum;
// |mean_*_spectrum| initialization indicator.
int far_spectrum_initialized;
int near_spectrum_initialized;
// Spectrum size
int spectrum_size;
// Binary spectrum based delay estimator
BinaryDelayEstimator_t* binary_handle;
} DelayEstimator_t;
BinaryDelayEstimator* binary_handle;
} DelayEstimator;
// Only bit |kBandFirst| through bit |kBandLast| are processed
// |kBandFirst| - |kBandLast| must be < 32
// Only bit |kBandFirst| through bit |kBandLast| are processed and
// |kBandFirst| - |kBandLast| must be < 32.
static const int kBandFirst = 12;
static const int kBandLast = 43;
static __inline uint32_t SetBit(uint32_t in, int pos) {
uint32_t mask = WEBRTC_SPL_LSHIFT_W32(1, pos);
uint32_t mask = (1 << pos);
uint32_t out = (in | mask);
return out;
@ -50,17 +51,16 @@ static __inline uint32_t SetBit(uint32_t in, int pos) {
// but for float.
//
// Inputs:
// - new_value : new additional value.
// - scale : scale for smoothing (should be less than 1.0).
// - new_value : New additional value.
// - scale : Scale for smoothing (should be less than 1.0).
//
// Input/Output:
// - mean_value : pointer to the mean value for updating.
// - mean_value : Pointer to the mean value for updating.
//
static void MeanEstimatorFloat(float new_value,
float scale,
float* mean_value) {
assert(scale < 1.0f);
// mean_new = mean_value + ((new_value - mean_value) * scale);
*mean_value += (new_value - *mean_value) * scale;
}
@ -73,19 +73,37 @@ static void MeanEstimatorFloat(float new_value,
// - threshold_spectrum : Threshold spectrum with which the input
// spectrum is compared.
// Return:
// - out : Binary spectrum
// - out : Binary spectrum.
//
static uint32_t BinarySpectrumFix(uint16_t* spectrum,
SpectrumType_t* threshold_spectrum) {
int k = kBandFirst;
SpectrumType* threshold_spectrum,
int q_domain,
int* threshold_initialized) {
int i = kBandFirst;
uint32_t out = 0;
for (; k <= kBandLast; k++) {
WebRtc_MeanEstimatorFix((int32_t) spectrum[k],
6,
&(threshold_spectrum[k].int32_));
if (spectrum[k] > threshold_spectrum[k].int32_) {
out = SetBit(out, k - kBandFirst);
assert(q_domain < 16);
if (!(*threshold_initialized)) {
// Set the |threshold_spectrum| to half the input |spectrum| as starting
// value. This speeds up the convergence.
for (i = kBandFirst; i <= kBandLast; i++) {
if (spectrum[i] > 0) {
// Convert input spectrum from Q(|q_domain|) to Q15.
int32_t spectrum_q15 = ((int32_t) spectrum[i]) << (15 - q_domain);
threshold_spectrum[i].int32_ = (spectrum_q15 >> 1);
*threshold_initialized = 1;
}
}
}
for (i = kBandFirst; i <= kBandLast; i++) {
// Convert input spectrum from Q(|q_domain|) to Q15.
int32_t spectrum_q15 = ((int32_t) spectrum[i]) << (15 - q_domain);
// Update the |threshold_spectrum|.
WebRtc_MeanEstimatorFix(spectrum_q15, 6, &(threshold_spectrum[i].int32_));
// Convert |spectrum| at current frequency bin to a binary value.
