diff --git a/tools/python_charts/README b/tools/python_charts/README new file mode 100644 index 000000000..483c4023c --- /dev/null +++ b/tools/python_charts/README @@ -0,0 +1,41 @@ +This file describes how to setup Eclipse and then the Python Charts project + +Setup Eclipse +------------- +These instructions were tested on Linux, but are very similar for Windows and +Mac. +1. Ensure you have Python 2.x installed +2. Download and install Google App Engine SDK for Python from + http://code.google.com/appengine/downloads.html +3. Note which location you put App Engine in, as this will be needed later on. +4. Download Eclipse from http://www.eclipse.org. Any distribution will probably + do, but if you're going to do mainly web development, you might pick Eclipse + IDE for JavaScript Web Developers +5. Install the PyDev plugin using the Eclipse update site mentioned at + http://pydev.org/download.html +6. Install the Google Plugin for Eclipse: http://code.google.com/eclipse/ + +Setup the project +----------------- +Generic instructions are available at +http://code.google.com/appengine/docs/python/gettingstarted/ but the following +should be enough: +1. Launch Eclipse and create a workspace +2. Create a new PyDev Project +3. In the PyDev Project wizard, uncheck the "Use Default" checkbox for Project + contents and browse to your tools/python_charts directory. +4. Enter a project name. We'll assume PythonCharts in the examples below. +5. In the radio button of the lower part of the window, select + "Add project directory to the PYTHONPATH" +6. Click Finish +7. Select the Run > Run Configuration… menu item +8. Create a new "Python Run" configuration +9. Select your Python Charts project as project +10. As Main Module, enter the path to your dev_appserver.py, which is a part + of your App Engine installation, + e.g. /usr/local/google_appengine/dev_appserver.py +11. At the Arguments tab, enter the location of your project root. + Using Eclipse variables if your project name is PythonCharts: + ${workspace_loc:PythonCharts} +12. Launch the development app server by clicking the Run button. +13. Launch a browser and go to http://localhost:8080 diff --git a/tools/python_charts/app.yaml b/tools/python_charts/app.yaml new file mode 100644 index 000000000..ace1b51c6 --- /dev/null +++ b/tools/python_charts/app.yaml @@ -0,0 +1,9 @@ +application: webrtc-python-charts +version: 1 +runtime: python +api_version: 1 + +handlers: + +- url: /* + script: webrtc/main.py \ No newline at end of file diff --git a/tools/python_charts/data/vp8_hw.py b/tools/python_charts/data/vp8_hw.py new file mode 100644 index 000000000..48c577081 --- /dev/null +++ b/tools/python_charts/data/vp8_hw.py @@ -0,0 +1,49 @@ +# Sample output from the video_quality_measurment program, included only for +# reference. Geneate your own by running with the --python flag and then change +# the filenames in main.py +test_configuration = [{'name': 'name', 'value': 'Quality test'}, +{'name': 'description', 'value': ''}, +{'name': 'test_number', 'value': '0'}, +{'name': 'input_filename', 'value': 'foreman_cif.yuv'}, +{'name': 'output_filename', 'value': 'foreman_cif_out.yuv'}, +{'name': 'output_dir', 'value': '.'}, +{'name': 'packet_size_in_bytes', 'value': '1500'}, +{'name': 'max_payload_size_in_bytes', 'value': '1440'}, +{'name': 'packet_loss_mode', 'value': 'Uniform'}, +{'name': 'packet_loss_probability', 'value': '0.000000'}, +{'name': 'packet_loss_burst_length', 'value': '1'}, +{'name': 'exclude_frame_types', 'value': 'ExcludeOnlyFirstKeyFrame'}, +{'name': 'frame_length_in_bytes', 'value': '152064'}, +{'name': 'use_single_core', 'value': 'False'}, +{'name': 'keyframe_interval;', 'value': '0'}, +{'name': 'video_codec_type', 'value': 'VP8'}, +{'name': 'width', 'value': '352'}, +{'name': 'height', 'value': '288'}, +{'name': 'bit_rate_in_kbps', 'value': '500'}, +] +frame_data_types = {'frame_number': ('number', 'Frame number'), +'encoding_successful': ('boolean', 'Encoding successful?'), +'decoding_successful': ('boolean', 'Decoding successful?'), +'encode_time': ('number', 'Encode time (us)'), +'decode_time': ('number', 'Decode time (us)'), +'encode_return_code': ('number', 'Encode return code'), +'decode_return_code': ('number', 'Decode return code'), +'bit_rate': ('number', 'Bit rate (kbps)'), +'encoded_frame_length': ('number', 'Encoded frame length (bytes)'), +'frame_type': ('string', 'Frame type'), +'packets_dropped': ('number', 'Packets dropped'), +'total_packets': ('number', 'Total packets'), +'ssim': ('number', 'SSIM'), +'psnr': ('number', 'PSNR (dB)'), +} +frame_data = [{'frame_number': 0, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 94676, 'decode_time': 37942, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 1098, 'encoded_frame_length': 4579, 'frame_type': 'Other', 'packets_dropped': 0, 'total_packets': 4, 'ssim': 0.910364, 'psnr': 35.067258}, +{'frame_number': 1, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 244007, 'decode_time': 39421, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 306, 'encoded_frame_length': 1277, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.911859, 'psnr': 35.115193}, +{'frame_number': 2, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 240508, 'decode_time': 38918, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 330, 'encoded_frame_length': 1379, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.913597, 'psnr': 35.181604}, +{'frame_number': 3, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 243449, 'decode_time': 39664, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 298, 'encoded_frame_length': 1242, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.912378, 'psnr': 35.164710}, +{'frame_number': 4, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 248024, 'decode_time': 39115, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 332, 'encoded_frame_length': 1385, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.911471, 'psnr': 35.109488}, +{'frame_number': 5, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 246910, 'decode_time': 39146, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 416, 'encoded_frame_length': 1734, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 2, 'ssim': 0.915231, 'psnr': 35.392300}, +{'frame_number': 6, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 242953, 'decode_time': 38827, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 279, 'encoded_frame_length': 1165, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.916130, 'psnr': 35.452889}, +{'frame_number': 7, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 247343, 'decode_time': 41429, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 393, 'encoded_frame_length': 1639, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 2, 'ssim': 0.919356, 'psnr': 35.647128}, +{'frame_number': 8, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 249529, 'decode_time': 40329, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 487, 'encoded_frame_length': 2033, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 2, 'ssim': 0.924705, 'psnr': 36.179837}, +{'frame_number': 9, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 249408, 'decode_time': 41716, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 583, 'encoded_frame_length': 2433, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 2, 'ssim': 0.928433, 'psnr': 36.589875}, +] diff --git a/tools/python_charts/data/vp8_sw.py b/tools/python_charts/data/vp8_sw.py new file mode 100644 index 000000000..1cece43ce --- /dev/null +++ b/tools/python_charts/data/vp8_sw.py @@ -0,0 +1,49 @@ +# Sample output from the video_quality_measurment program, included only for +# reference. Geneate your own by running with the --python flag and then change +# the filenames in main.py +test_configuration = [{'name': 'name', 'value': 'Quality test'}, +{'name': 'description', 'value': ''}, +{'name': 'test_number', 'value': '0'}, +{'name': 'input_filename', 'value': 'foreman_cif.yuv'}, +{'name': 'output_filename', 'value': 'foreman_cif_out.yuv'}, +{'name': 'output_dir', 'value': '.'}, +{'name': 'packet_size_in_bytes', 'value': '1500'}, +{'name': 'max_payload_size_in_bytes', 'value': '1440'}, +{'name': 'packet_loss_mode', 'value': 'Uniform'}, +{'name': 'packet_loss_probability', 'value': '0.000000'}, +{'name': 'packet_loss_burst_length', 'value': '1'}, +{'name': 'exclude_frame_types', 'value': 'ExcludeOnlyFirstKeyFrame'}, +{'name': 'frame_length_in_bytes', 'value': '152064'}, +{'name': 'use_single_core', 'value': 'False'}, +{'name': 'keyframe_interval;', 'value': '0'}, +{'name': 'video_codec_type', 'value': 'VP8'}, +{'name': 'width', 'value': '352'}, +{'name': 'height', 'value': '288'}, +{'name': 'bit_rate_in_kbps', 'value': '500'}, +] +frame_data_types = {'frame_number': ('number', 'Frame number'), +'encoding_successful': ('boolean', 'Encoding successful?'), +'decoding_successful': ('boolean', 'Decoding successful?'), +'encode_time': ('number', 'Encode time (us)'), +'decode_time': ('number', 'Decode time (us)'), +'encode_return_code': ('number', 'Encode return code'), +'decode_return_code': ('number', 'Decode return code'), +'bit_rate': ('number', 'Bit rate (kbps)'), +'encoded_frame_length': ('number', 'Encoded frame length (bytes)'), +'frame_type': ('string', 'Frame type'), +'packets_dropped': ('number', 'Packets dropped'), +'total_packets': ('number', 'Total packets'), +'ssim': ('number', 'SSIM'), +'psnr': ('number', 'PSNR (dB)'), +} +frame_data = [{'frame_number': 0, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 12427, 'decode_time': 4403, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 2270, 'encoded_frame_length': 9459, 'frame_type': 'Other', 'packets_dropped': 0, 'total_packets': 7, 'ssim': 0.947050, 'psnr': 38.332820}, +{'frame_number': 1, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 3292, 'decode_time': 821, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 88, 'encoded_frame_length': 368, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.927272, 'psnr': 35.883510}, +{'frame_number': 2, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 4295, 'decode_time': 902, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 130, 'encoded_frame_length': 544, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.920539, 'psnr': 35.457107}, +{'frame_number': 3, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 