Temporarily revert r8147 ("Update base/scoped_ptr.h from system_wrappers/interface/scoped_ptr.h")

Some out-of-tree code that uses base/scoped_ptr.h is defining nullptr
to 0, which causes an obvious compilation error and perhaps other
subtle problems. I'm hoping to get that sorted out and re-land this CL
soon.

TBR=andrew@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/34839004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@8149 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
kwiberg@webrtc.org 2015-01-26 13:03:32 +00:00
parent b6fab2b1cd
commit 6f200b5b87

View File

@ -8,12 +8,10 @@
* be found in the AUTHORS file in the root of the source tree. * be found in the AUTHORS file in the root of the source tree.
*/ */
// Borrowed from Chromium's src/base/memory/scoped_ptr.h. // Scopers help you manage ownership of a pointer, helping you easily manage the
// a pointer within a scope, and automatically destroying the pointer at the
// Scopers help you manage ownership of a pointer, helping you easily manage a // end of a scope. There are two main classes you will use, which correspond
// pointer within a scope, and automatically destroying the pointer at the end // to the operators new/delete and new[]/delete[].
// of a scope. There are two main classes you will use, which correspond to the
// operators new/delete and new[]/delete[].
// //
// Example usage (scoped_ptr<T>): // Example usage (scoped_ptr<T>):
// { // {
@ -66,7 +64,7 @@
// TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay"). // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
// PassThru(ptr2.Pass()); // ptr2 is correspondingly nullptr. // PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
// } // }
// //
// Notice that if you do not call Pass() when returning from PassThru(), or // Notice that if you do not call Pass() when returning from PassThru(), or
@ -95,20 +93,18 @@
#ifndef WEBRTC_BASE_SCOPED_PTR_H__ #ifndef WEBRTC_BASE_SCOPED_PTR_H__
#define WEBRTC_BASE_SCOPED_PTR_H__ #define WEBRTC_BASE_SCOPED_PTR_H__
// This is an implementation designed to match the anticipated future TR2 #include <stddef.h> // for ptrdiff_t
// implementation of the scoped_ptr class. #include <stdlib.h> // for free() decl
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <algorithm> // For std::swap(). #include <algorithm> // For std::swap().
#include "webrtc/base/common.h" #include "webrtc/base/common.h" // for ASSERT
#include "webrtc/base/constructormagic.h" #include "webrtc/base/move.h" // for RTC_MOVE_ONLY_TYPE_FOR_CPP_03
#include "webrtc/base/move.h" #include "webrtc/base/template_util.h" // for is_convertible, is_array
#include "webrtc/base/template_util.h"
#include "webrtc/typedefs.h" #ifdef WEBRTC_WIN
namespace std { using ::ptrdiff_t; };
#endif // WEBRTC_WIN
namespace rtc { namespace rtc {
@ -180,24 +176,12 @@ struct FreeDeleter {
namespace internal { namespace internal {
template <typename T>
struct ShouldAbortOnSelfReset {
template <typename U>
static rtc::internal::NoType Test(const typename U::AllowSelfReset*);
template <typename U>
static rtc::internal::YesType Test(...);
static const bool value =
sizeof(Test<T>(0)) == sizeof(rtc::internal::YesType);
};
// Minimal implementation of the core logic of scoped_ptr, suitable for // Minimal implementation of the core logic of scoped_ptr, suitable for
// reuse in both scoped_ptr and its specializations. // reuse in both scoped_ptr and its specializations.
template <class T, class D> template <class T, class D>
class scoped_ptr_impl { class scoped_ptr_impl {
public: public:
explicit scoped_ptr_impl(T* p) : data_(p) {} explicit scoped_ptr_impl(T* p) : data_(p) { }
// Initializer for deleters that have data parameters. // Initializer for deleters that have data parameters.
scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
@ -208,7 +192,8 @@ class scoped_ptr_impl {
scoped_ptr_impl(scoped_ptr_impl<U, V>* other) scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
: data_(other->release(), other->get_deleter()) { : data_(other->release(), other->get_deleter()) {
// We do not support move-only deleters. We could modify our move // We do not support move-only deleters. We could modify our move
// emulation to have rtc::subtle::move() and rtc::subtle::forward() // emulation to have rtc::subtle::move() and
// rtc::subtle::forward()
// functions that are imperfect emulations of their C++11 equivalents, // functions that are imperfect emulations of their C++11 equivalents,
// but until there's a requirement, just assume deleters are copyable. // but until there's a requirement, just assume deleters are copyable.
