Move RtpToNtp functionality to its own file.

Removes the dependency on VideoEngine from RemoteBitrateEstimator.

BUG=

Review URL: https://webrtc-codereview.appspot.com/850004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@2828 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
stefan@webrtc.org 2012-09-26 16:47:40 +00:00
parent d162cd1d1f
commit 64d9decc8d
8 changed files with 336 additions and 279 deletions

View File

@ -0,0 +1,43 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_REMOTE_BITRATE_ESTIMATOR_INCLUDE_RTP_TO_NTP_H_
#define WEBRTC_MODULES_REMOTE_BITRATE_ESTIMATOR_INCLUDE_RTP_TO_NTP_H_
#include <list>
#include "typedefs.h"
namespace webrtc {
namespace synchronization {
struct RtcpMeasurement {
RtcpMeasurement();
RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac, uint32_t timestamp);
uint32_t ntp_secs;
uint32_t ntp_frac;
uint32_t rtp_timestamp;
};
typedef std::list<RtcpMeasurement> RtcpList;
// Converts an RTP timestamp to the NTP domain in milliseconds using two
// (RTP timestamp, NTP timestamp) pairs.
bool RtpToNtpMs(int64_t rtp_timestamp, const RtcpList& rtcp,
int64_t* timestamp_in_ms);
// Returns 1 there has been a forward wrap around, 0 if there has been no wrap
// around and -1 if there has been a backwards wrap around (i.e. reordering).
int CheckForWrapArounds(uint32_t rtp_timestamp, uint32_t rtcp_rtp_timestamp);
} // namespace synchronization
} // namespace webrtc
#endif // WEBRTC_MODULES_REMOTE_BITRATE_ESTIMATOR_INCLUDE_RTP_TO_NTP_H_

View File

@ -29,6 +29,7 @@
# interface
'include/bwe_defines.h',
'include/remote_bitrate_estimator.h',
'include/rtp_to_ntp.h',
# source
'bitrate_estimator.cc',
@ -41,6 +42,7 @@
'remote_bitrate_estimator_single_stream.cc',
'remote_rate_control.cc',
'remote_rate_control.h',
'rtp_to_ntp.cc',
'../../video_engine/stream_synchronization.cc',
'../../video_engine/stream_synchronization.h',
], # source
@ -62,6 +64,7 @@
'include/mock/mock_remote_bitrate_observer.h',
'bitrate_estimator_unittest.cc',
'remote_bitrate_estimator_unittest.cc',
'rtp_to_ntp_unittest.cc',
],
},
], # targets

View File

@ -10,9 +10,9 @@
#include "modules/remote_bitrate_estimator/remote_bitrate_estimator_multi_stream.h"
#include "modules/remote_bitrate_estimator/include/rtp_to_ntp.h"
#include "modules/remote_bitrate_estimator/remote_bitrate_estimator_single_stream.h"
#include "system_wrappers/interface/tick_util.h"
#include "video_engine/stream_synchronization.h"
namespace webrtc {