3880, 'decode_time': 767, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 171, 'encoded_frame_length': 714, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.917434, 'psnr': 35.389298}, +{'frame_number': 4, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 4471, 'decode_time': 909, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 248, 'encoded_frame_length': 1035, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.918892, 'psnr': 35.570229}, +{'frame_number': 5, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 4447, 'decode_time': 976, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 269, 'encoded_frame_length': 1123, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.920609, 'psnr': 35.769663}, +{'frame_number': 6, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 4432, 'decode_time': 891, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 271, 'encoded_frame_length': 1132, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 1, 'ssim': 0.922672, 'psnr': 35.913519}, +{'frame_number': 7, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 5026, 'decode_time': 1068, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 366, 'encoded_frame_length': 1529, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 2, 'ssim': 0.925505, 'psnr': 36.246713}, +{'frame_number': 8, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 4877, 'decode_time': 1051, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 369, 'encoded_frame_length': 1538, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 2, 'ssim': 0.926122, 'psnr': 36.305984}, +{'frame_number': 9, 'encoding_successful': True , 'decoding_successful': True , 'encode_time': 4712, 'decode_time': 1087, 'encode_return_code': 0, 'decode_return_code': 0, 'bit_rate': 406, 'encoded_frame_length': 1692, 'frame_type': 'Delta', 'packets_dropped': 0, 'total_packets': 2, 'ssim': 0.927183, 'psnr': 36.379735}, +] diff --git a/tools/python_charts/gviz_api.py b/tools/python_charts/gviz_api.py new file mode 100755 index 000000000..8d07d2057 --- /dev/null +++ b/tools/python_charts/gviz_api.py @@ -0,0 +1,1048 @@ +#!/usr/bin/python +# +# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. +# +# Use of this source code is governed by a BSD-style license +# that can be found in the LICENSE file in the root of the source +# tree. An additional intellectual property rights grant can be found +# in the file PATENTS. All contributing project authors may +# be found in the AUTHORS file in the root of the source tree. + +"""Converts Python data into data for Google Visualization API clients. + +This library can be used to create a google.visualization.DataTable usable by +visualizations built on the Google Visualization API. Output formats are raw +JSON, JSON response, and JavaScript. + +See http://code.google.com/apis/visualization/ for documentation on the +Google Visualization API. +""" + +__author__ = "Amit Weinstein, Misha Seltzer" + +import cgi +import datetime +import types + + +class DataTableException(Exception): + """The general exception object thrown by DataTable.""" + pass + + +class DataTable(object): + """Wraps the data to convert to a Google Visualization API DataTable. + + Create this object, populate it with data, then call one of the ToJS... + methods to return a string representation of the data in the format described. + + You can clear all data from the object to reuse it, but you cannot clear + individual cells, rows, or columns. You also cannot modify the table schema + specified in the class constructor. + + You can add new data one or more rows at a time. All data added to an + instantiated DataTable must conform to the schema passed in to __init__(). + + You can reorder the columns in the output table, and also specify row sorting + order by column. The default column order is according to the original + table_description parameter. Default row sort order is ascending, by column + 1 values. For a dictionary, we sort the keys for order. + + The data and the table_description are closely tied, as described here: + + The table schema is defined in the class constructor's table_description + parameter. The user defines each column using a tuple of + (id[, type[, label[, custom_properties]]]). The default value for type is + string, label is the same as ID if not specified, and custom properties is + an empty dictionary if not specified. + + table_description is a dictionary or list, containing one or more column + descriptor tuples, nested dictionaries, and lists. Each dictionary key, list + element, or dictionary element must eventually be defined as + a column description tuple. Here's an example of a dictionary where the key + is a tuple, and the value is a list of two tuples: + {('a', 'number'): [('b', 'number'), ('c', 'string')]} + + This flexibility in data entry enables you to build and manipulate your data + in a Python structure that makes sense for your program. + + Add data to the table using the same nested design as the table's + table_description, replacing column descriptor tuples with cell data, and + each row is an element in the top level collection. This will be a bit + clearer after you look at the following examples