if (spectrum_q15 > threshold_spectrum[i].int32_) {
out = SetBit(out, i - kBandFirst);
}
}
@ -93,15 +111,29 @@ static uint32_t BinarySpectrumFix(uint16_t* spectrum,
}
static uint32_t BinarySpectrumFloat(float* spectrum,
SpectrumType_t* threshold_spectrum) {
int k = kBandFirst;
SpectrumType* threshold_spectrum,
int* threshold_initialized) {
int i = kBandFirst;
uint32_t out = 0;
float scale = 1 / 64.0;
const float kScale = 1 / 64.0;
for (; k <= kBandLast; k++) {
MeanEstimatorFloat(spectrum[k], scale, &(threshold_spectrum[k].float_));
if (spectrum[k] > threshold_spectrum[k].float_) {
out = SetBit(out, k - kBandFirst);
if (!(*threshold_initialized)) {
// Set the |threshold_spectrum| to half the input |spectrum| as starting
// value. This speeds up the convergence.
for (i = kBandFirst; i <= kBandLast; i++) {
if (spectrum[i] > 0.0f) {
threshold_spectrum[i].float_ = (spectrum[i] / 2);
*threshold_initialized = 1;
}
}
}
for (i = kBandFirst; i <= kBandLast; i++) {
// Update the |threshold_spectrum|.
MeanEstimatorFloat(spectrum[i], kScale, &(threshold_spectrum[i].float_));
// Convert |spectrum| at current frequency bin to a binary value.
if (spectrum[i] > threshold_spectrum[i].float_) {
out = SetBit(out, i - kBandFirst);
}
}
@ -109,7 +141,7 @@ static uint32_t BinarySpectrumFloat(float* spectrum,
}
int WebRtc_FreeDelayEstimator(void* handle) {
DelayEstimator_t* self = (DelayEstimator_t*) handle;
DelayEstimator* self = (DelayEstimator*) handle;
if (self == NULL) {
return -1;
@ -135,10 +167,10 @@ int WebRtc_CreateDelayEstimator(void** handle,
int spectrum_size,
int max_delay,
int lookahead) {
DelayEstimator_t *self = NULL;
DelayEstimator* self = NULL;
// Check if the sub band used in the delay estimation is small enough to
// fit the binary spectra in a uint32.
// Check if the sub band used in the delay estimation is small enough to fit
// the binary spectra in a uint32_t.
assert(kBandLast - kBandFirst < 32);
if (handle == NULL) {
@ -148,7 +180,7 @@ int WebRtc_CreateDelayEstimator(void** handle,
return -1;
}
self = malloc(sizeof(DelayEstimator_t));
self = malloc(sizeof(DelayEstimator));
*handle = self;
if (self == NULL) {
return -1;
@ -165,14 +197,14 @@ int WebRtc_CreateDelayEstimator(void** handle,
self = NULL;
return -1;
}
// Allocate memory for spectrum buffers
self->mean_far_spectrum = malloc(spectrum_size * sizeof(SpectrumType_t));
// Allocate memory for spectrum buffers.
self->mean_far_spectrum = malloc(spectrum_size * sizeof(SpectrumType));
if (self->mean_far_spectrum == NULL) {
WebRtc_FreeDelayEstimator(self);
self = NULL;
return -1;
}
self->mean_near_spectrum = malloc(spectrum_size * sizeof(SpectrumType_t));
self->mean_near_spectrum = malloc(spectrum_size * sizeof(SpectrumType));
if (self->mean_near_spectrum == NULL) {
WebRtc_FreeDelayEstimator(self);
self = NULL;
@ -185,23 +217,24 @@ int WebRtc_CreateDelayEstimator(void** handle,
}
int WebRtc_InitDelayEstimator(void* handle) {
DelayEstimator_t* self = (DelayEstimator_t*) handle;
DelayEstimator* self = (DelayEstimator*) handle;
if (self == NULL) {
return -1;
}
// Initialize binary delay estimator
// Initialize binary delay estimator.
if (WebRtc_InitBinaryDelayEstimator(self->binary_handle) != 0) {
return -1;
}
// Set averaged far and near end spectra to zero
memset(self->mean_far_spectrum,
0,
sizeof(SpectrumType_t) * self->spectrum_size);
memset(self->mean_near_spectrum,
0,
sizeof(SpectrumType_t) * self->spectrum_size);
// Set averaged far and near end spectra to zero.