} }
@ -222,7 +207,7 @@ class scoped_ptr_impl {
} }
~scoped_ptr_impl() { ~scoped_ptr_impl() {
if (data_.ptr != nullptr) { if (data_.ptr != NULL) {
// Not using get_deleter() saves one function call in non-optimized // Not using get_deleter() saves one function call in non-optimized
// builds. // builds.
static_cast<D&>(data_)(data_.ptr); static_cast<D&>(data_)(data_.ptr);
@ -230,12 +215,12 @@ class scoped_ptr_impl {
} }
void reset(T* p) { void reset(T* p) {
// This is a self-reset, which is no longer allowed for default deleters: // This is a self-reset, which is no longer allowed: http://crbug.com/162971
// https://crbug.com/162971 if (p != NULL && p == data_.ptr)
assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr); abort();
// Note that running data_.ptr = p can lead to undefined behavior if // Note that running data_.ptr = p can lead to undefined behavior if
// get_deleter()(get()) deletes this. In order to prevent this, reset() // get_deleter()(get()) deletes this. In order to pevent this, reset()
// should update the stored pointer before deleting its old value. // should update the stored pointer before deleting its old value.
// //
// However, changing reset() to use that behavior may cause current code to // However, changing reset() to use that behavior may cause current code to
@ -244,13 +229,13 @@ class scoped_ptr_impl {
// then it will incorrectly dispatch calls to |p| rather than the original // then it will incorrectly dispatch calls to |p| rather than the original
// value of |data_.ptr|. // value of |data_.ptr|.
// //
// During the transition period, set the stored pointer to nullptr while // During the transition period, set the stored pointer to NULL while
// deleting the object. Eventually, this safety check will be removed to // deleting the object. Eventually, this safety check will be removed to
// prevent the scenario initially described from occurring and // prevent the scenario initially described from occuring and
// http://crbug.com/176091 can be closed. // http://crbug.com/176091 can be closed.
T* old = data_.ptr; T* old = data_.ptr;
data_.ptr = nullptr; data_.ptr = NULL;
if (old != nullptr) if (old != NULL)
static_cast<D&>(data_)(old); static_cast<D&>(data_)(old);
data_.ptr = p; data_.ptr = p;
} }
@ -271,12 +256,12 @@ class scoped_ptr_impl {
T* release() { T* release() {
T* old_ptr = data_.ptr; T* old_ptr = data_.ptr;
data_.ptr = nullptr; data_.ptr = NULL;
return old_ptr; return old_ptr;
} }
T** accept() { T** accept() {
reset(nullptr); reset(NULL);
return &(data_.ptr); return &(data_.ptr);
} }
@ -308,8 +293,8 @@ class scoped_ptr_impl {
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
// automatically deletes the pointer it holds (if any). // automatically deletes the pointer it holds (if any).
// That is, scoped_ptr<T> owns the T object that it points to. // That is, scoped_ptr<T> owns the T object that it points to.
// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you // Also like T*, scoped_ptr<T> is thread-compatible, and once you
// dereference it, you get the thread safety guarantees of T. // dereference it, you get the thread safety guarantees of T.
// //
// The size of scoped_ptr is small. On most compilers, when using the // The size of scoped_ptr is small. On most compilers, when using the
@ -319,33 +304,25 @@ class scoped_ptr_impl {
// //
// Current implementation targets having a strict subset of C++11's // Current implementation targets having a strict subset of C++11's
// unique_ptr<> features. Known deficiencies include not supporting move-only // unique_ptr<> features. Known deficiencies include not supporting move-only
// deleters, function pointers as deleters, and deleters with reference // deleteres, function pointers as deleters, and deleters with reference
// types. // types.
template <class T, class D = rtc::DefaultDeleter<T> > template <class T, class D = rtc::DefaultDeleter<T> >
class scoped_ptr { class scoped_ptr {
RTC_MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr) RTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
// TODO(ajm): If we ever import RefCountedBase, this check needs to be
// enabled.
//static_assert(rtc::internal::IsNotRefCounted<T>::value,
// "T is refcounted type and needs scoped refptr");
public: public:
// The element and deleter types. // The element and deleter types.
typedef T element_type; typedef T element_type;
typedef D deleter_type; typedef D deleter_type;
// Constructor. Defaults to initializing with nullptr. // Constructor. Defaults to initializing with NULL.
scoped_ptr() : impl_(nullptr) {} scoped_ptr() : impl_(NULL) { }
// Constructor. Takes ownership of p. // Constructor. Takes ownership of p.
explicit scoped_ptr(element_type* p) : impl_(p) {} explicit scoped_ptr(element_type* p) : impl_(p) { }
// Constructor. Allows initialization of a stateful deleter. // Constructor. Allows initialization of a stateful deleter.
scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
// Constructor. Allows construction from a nullptr.
scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
// Constructor. Allows construction from a scoped_ptr rvalue for a // Constructor. Allows construction from a scoped_ptr rvalue for a
// convertible type and deleter. // convertible type and deleter.