showing the + table_description, matching data, and the resulting table: + + Columns as list of tuples [col1, col2, col3] + table_description: [('a', 'number'), ('b', 'string')] + AppendData( [[1, 'z'], [2, 'w'], [4, 'o'], [5, 'k']] ) + Table: + a b <--- these are column ids/labels + 1 z + 2 w + 4 o + 5 k + + Dictionary of columns, where key is a column, and value is a list of + columns {col1: [col2, col3]} + table_description: {('a', 'number'): [('b', 'number'), ('c', 'string')]} + AppendData( data: {1: [2, 'z'], 3: [4, 'w']} + Table: + a b c + 1 2 z + 3 4 w + + Dictionary where key is a column, and the value is itself a dictionary of + columns {col1: {col2, col3}} + table_description: {('a', 'number'): {'b': 'number', 'c': 'string'}} + AppendData( data: {1: {'b': 2, 'c': 'z'}, 3: {'b': 4, 'c': 'w'}} + Table: + a b c + 1 2 z + 3 4 w + """ + + def __init__(self, table_description, data=None, custom_properties=None): + """Initialize the data table from a table schema and (optionally) data. + + See the class documentation for more information on table schema and data + values. + + Args: + table_description: A table schema, following one of the formats described + in TableDescriptionParser(). Schemas describe the + column names, data types, and labels. See + TableDescriptionParser() for acceptable formats. + data: Optional. If given, fills the table with the given data. The data + structure must be consistent with schema in table_description. See + the class documentation for more information on acceptable data. You + can add data later by calling AppendData(). + custom_properties: Optional. A dictionary from string to string that + goes into the table's custom properties. This can be + later changed by changing self.custom_properties. + + Raises: + DataTableException: Raised if the data and the description did not match, + or did not use the supported formats. + """ + self.__columns = self.TableDescriptionParser(table_description) + self.__data = [] + self.custom_properties = {} + if custom_properties is not None: + self.custom_properties = custom_properties + if data: + self.LoadData(data) + + @staticmethod + def _EscapeValueForCsv(v): + """Escapes the value for use in a CSV file. + + Puts the string in double-quotes, and escapes any inner double-quotes by + doubling them. + + Args: + v: The value to escape. + + Returns: + The escaped values. + """ + return '"%s"' % v.replace('"', '""') + + @staticmethod + def _EscapeValue(v): + """Puts the string in quotes, and escapes any inner quotes and slashes.""" + if isinstance(v, unicode): + # Here we use repr as in the usual case, but on unicode strings, it + # also escapes the unicode characters (which we want to leave as is). + # So, after repr() we decode using raw-unicode-escape, which decodes + # only the unicode characters, and leaves all the rest (", ', \n and + # more) escaped. + # We don't take the first character, because repr adds a u in the + # beginning of the string (usual repr output for unicode is u'...'). + return repr(v).decode("raw-unicode-escape")[1:] + # Here we use python built-in escaping mechanism for string using repr. + return repr(str(v)) + + @staticmethod + def _EscapeCustomProperties(custom_properties): + """Escapes the custom properties dictionary.""" + l = [] + for key, value in custom_properties.iteritems(): + l.append("%s:%s" % (DataTable._EscapeValue(key), + DataTable._EscapeValue(value))) + return "{%s}" % ",".join(l) + + @staticmethod + def SingleValueToJS(value, value_type, escape_func=None): + """Translates a single value and type into a JS value. + + Internal helper method. + + Args: + value: The value which should be converted + value_type: One of "string", "number", "boolean", "date", "datetime" or + "timeofday". + escape_func: The function to use for escaping strings. + + Returns: + The proper JS format (as string) of the given value according to the + given value_type. For None, we simply return "null". + If a tuple is given, it should be in one of the following forms: + - (value, formatted value) + - (value, formatted value, custom properties) + where the formatted value is a string, and custom properties is a + dictionary of the custom properties for this cell. + To specify custom properties without specifying formatted value, one can + pass None as the formatted value. + One can also have a null-valued cell with formatted value and/or custom + properties by specifying None for the value. + This method ignores the custom properties except for checking that it is a + dictionary. The custom properties are handled in the ToJSon and ToJSCode + methods. + The real type of the given value is not strictly checked. For example, + any type can be used for string - as we simply take its str( ) and for + boolean value we just check "if value". + Examples: + SingleValueToJS(None, "boolean") returns "null" + SingleValueToJS(False, "boolean") returns "false" + SingleValueToJS((5, "5$"), "number") returns ("5", "'5$'") + SingleValueToJS((None, "5$"), "number") returns ("null", "'5$'") + + Raises: + DataTableException: The value and type did not match in a not-recoverable + way, for example given value 'abc' for type 'number'. + """ + if escape_func is None: + escape_func = DataTable._EscapeValue + if isinstance(value, tuple): + # In case of a tuple, we run the same function on the value itself and + # add the formatted value. + if (len(value) not in [2, 3] or + (len(value) == 3 and not isinstance(value[2], dict))): + raise DataTableException("Wrong format for value and formatting - %s." % + str(value)) + if not isinstance(value[1], types.StringTypes + (types.NoneType,)): + raise DataTableException("Formatted value is not string, given %s." % + type(value[1])) + js_value = DataTable.SingleValueToJS(value[0], value_type) + if value[1] is None: + return (js_value, None) + return (js_value, escape_func(value[1])) + + # The standard case - no formatting. + t_value = type(value) + if value is None: + return "null" + if value_type == "boolean": + if value: + return "true" + return "false" + + elif value_type == "number": + if isinstance(value, (int, long, float)): + return str(value) + raise DataTableException("Wrong type %s when expected number" % t_value) + + elif value_type == "string": + if isinstance(value, tuple): + raise DataTableException("Tuple is not allowed as string value.") + return escape_func(value) + + elif value_type == "date": + if not isinstance(value, (datetime.date, datetime.datetime)): + raise DataTableException("Wrong type %s when expected date" % t_value) + # We need to shift the month by 1 to match JS Date format + return "new Date(%d,%d,%d)" % (value.year, value.month - 1, value.day) + + elif value_type == "timeofday": + if not isinstance(value, (datetime.time, datetime.datetime)): + raise DataTableException("Wrong type %s when expected time" % t_value) + return "[%d,%d,%d]" % (value.hour, value.minute, value.second) + + elif value_type == "datetime": + if not isinstance(value, datetime.datetime): + raise DataTableException("Wrong type %s when expected datetime" % + t_value) + return "new Date(%d,%d,%d,%d,%d,%d)" % (value.year, + value.month - 1, # To match JS + value.day, + value.hour, + value.minute, + value.second) + # If we got here, it means the given value_type was not one of the + # supported types. + raise DataTableException("Unsupported type %s" % value_type) + + @staticmethod + def ColumnTypeParser(description): + """Parses a single column description. Internal helper method. + + Args: + description: a column description in the possible formats: + 'id' + ('id',) + ('id', 'type') + ('id', 'type', 'label') + ('id', 'type', 'label', {'custom_prop1': 'custom_val1'}) + Returns: + Dictionary with the following keys: id, label, type, and + custom_properties where: + - If label not given, it equals the id. + - If type not given, string is used by default. + - If custom properties are not given, an empty dictionary is used by + default. + + Raises: + DataTableException: The column description did not match the RE, or + unsupported type was passed. + """ + if not description: + raise DataTableException("Description error: empty description given") + + if not isinstance(description, (types.StringTypes, tuple)): + raise DataTableException("Description error: expected either string or " + "tuple, got %s." % type(description)) + + if isinstance(description, types.StringTypes): + description = (description,) + + # According to the tuple's length, we fill the keys + # We verify everything is of type string + for elem in description[:3]: + if not isinstance(elem, types.StringTypes): + raise DataTableException("Description error: expected tuple of " + "strings, current element of type %s." % + type(elem)) + desc_dict = {"id": description[0], + "label": description[0], + "type": "string", + "custom_properties": {}} + if len(description) > 1: + desc_dict["type"] = description[1].lower() + if len(description) > 2: + desc_dict["label"] = description[2] + if len(description) > 3: + if not isinstance(description[3], dict): + raise DataTableException("Description error: expected custom " + "properties of type dict, current element " + "of type %s." % type(description[3])) + desc_dict["custom_properties"] = description[3] + if len(description) > 4: + raise DataTableException("Description error: tuple of length > 4") + if desc_dict["type"] not in ["string", "number", "boolean", + "date", "datetime", "timeofday"]: + raise DataTableException( + "Description error: unsupported type '%s'" % desc_dict["type"]) + return desc_dict + + @staticmethod + def TableDescriptionParser(table_description, depth=0): + """Parses the table_description object for internal use. + + Parses the user-submitted table description into an internal format used + by the Python DataTable class. Returns the flat list of parsed columns. + + Args: + table_description: A description of the table which should comply + with one of the formats described below. + depth: Optional. The depth of the first level in the current description. + Used by recursive calls to this function. + + Returns: + List of columns, where each column represented by a dictionary with the + keys: id, label, type, depth, container which means the following: + - id: the id of the column + - name: The name of the column + - type: The datatype of the elements in this column. Allowed types are + described in ColumnTypeParser(). + - depth: The depth of this column in the table description + - container: 'dict', 'iter' or 'scalar' for parsing the format easily. + - custom_properties: The custom properties for this column. + The returned description is flattened regardless of how it was given. + + Raises: + DataTableException: Error in a column description or in the description + structure. + + Examples: + A column description can be of the following forms: + 'id' + ('id',) + ('id', 'type') + ('id', 'type', 'label') + ('id', 'type', 'label', {'custom_prop1': 'custom_val1'}) + or as a dictionary: + 'id': 'type' + 'id': ('type',) + 'id': ('type', 'label') + 'id': ('type', 'label', {'custom_prop1': 'custom_val1'}) + If the type is not specified, we treat it as string. + If no specific label is given, the label is simply the id. + If no custom properties are given, we use an empty dictionary. + + input: [('a', 'date'), ('b', 'timeofday', 'b', {'foo': 'bar'})] + output: [{'id': 'a', 'label': 'a', 'type': 'date', + 'depth': 0, 'container': 'iter', 'custom_properties': {}}, + {'id': 'b', 'label': 'b', 'type': 'timeofday', + 'depth': 0, 'container': 'iter', + 'custom_properties': {'foo': 'bar'}}] + + input: {'a': [('b', 'number'), ('c', 'string', 'column c')]} + output: [{'id': 'a', 'label': 'a', 'type': 'string', + 'depth': 0, 'container': 'dict', 'custom_properties': {}}, + {'id': 'b', 'label': 'b', 'type': 'number', + 'depth': 1, 'container': 'iter', 'custom_properties': {}}, + {'id': 'c', 'label': 'column c', 'type': 'string', + 'depth': 1, 'container': 'iter', 'custom_properties': {}}] + + input: {('a', 'number', 'column a'): { 'b': 'number', 'c': 'string'}} + output: [{'id': 'a', 'label': 'column a', 'type': 'number', + 'depth': 0, 'container': 'dict', 'custom_properties': {}}, + {'id': 'b', 'label': 'b', 'type': 'number', + 'depth': 1, 'container': 'dict', 'custom_properties': {}}, + {'id': 'c', 'label': 'c', 'type': 'string', + 'depth': 1, 'container': 'dict', 'custom_properties': {}}] + + input: { ('w', 'string', 'word'): ('c', 'number', 'count') } + output: [{'id': 'w', 'label': 'word', 'type': 'string', + 'depth': 0, 'container': 'dict', 'custom_properties': {}}, + {'id': 'c', 'label': 'count', 'type': 'number', + 'depth': 1, 'container': 'scalar', 'custom_properties': {}}] + + input: {'a': ('number', 'column a'), 'b': ('string', 'column b')} + output: [{'id': 'a', 'label': 'column a', 'type': 'number', 'depth': 0, + 'container': 'dict', 'custom_properties': {}}, + {'id': 'b', 'label': 'column b', 'type': 'string', 'depth': 0, + 'container': 'dict', 'custom_properties': {}} + + NOTE: there might be ambiguity in the case of a dictionary representation + of a single column. For example, the following description can be parsed + in 2 different ways: {'a': ('b', 'c')} can be thought of a single column + with the id 'a', of type 'b' and the label 'c', or as 2 columns: one named + 'a', and the other named 'b' of type 'c'. We choose the first option by + default, and in case the second option is the right one, it is possible to + make the key into a tuple (i.e. {('a',): ('b', 'c')}) or add more info + into the tuple, thus making it look like this: {'a': ('b', 'c', 'b', {})} + -- second 'b' is the label, and {} is the custom properties field. + """ + # For the recursion step, we check for a scalar object (string or tuple) + if isinstance(table_description, (types.StringTypes, tuple)): + parsed_col = DataTable.ColumnTypeParser(table_description) + parsed_col["depth"] = depth + parsed_col["container"] = "scalar" + return [parsed_col] + + # Since it is not scalar, table_description must be iterable. + if not hasattr(table_description, "__iter__"): + raise DataTableException("Expected an iterable object, got %s" % + type(table_description)) + if not isinstance(table_description, dict): + # We expects a non-dictionary iterable item. + columns = [] + for desc in table_description: + parsed_col = DataTable.ColumnTypeParser(desc) + parsed_col["depth"] = depth + parsed_col["container"] = "iter" + columns.append(parsed_col) + if not columns: + raise DataTableException("Description iterable objects should not" + " be empty.") + return columns + # The other case is a dictionary + if not table_description: + raise DataTableException("Empty dictionaries are not allowed inside" + " description") + + # To differentiate between the two cases of more levels below or this is + # the most inner dictionary, we consider the number of keys (more then one + # key is indication for most inner dictionary) and the type of the key and + # value in case of only 1 key (if the type of key is string and the type of + # the value is a tuple of 0-3 items, we assume this is the most inner + # dictionary). + # NOTE: this way of differentiating might create ambiguity. See docs. + if (len(table_description) != 1 or + (isinstance(table_description.keys()[0], types.StringTypes) and + isinstance(table_description.values()[0], tuple) and + len(table_description.values()[0]) < 4)): + # This is the most inner dictionary. Parsing types. + columns = [] + # We sort the items, equivalent to sort the keys since they are unique + for key, value in