View File

@ -0,0 +1,125 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/remote_bitrate_estimator/include/rtp_to_ntp.h"
#include <assert.h>
namespace webrtc {
namespace synchronization {
const double kNtpFracPerMs = 4.294967296E6;
RtcpMeasurement::RtcpMeasurement()
: ntp_secs(0), ntp_frac(0), rtp_timestamp(0) {}
RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac,
uint32_t timestamp)
: ntp_secs(ntp_secs), ntp_frac(ntp_frac), rtp_timestamp(timestamp) {}
// Calculates the RTP timestamp frequency from two pairs of NTP and RTP
// timestamps.
bool CalculateFrequency(
int64_t rtcp_ntp_ms1,
uint32_t rtp_timestamp1,
int64_t rtcp_ntp_ms2,
uint32_t rtp_timestamp2,
double* frequency_khz) {
if (rtcp_ntp_ms1 <= rtcp_ntp_ms2) {
return false;
}
*frequency_khz = static_cast<double>(rtp_timestamp1 - rtp_timestamp2) /
static_cast<double>(rtcp_ntp_ms1 - rtcp_ntp_ms2);
return true;
}
// Detects if there has been a wraparound between |old_timestamp| and
// |new_timestamp|, and compensates by adding 2^32 if that is the case.
bool CompensateForWrapAround(uint32_t new_timestamp,
uint32_t old_timestamp,
int64_t* compensated_timestamp) {
assert(compensated_timestamp);
int64_t wraps = synchronization::CheckForWrapArounds(new_timestamp,
old_timestamp);
if (wraps < 0) {
// Reordering, don't use this packet.
return false;
}
*compensated_timestamp = new_timestamp + (wraps << 32);
return true;
}
// Converts an NTP timestamp to a millisecond timestamp.
int64_t NtpToMs(uint32_t ntp_secs, uint32_t ntp_frac) {
const double ntp_frac_ms = static_cast<double>(ntp_frac) / kNtpFracPerMs;
return ntp_secs * 1000 + ntp_frac_ms + 0.5;
}
// Converts |rtp_timestamp| to the NTP time base using the NTP and RTP timestamp
// pairs in |rtcp|. The converted timestamp is returned in
// |rtp_timestamp_in_ms|. This function compensates for wrap arounds in RTP
// timestamps and returns false if it can't do the conversion due to reordering.
bool RtpToNtpMs(int64_t rtp_timestamp,
const synchronization::RtcpList& rtcp,
int64_t* rtp_timestamp_in_ms) {
assert(rtcp.size() == 2);
int64_t rtcp_ntp_ms_new = synchronization::NtpToMs(rtcp.front().ntp_secs,
rtcp.front().ntp_frac);
int64_t rtcp_ntp_ms_old = synchronization::NtpToMs(rtcp.back().ntp_secs,
rtcp.back().ntp_frac);
int64_t rtcp_timestamp_new = rtcp.front().rtp_timestamp;
int64_t rtcp_timestamp_old = rtcp.back().rtp_timestamp;
if (!CompensateForWrapAround(rtcp_timestamp_new,
rtcp_timestamp_old,
&rtcp_timestamp_new)) {
return false;
}
double freq_khz;
if (!CalculateFrequency(rtcp_ntp_ms_new,
rtcp_timestamp_new,
rtcp_ntp_ms_old,
rtcp_timestamp_old,
&freq_khz)) {
return false;
}
double offset = rtcp_timestamp_new - freq_khz * rtcp_ntp_ms_new;
int64_t rtp_timestamp_unwrapped;
if (!CompensateForWrapAround(rtp_timestamp, rtcp_timestamp_old,
&rtp_timestamp_unwrapped)) {
return false;
}
double rtp_timestamp_ntp_ms = (static_cast<double>(rtp_timestamp_unwrapped) -
offset) / freq_khz + 0.5f;
if (rtp_timestamp_ntp_ms < 0) {
return false;
}
*rtp_timestamp_in_ms = rtp_timestamp_ntp_ms;
return true;
}
int CheckForWrapArounds(uint32_t new_timestamp, uint32_t old_timestamp) {
if (new_timestamp < old_timestamp) {
// This difference should be less than -2^31 if we have had a wrap around
// (e.g. |new_timestamp| = 1, |rtcp_rtp_timestamp| = 2^32 - 1). Since it is
// cast to a int32_t, it should be positive.
if (static_cast<int32_t>(new_timestamp - old_timestamp) > 0) {
// Forward wrap around.
return 1;
}
} else if (static_cast<int32_t>(old_timestamp - new_timestamp) > 0) {
// This difference should be less than -2^31 if we have had a backward wrap
// around. Since it is cast to a int32_t, it should be positive.
return -1;
}
return 0;
}
} // namespace synchronization
} // namespace webrtc