@ -358,11 +335,13 @@ class scoped_ptr {
// use of SFINAE. You only need to care about this if you modify the // use of SFINAE. You only need to care about this if you modify the
// implementation of scoped_ptr. // implementation of scoped_ptr.
template <typename U, typename V> template <typename U, typename V>
scoped_ptr(scoped_ptr<U, V>&& other) scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
: impl_(&other.impl_) {
static_assert(!rtc::is_array<U>::value, "U cannot be an array"); static_assert(!rtc::is_array<U>::value, "U cannot be an array");
} }
// Constructor. Move constructor for C++03 move emulation of this type.
scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
// operator=. Allows assignment from a scoped_ptr rvalue for a convertible // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
// type and deleter. // type and deleter.
// //
@ -374,31 +353,24 @@ class scoped_ptr {
// You only need to care about this if you modify the implementation of // You only need to care about this if you modify the implementation of
// scoped_ptr. // scoped_ptr.
template <typename U, typename V> template <typename U, typename V>
scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) { scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
static_assert(!rtc::is_array<U>::value, "U cannot be an array"); static_assert(!rtc::is_array<U>::value, "U cannot be an array");
impl_.TakeState(&rhs.impl_); impl_.TakeState(&rhs.impl_);
return *this; return *this;
} }
// operator=. Allows assignment from a nullptr. Deletes the currently owned
// object, if any.
scoped_ptr& operator=(decltype(nullptr)) {
reset();
return *this;
}
// Reset. Deletes the currently owned object, if any. // Reset. Deletes the currently owned object, if any.
// Then takes ownership of a new object, if given. // Then takes ownership of a new object, if given.
void reset(element_type* p = nullptr) { impl_.reset(p); } void reset(element_type* p = NULL) { impl_.reset(p); }
// Accessors to get the owned object. // Accessors to get the owned object.
// operator* and operator-> will assert() if there is no current object. // operator* and operator-> will assert() if there is no current object.
element_type& operator*() const { element_type& operator*() const {
assert(impl_.get() != nullptr); ASSERT(impl_.get() != NULL);
return *impl_.get(); return *impl_.get();
} }
element_type* operator->() const { element_type* operator->() const {
assert(impl_.get() != nullptr); ASSERT(impl_.get() != NULL);
return impl_.get(); return impl_.get();
} }
element_type* get() const { return impl_.get(); } element_type* get() const { return impl_.get(); }
@ -419,9 +391,7 @@ class scoped_ptr {
scoped_ptr::*Testable; scoped_ptr::*Testable;
public: public:
operator Testable() const { operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
return impl_.get() ? &scoped_ptr::impl_ : nullptr;
}
// Comparison operators. // Comparison operators.
// These return whether two scoped_ptr refer to the same object, not just to // These return whether two scoped_ptr refer to the same object, not just to
@ -435,9 +405,10 @@ class scoped_ptr {
} }
// Release a pointer. // Release a pointer.
// The return value is the current pointer held by this object. If this object // The return value is the current pointer held by this object.
// holds a nullptr, the return value is nullptr. After this operation, this // If this object holds a NULL pointer, the return value is NULL.
// object will hold a nullptr, and will not own the object any more. // After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
element_type* release() WARN_UNUSED_RESULT { element_type* release() WARN_UNUSED_RESULT {
return impl_.release(); return impl_.release();
} }
@ -453,6 +424,17 @@ class scoped_ptr {
return impl_.use(); return impl_.use();
} }
// C++98 doesn't support functions templates with default parameters which
// makes it hard to write a PassAs() that understands converting the deleter
// while preserving simple calling semantics.
//
// Until there is a use case for PassAs() with custom deleters, just ignore
// the custom deleter.
template <typename PassAsType>
scoped_ptr<PassAsType> PassAs() {
return scoped_ptr<PassAsType>(Pass());
}
private: private:
// Needed to reach into |impl_| in the constructor. // Needed to reach into |impl_| in the constructor.
template <typename U, typename V> friend class scoped_ptr; template <typename U, typename V> friend class scoped_ptr;
@ -471,15 +453,15 @@ class scoped_ptr {
template <class T, class D> template <class T, class D>
class scoped_ptr<T[], D> { class scoped_ptr<T[], D> {
RTC_MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr) RTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
public: public:
// The element and deleter types. // The element and deleter types.
typedef T element_type; typedef T element_type;
typedef D deleter_type; typedef D deleter_type;
// Constructor. Defaults to initializing with nullptr. // Constructor. Defaults to initializing with NULL.
scoped_ptr() : impl_(nullptr) {} scoped_ptr() : impl_(NULL) { }
// Constructor. Stores the given array. Note that the argument's type // Constructor. Stores the given array. Note that the argument's type
// must exactly match T*. In particular: // must exactly match T*. In particular:
@ -489,39 +471,32 @@ class scoped_ptr<T[], D> {
// T and the derived types had different sizes access would be // T and the derived types had different sizes access would be
// incorrectly calculated). Deletion is also always undefined // incorrectly calculated). Deletion is also always undefined
// (C++98 [expr.delete]p3). If you're doing this, fix your code. // (C++98 [expr.delete]p3). If you're doing this, fix your code.