sorted(table_description.items()): + # We parse the column type as (key, type) or (key, type, label) using + # ColumnTypeParser. + if isinstance(value, tuple): + parsed_col = DataTable.ColumnTypeParser((key,) + value) + else: + parsed_col = DataTable.ColumnTypeParser((key, value)) + parsed_col["depth"] = depth + parsed_col["container"] = "dict" + columns.append(parsed_col) + return columns + # This is an outer dictionary, must have at most one key. + parsed_col = DataTable.ColumnTypeParser(table_description.keys()[0]) + parsed_col["depth"] = depth + parsed_col["container"] = "dict" + return ([parsed_col] + + DataTable.TableDescriptionParser(table_description.values()[0], + depth=depth + 1)) + + @property + def columns(self): + """Returns the parsed table description.""" + return self.__columns + + def NumberOfRows(self): + """Returns the number of rows in the current data stored in the table.""" + return len(self.__data) + + def SetRowsCustomProperties(self, rows, custom_properties): + """Sets the custom properties for given row(s). + + Can accept a single row or an iterable of rows. + Sets the given custom properties for all specified rows. + + Args: + rows: The row, or rows, to set the custom properties for. + custom_properties: A string to string dictionary of custom properties to + set for all rows. + """ + if not hasattr(rows, "__iter__"): + rows = [rows] + for row in rows: + self.__data[row] = (self.__data[row][0], custom_properties) + + def LoadData(self, data, custom_properties=None): + """Loads new rows to the data table, clearing existing rows. + + May also set the custom_properties for the added rows. The given custom + properties dictionary specifies the dictionary that will be used for *all* + given rows. + + Args: + data: The rows that the table will contain. + custom_properties: A dictionary of string to string to set as the custom + properties for all rows. + """ + self.__data = [] + self.AppendData(data, custom_properties) + + def AppendData(self, data, custom_properties=None): + """Appends new data to the table. + + Data is appended in rows. Data must comply with + the table schema passed in to __init__(). See SingleValueToJS() for a list + of acceptable data types. See the class documentation for more information + and examples of schema and data values. + + Args: + data: The row to add to the table. The data must conform to the table + description format. + custom_properties: A dictionary of string to string, representing the + custom properties to add to all the rows. + + Raises: + DataTableException: The data structure does not match the description. + """ + # If the maximal depth is 0, we simply iterate over the data table + # lines and insert them using _InnerAppendData. Otherwise, we simply + # let the _InnerAppendData handle all the levels. + if not self.__columns[-1]["depth"]: + for row in data: + self._InnerAppendData(({}, custom_properties), row, 0) + else: + self._InnerAppendData(({}, custom_properties), data, 0) + + def _InnerAppendData(self, prev_col_values, data, col_index): + """Inner function to assist LoadData.""" + # We first check that col_index has not exceeded the columns size + if col_index >= len(self.__columns): + raise DataTableException("The data does not match description, too deep") + + # Dealing with the scalar case, the data is the last value. + if self.__columns[col_index]["container"] == "scalar": + prev_col_values[0][self.__columns[col_index]["id"]] = data + self.__data.append(prev_col_values) + return + + if self.__columns[col_index]["container"] == "iter": + if not hasattr(data, "__iter__") or isinstance(data, dict): + raise DataTableException("Expected iterable object, got %s" % + type(data)) + # We only need to insert the rest of the columns + # If there are less items than expected, we only add what there is. + for value in data: + if col_index >= len(self.__columns): + raise DataTableException("Too many elements given in data") + prev_col_values[0][self.__columns[col_index]["id"]] = value + col_index += 1 + self.__data.append(prev_col_values) + return + + # We know the current level is a dictionary, we verify the type. + if not isinstance(data, dict): + raise DataTableException("Expected dictionary at current level, got %s" % + type(data)) + # We check if this is the last level + if self.__columns[col_index]["depth"] == self.__columns[-1]["depth"]: + # We need to add the keys in the dictionary as they are + for col in self.__columns[col_index:]: + if col["id"] in data: + prev_col_values[0][col["id"]] = data[col["id"]] + self.__data.append(prev_col_values) + return + + # We have a dictionary in an inner depth level. + if not data.keys(): + # In case this is an empty dictionary, we add a record with the columns + # filled only until this point. + self.__data.append(prev_col_values) + else: + for key in sorted(data): + col_values = dict(prev_col_values[0]) + col_values[self.