View File

@ -0,0 +1,163 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "gtest/gtest.h"
#include "modules/remote_bitrate_estimator/include/rtp_to_ntp.h"
namespace webrtc {
TEST(WrapAroundTests, NoWrap) {
EXPECT_EQ(0, synchronization::CheckForWrapArounds(0xFFFFFFFF, 0xFFFFFFFE));
EXPECT_EQ(0, synchronization::CheckForWrapArounds(1, 0));
EXPECT_EQ(0, synchronization::CheckForWrapArounds(0x00010000, 0x0000FFFF));
}
TEST(WrapAroundTests, ForwardWrap) {
EXPECT_EQ(1, synchronization::CheckForWrapArounds(0, 0xFFFFFFFF));
EXPECT_EQ(1, synchronization::CheckForWrapArounds(0, 0xFFFF0000));
EXPECT_EQ(1, synchronization::CheckForWrapArounds(0x0000FFFF, 0xFFFFFFFF));
EXPECT_EQ(1, synchronization::CheckForWrapArounds(0x0000FFFF, 0xFFFF0000));
}
TEST(WrapAroundTests, BackwardWrap) {
EXPECT_EQ(-1, synchronization::CheckForWrapArounds(0xFFFFFFFF, 0));
EXPECT_EQ(-1, synchronization::CheckForWrapArounds(0xFFFF0000, 0));
EXPECT_EQ(-1, synchronization::CheckForWrapArounds(0xFFFFFFFF, 0x0000FFFF));
EXPECT_EQ(-1, synchronization::CheckForWrapArounds(0xFFFF0000, 0x0000FFFF));
}
TEST(WrapAroundTests, OldRtcpWrapped) {
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0;
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
// This expected to fail since it's highly unlikely that the older RTCP
// has a much smaller RTP timestamp than the newer.
EXPECT_FALSE(synchronization::RtpToNtpMs(timestamp, rtcp, &timestamp_in_ms));
}
TEST(WrapAroundTests, NewRtcpWrapped) {
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0xFFFFFFFF;
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
int64_t timestamp_in_ms = -1;
EXPECT_TRUE(synchronization::RtpToNtpMs(rtcp.back().rtp_timestamp, rtcp,
&timestamp_in_ms));
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(0, timestamp_in_ms);
}
TEST(WrapAroundTests, RtpWrapped) {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0xFFFFFFFF - 2 * kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
EXPECT_TRUE(synchronization::RtpToNtpMs(timestamp, rtcp,
&timestamp_in_ms));
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(2, timestamp_in_ms);
}
TEST(WrapAroundTests, OldRtp_RtcpsWrapped) {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= 2*kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
EXPECT_FALSE(synchronization::RtpToNtpMs(timestamp, rtcp,
&timestamp_in_ms));
}
TEST(WrapAroundTests, OldRtp_NewRtcpWrapped) {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0xFFFFFFFF;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
EXPECT_TRUE(synchronization::RtpToNtpMs(timestamp, rtcp,
&timestamp_in_ms));
// Constructed at the same time as the first RTCP and should therefore be
// mapped to zero.
EXPECT_EQ(0, timestamp_in_ms);
}
TEST(WrapAroundTests, OldRtp_OldRtcpWrapped) {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += 2*kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
EXPECT_FALSE(synchronization::RtpToNtpMs(timestamp, rtcp,
&timestamp_in_ms));
}
}; // namespace webrtc