memset(self->mean_far_spectrum, 0,
sizeof(SpectrumType) * self->spectrum_size);
memset(self->mean_near_spectrum, 0,
sizeof(SpectrumType) * self->spectrum_size);
// Reset initialization indicators.
self->far_spectrum_initialized = 0;
self->near_spectrum_initialized = 0;
return 0;
}
@ -211,8 +244,8 @@ int WebRtc_DelayEstimatorProcessFix(void* handle,
uint16_t* near_spectrum,
int spectrum_size,
int far_q,
int vad_value) {
DelayEstimator_t* self = (DelayEstimator_t*) handle;
int near_q) {
DelayEstimator* self = (DelayEstimator*) handle;
uint32_t binary_far_spectrum = 0;
uint32_t binary_near_spectrum = 0;
@ -220,40 +253,46 @@ int WebRtc_DelayEstimatorProcessFix(void* handle,
return -1;
}
if (far_spectrum == NULL) {
// Empty far end spectrum
// Empty far end spectrum.
return -1;
}
if (near_spectrum == NULL) {
// Empty near end spectrum
// Empty near end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match
// Data sizes don't match.
return -1;
}
if (far_q > 15) {
// If |far_q| is larger than 15 we cannot guarantee no wrap around
// If |far_q| is larger than 15 we cannot guarantee no wrap around.
return -1;
}
if (near_q > 15) {
// If |near_q| is larger than 15 we cannot guarantee no wrap around.
return -1;
}
// Get binary spectra
// Get binary spectra.
binary_far_spectrum = BinarySpectrumFix(far_spectrum,
self->mean_far_spectrum);
self->mean_far_spectrum,
far_q,
&(self->far_spectrum_initialized));
binary_near_spectrum = BinarySpectrumFix(near_spectrum,
self->mean_near_spectrum);
self->mean_near_spectrum,
near_q,
&(self->near_spectrum_initialized));
return WebRtc_ProcessBinarySpectrum(self->binary_handle,
binary_far_spectrum,
binary_near_spectrum,
vad_value);
binary_near_spectrum);
}
int WebRtc_DelayEstimatorProcessFloat(void* handle,
float* far_spectrum,
float* near_spectrum,
int spectrum_size,
int vad_value) {
DelayEstimator_t* self = (DelayEstimator_t*) handle;
int spectrum_size) {
DelayEstimator* self = (DelayEstimator*) handle;
uint32_t binary_far_spectrum = 0;
uint32_t binary_near_spectrum = 0;
@ -261,32 +300,33 @@ int WebRtc_DelayEstimatorProcessFloat(void* handle,
return -1;
}
if (far_spectrum == NULL) {
// Empty far end spectrum
// Empty far end spectrum.
return -1;
}
if (near_spectrum == NULL) {
// Empty near end spectrum
// Empty near end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match
// Data sizes don't match.
return -1;
}
// Get binary spectra
// Get binary spectra.
binary_far_spectrum = BinarySpectrumFloat(far_spectrum,
self->mean_far_spectrum);
self->mean_far_spectrum,
&(self->far_spectrum_initialized));
binary_near_spectrum = BinarySpectrumFloat(near_spectrum,
self->mean_near_spectrum);
self->mean_near_spectrum,
&(self->near_spectrum_initialized));
return WebRtc_ProcessBinarySpectrum(self->binary_handle,
binary_far_spectrum,
binary_near_spectrum,
vad_value);
binary_near_spectrum);
}
int WebRtc_last_delay(void* handle) {
DelayEstimator_t* self = (DelayEstimator_t*) handle;
DelayEstimator* self = (DelayEstimator*) handle;
if (self == NULL) {
return -1;

View File

@ -8,7 +8,7 @@
* be found in the AUTHORS file in the root of the source tree.
*/
// Performs delay estimation on a block by block basis
// Performs delay estimation on block by block basis.
// The return value is 0 - OK and -1 - Error, unless otherwise stated.
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_
@ -18,7 +18,7 @@
// Releases the memory allocated by WebRtc_CreateDelayEstimator(...)