__columns[col_index]["id"]] = key + self._InnerAppendData((col_values, prev_col_values[1]), + data[key], col_index + 1) + + def _PreparedData(self, order_by=()): + """Prepares the data for enumeration - sorting it by order_by. + + Args: + order_by: Optional. Specifies the name of the column(s) to sort by, and + (optionally) which direction to sort in. Default sort direction + is asc. Following formats are accepted: + "string_col_name" -- For a single key in default (asc) order. + ("string_col_name", "asc|desc") -- For a single key. + [("col_1","asc|desc"), ("col_2","asc|desc")] -- For more than + one column, an array of tuples of (col_name, "asc|desc"). + + Returns: + The data sorted by the keys given. + + Raises: + DataTableException: Sort direction not in 'asc' or 'desc' + """ + if not order_by: + return self.__data + + proper_sort_keys = [] + if isinstance(order_by, types.StringTypes) or ( + isinstance(order_by, tuple) and len(order_by) == 2 and + order_by[1].lower() in ["asc", "desc"]): + order_by = (order_by,) + for key in order_by: + if isinstance(key, types.StringTypes): + proper_sort_keys.append((key, 1)) + elif (isinstance(key, (list, tuple)) and len(key) == 2 and + key[1].lower() in ("asc", "desc")): + proper_sort_keys.append((key[0], key[1].lower() == "asc" and 1 or -1)) + else: + raise DataTableException("Expected tuple with second value: " + "'asc' or 'desc'") + + def SortCmpFunc(row1, row2): + """cmp function for sorted. Compares by keys and 'asc'/'desc' keywords.""" + for key, asc_mult in proper_sort_keys: + cmp_result = asc_mult * cmp(row1[0].get(key), row2[0].get(key)) + if cmp_result: + return cmp_result + return 0 + + return sorted(self.__data, cmp=SortCmpFunc) + + def ToJSCode(self, name, columns_order=None, order_by=()): + """Writes the data table as a JS code string. + + This method writes a string of JS code that can be run to + generate a DataTable with the specified data. Typically used for debugging + only. + + Args: + name: The name of the table. The name would be used as the DataTable's + variable name in the created JS code. + columns_order: Optional. Specifies the order of columns in the + output table. Specify a list of all column IDs in the order + in which you want the table created. + Note that you must list all column IDs in this parameter, + if you use it. + order_by: Optional. Specifies the name of the column(s) to sort by. + Passed as is to _PreparedData. + + Returns: + A string of JS code that, when run, generates a DataTable with the given + name and the data stored in the DataTable object. + Example result: + "var tab1 = new google.visualization.DataTable(); + tab1.addColumn('string', 'a', 'a'); + tab1.addColumn('number', 'b', 'b'); + tab1.addColumn('boolean', 'c', 'c'); + tab1.addRows(10); + tab1.setCell(0, 0, 'a'); + tab1.setCell(0, 1, 1, null, {'foo': 'bar'}); + tab1.setCell(0, 2, true); + ... + tab1.setCell(9, 0, 'c'); + tab1.setCell(9, 1, 3, '3$'); + tab1.setCell(9, 2, false);" + + Raises: + DataTableException: The data does not match the type. + """ + if columns_order is None: + columns_order = [col["id"] for col in self.__columns] + col_dict = dict([(col["id"], col) for col in self.__columns]) + + # We first create the table with the given name + jscode = "var %s = new google.visualization.DataTable();\n" % name + if self.custom_properties: + jscode += "%s.setTableProperties(%s);\n" % ( + name, DataTable._EscapeCustomProperties(self.custom_properties)) + + # We add the columns to the table + for i, col in enumerate(columns_order): + jscode += "%s.addColumn('%s', %s, %s);\n" % ( + name, + col_dict[col]["type"], + DataTable._EscapeValue(col_dict[col]["label"]), + DataTable._EscapeValue(col_dict[col]["id"])) + if col_dict[col]["custom_properties"]: + jscode += "%s.setColumnProperties(%d, %s);\n" % ( + name, i, DataTable._EscapeCustomProperties( + col_dict[col]["custom_properties"])) + jscode += "%s.addRows(%d);\n" % (name, len(self.__data)) + + # We now go over the data and add each row + for (i, (row, cp)) in enumerate(self._PreparedData(order_by)): + # We add all the elements of this row by their order + for (j, col) in enumerate(columns_order): + if col not in row or row[col] is None: + continue + cell_cp = "" + if isinstance(row[col], tuple) and len(row[col]) == 3: + cell_cp = ", %s" % DataTable._EscapeCustomProperties(row[col][2]) + value = self.SingleValueToJS(row[col], col_dict[col]["type"]) + if isinstance(value, tuple): + # We have a formatted value or custom property as well + if value[1] is None: + value = (value[0], "null") + jscode += ("%s.setCell(%d, %d, %s, %s%s);\n" % + (name, i, j, value[0], value[1], cell_cp)) + else: + jscode += "%s.setCell(%d, %d, %s);\n" % (name, i, j, value) + if cp: + jscode += "%s.setRowProperties(%d, %s);\n" % ( + name, i, DataTable._EscapeCustomProperties(cp)) + return jscode + + def ToHtml(self, columns_order=None, order_by=()): + """Writes the data table as an HTML table code string. + + Args: + columns_order: Optional. Specifies the order of columns in the + output table. Specify a list of all column IDs in the order + in which you want the table created. + Note that you must list all column IDs in this parameter, + if you use it. + order_by: Optional. Specifies the name of the column(s) to sort by. + Passed as is to _PreparedData. + + Returns: + An HTML table code string. + Example result (the result is without the newlines): +
a | b | c |
---|---|---|
1 | "z" | 2 |
"3$" | "w" |
%(messages)s+