// - it cannot be NULL, because NULL is an integral expression, not a
// pointer to T. Use the no-argument version instead of explicitly
// passing NULL.
// - it cannot be const-qualified differently from T per unique_ptr spec // - it cannot be const-qualified differently from T per unique_ptr spec
// (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
// to work around this may use implicit_cast<const T*>(). // to work around this may use implicit_cast<const T*>().
// However, because of the first bullet in this comment, users MUST // However, because of the first bullet in this comment, users MUST
// NOT use implicit_cast<Base*>() to upcast the static type of the array. // NOT use implicit_cast<Base*>() to upcast the static type of the array.
explicit scoped_ptr(element_type* array) : impl_(array) {} explicit scoped_ptr(element_type* array) : impl_(array) { }
// Constructor. Allows construction from a nullptr. // Constructor. Move constructor for C++03 move emulation of this type.
scoped_ptr(decltype(nullptr)) : impl_(nullptr) {} scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
// Constructor. Allows construction from a scoped_ptr rvalue. // operator=. Move operator= for C++03 move emulation of this type.
scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} scoped_ptr& operator=(RValue rhs) {
impl_.TakeState(&rhs.object->impl_);
// operator=. Allows assignment from a scoped_ptr rvalue.
scoped_ptr& operator=(scoped_ptr&& rhs) {
impl_.TakeState(&rhs.impl_);
return *this;
}
// operator=. Allows assignment from a nullptr. Deletes the currently owned
// array, if any.
scoped_ptr& operator=(decltype(nullptr)) {
reset();
return *this; return *this;
} }
// Reset. Deletes the currently owned array, if any. // Reset. Deletes the currently owned array, if any.
// Then takes ownership of a new object, if given. // Then takes ownership of a new object, if given.
void reset(element_type* array = nullptr) { impl_.reset(array); } void reset(element_type* array = NULL) { impl_.reset(array); }
// Accessors to get the owned array. // Accessors to get the owned array.
element_type& operator[](size_t i) const { element_type& operator[](size_t i) const {
assert(impl_.get() != nullptr); ASSERT(impl_.get() != NULL);
return impl_.get()[i]; return impl_.get()[i];
} }
element_type* get() const { return impl_.get(); } element_type* get() const { return impl_.get(); }
@ -537,9 +512,7 @@ class scoped_ptr<T[], D> {
scoped_ptr::*Testable; scoped_ptr::*Testable;
public: public:
operator Testable() const { operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
return impl_.get() ? &scoped_ptr::impl_ : nullptr;
}
// Comparison operators. // Comparison operators.
// These return whether two scoped_ptr refer to the same object, not just to // These return whether two scoped_ptr refer to the same object, not just to
@ -553,9 +526,10 @@ class scoped_ptr<T[], D> {
} }
// Release a pointer. // Release a pointer.
// The return value is the current pointer held by this object. If this object // The return value is the current pointer held by this object.
// holds a nullptr, the return value is nullptr. After this operation, this // If this object holds a NULL pointer, the return value is NULL.
// object will hold a nullptr, and will not own the object any more. // After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
element_type* release() WARN_UNUSED_RESULT { element_type* release() WARN_UNUSED_RESULT {
return impl_.release(); return impl_.release();
} }
@ -601,6 +575,7 @@ class scoped_ptr<T[], D> {
} // namespace rtc } // namespace rtc
// Free functions
template <class T, class D> template <class T, class D>
void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) { void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) {
p1.swap(p2); p1.swap(p2);
@ -616,12 +591,4 @@ bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) {
return p1 != p2.get(); return p1 != p2.get();
} }
// A function to convert T* into scoped_ptr<T>
// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
template <typename T>
rtc::scoped_ptr<T> rtc_make_scoped_ptr(T* ptr) {
return rtc::scoped_ptr<T>(ptr);
}
#endif // #ifndef WEBRTC_BASE_SCOPED_PTR_H__ #endif // #ifndef WEBRTC_BASE_SCOPED_PTR_H__