// Input:
// - handle : Pointer to the delay estimation instance
// - handle : Pointer to the delay estimation instance.
//
int WebRtc_FreeDelayEstimator(void* handle);
@ -30,20 +30,20 @@ int WebRtc_FreeDelayEstimator(void* handle);
// - spectrum_size : Size of the spectrum used both in far-end and
// near-end. Used to allocate memory for spectrum
// specific buffers.
// - max_delay : The maximum delay which can be estimated. Needed
// to allocate memory for history buffers.
// - lookahead : Amount of non-causal lookahead to use. This can detect
// cases in which a near-end signal occurs before the
// corresponding far-end signal. It will delay the
// - max_delay : The maximum delay which can be estimated. Needed to
// allocate memory for history buffers.
// - lookahead : Amount of non-causal lookahead to use. This can
// detect cases in which a near-end signal occurs before
// the corresponding far-end signal. It will delay the
// estimate for the current block by an equal amount,
// and the returned values will be offset by it.
//
// A value of zero is the typical no-lookahead case. This
// also represents the minimum delay which can be
// A value of zero is the typical no-lookahead case.
// This also represents the minimum delay which can be
// estimated.
//
// Output:
// - handle : Created instance
// - handle : Created instance.
//
int WebRtc_CreateDelayEstimator(void** handle,
int spectrum_size,
@ -53,10 +53,10 @@ int WebRtc_CreateDelayEstimator(void** handle,
// Initializes the delay estimation instance created with
// WebRtc_CreateDelayEstimator(...)
// Input:
// - handle : Pointer to the delay estimation instance
// - handle : Pointer to the delay estimation instance.
//
// Output:
// - handle : Initialized instance
// - handle : Initialized instance.
//
int WebRtc_InitDelayEstimator(void* handle);
@ -64,21 +64,21 @@ int WebRtc_InitDelayEstimator(void* handle);
// value will be offset by the lookahead (i.e. the lookahead should be
// subtracted from the returned value).
// Inputs:
// - handle : Pointer to the delay estimation instance
// - far_spectrum : Pointer to the far-end spectrum data
// - handle : Pointer to the delay estimation instance.
// - far_spectrum : Pointer to the far-end spectrum data.
// - near_spectrum : Pointer to the near-end spectrum data of the current
// block
// block.
// - spectrum_size : The size of the data arrays (same for both far- and
// near-end)
// - far_q : The Q-domain of the far-end data
// - vad_value : The VAD decision of the current block
// near-end).
// - far_q : The Q-domain of the far-end data.
// - near_q : The Q-domain of the near-end data.
//
// Output:
// - handle : Updated instance
// - handle : Updated instance.
//
// Return value:
// - delay : >= 0 - Calculated delay value
// -1 - Error
// - delay : >= 0 - Calculated delay value.
// -1 - Error.
// -2 - Insufficient data for estimation.
//
int WebRtc_DelayEstimatorProcessFix(void* handle,
@ -86,24 +86,23 @@ int WebRtc_DelayEstimatorProcessFix(void* handle,
uint16_t* near_spectrum,
int spectrum_size,
int far_q,
int vad_value);
int near_q);
// See WebRtc_DelayEstimatorProcessFix() for description.
int WebRtc_DelayEstimatorProcessFloat(void* handle,
float* far_spectrum,
float* near_spectrum,
int spectrum_size,
int vad_value);
int spectrum_size);
// Returns the last calculated delay updated by the function
// WebRtc_DelayEstimatorProcess(...)
// WebRtc_DelayEstimatorProcess(...).
//
// Input:
// - handle : Pointer to the delay estimation instance
// - handle : Pointer to the delay estimation instance.
//
// Return value:
// - delay : >= 0 - Last calculated delay value
// -1 - Error
// - delay : >= 0 - Last calculated delay value.
// -1 - Error.
// -2 - Insufficient data for estimation.
//
int WebRtc_last_delay(void* handle);