View File

@ -22,115 +22,6 @@ const int kMaxVideoDiffMs = 80;
const int kMaxAudioDiffMs = 80;
const int kMaxDelay = 1500;
const double kNtpFracPerMs = 4.294967296E6;
namespace synchronization {
RtcpMeasurement::RtcpMeasurement()
: ntp_secs(0), ntp_frac(0), rtp_timestamp(0) {}
RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac,
uint32_t timestamp)
: ntp_secs(ntp_secs), ntp_frac(ntp_frac), rtp_timestamp(timestamp) {}
// Calculates the RTP timestamp frequency from two pairs of NTP and RTP
// timestamps.
bool CalculateFrequency(
int64_t rtcp_ntp_ms1,
uint32_t rtp_timestamp1,
int64_t rtcp_ntp_ms2,
uint32_t rtp_timestamp2,
double* frequency_khz) {
if (rtcp_ntp_ms1 <= rtcp_ntp_ms2) {
return false;
}
*frequency_khz = static_cast<double>(rtp_timestamp1 - rtp_timestamp2) /
static_cast<double>(rtcp_ntp_ms1 - rtcp_ntp_ms2);
return true;
}
// Detects if there has been a wraparound between |old_timestamp| and
// |new_timestamp|, and compensates by adding 2^32 if that is the case.
bool CompensateForWrapAround(uint32_t new_timestamp,
uint32_t old_timestamp,
int64_t* compensated_timestamp) {
assert(compensated_timestamp);
int64_t wraps = synchronization::CheckForWrapArounds(new_timestamp,
old_timestamp);
if (wraps < 0) {
// Reordering, don't use this packet.
return false;
}
*compensated_timestamp = new_timestamp + (wraps << 32);
return true;
}
// Converts an NTP timestamp to a millisecond timestamp.
int64_t NtpToMs(uint32_t ntp_secs, uint32_t ntp_frac) {
const double ntp_frac_ms = static_cast<double>(ntp_frac) / kNtpFracPerMs;
return ntp_secs * 1000 + ntp_frac_ms + 0.5;
}
// Converts |rtp_timestamp| to the NTP time base using the NTP and RTP timestamp
// pairs in |rtcp|. The converted timestamp is returned in
// |rtp_timestamp_in_ms|. This function compensates for wrap arounds in RTP
// timestamps and returns false if it can't do the conversion due to reordering.
bool RtpToNtpMs(int64_t rtp_timestamp,
const synchronization::RtcpList& rtcp,
int64_t* rtp_timestamp_in_ms) {
assert(rtcp.size() == 2);
int64_t rtcp_ntp_ms_new = synchronization::NtpToMs(rtcp.front().ntp_secs,
rtcp.front().ntp_frac);
int64_t rtcp_ntp_ms_old = synchronization::NtpToMs(rtcp.back().ntp_secs,
rtcp.back().ntp_frac);
int64_t rtcp_timestamp_new = rtcp.front().rtp_timestamp;
int64_t rtcp_timestamp_old = rtcp.back().rtp_timestamp;
if (!CompensateForWrapAround(rtcp_timestamp_new,
rtcp_timestamp_old,
&rtcp_timestamp_new)) {
return false;
}
double freq_khz;
if (!CalculateFrequency(rtcp_ntp_ms_new,
rtcp_timestamp_new,
rtcp_ntp_ms_old,
rtcp_timestamp_old,
&freq_khz)) {
return false;
}
double offset = rtcp_timestamp_new - freq_khz * rtcp_ntp_ms_new;
int64_t rtp_timestamp_unwrapped;
if (!CompensateForWrapAround(rtp_timestamp, rtcp_timestamp_old,
&rtp_timestamp_unwrapped)) {
return false;
}
double rtp_timestamp_ntp_ms = (static_cast<double>(rtp_timestamp_unwrapped) -
offset) / freq_khz + 0.5f;
if (rtp_timestamp_ntp_ms < 0) {
return false;
}
*rtp_timestamp_in_ms = rtp_timestamp_ntp_ms;
return true;
}
int CheckForWrapArounds(uint32_t new_timestamp, uint32_t old_timestamp) {
if (new_timestamp < old_timestamp) {
// This difference should be less than -2^31 if we have had a wrap around
// (e.g. |new_timestamp| = 1, |rtcp_rtp_timestamp| = 2^32 - 1). Since it is
// cast to a int32_t, it should be positive.
if (static_cast<int32_t>(new_timestamp - old_timestamp) > 0) {
// Forward wrap around.
return 1;
}
} else if (static_cast<int32_t>(old_timestamp - new_timestamp) > 0) {
// This difference should be less than -2^31 if we have had a backward wrap
// around. Since it is cast to a int32_t, it should be positive.
return -1;
}
return 0;
}
} // namespace synchronization
struct ViESyncDelay {
ViESyncDelay() {
extra_video_delay_ms = 0;

View File

@ -13,31 +13,11 @@
#include <list>
#include "modules/remote_bitrate_estimator/include/rtp_to_ntp.h"
#include "typedefs.h" // NOLINT
namespace webrtc {
namespace synchronization {
struct RtcpMeasurement {
RtcpMeasurement();
RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac, uint32_t timestamp);
uint32_t ntp_secs;
uint32_t ntp_frac;
uint32_t rtp_timestamp;
};
typedef std::list<RtcpMeasurement> RtcpList;
// Converts an RTP timestamp to the NTP domain in milliseconds using two
// (RTP timestamp, NTP timestamp) pairs.
bool RtpToNtpMs(int64_t rtp_timestamp, const RtcpList& rtcp,
int64_t* timestamp_in_ms);
// Returns 1 there has been a forward wrap around, 0 if there has been no wrap
// around and -1 if there has been a backwards wrap around (i.e. reordering).
int CheckForWrapArounds(uint32_t rtp_timestamp, uint32_t rtcp_rtp_timestamp);
} // namespace synchronization
struct ViESyncDelay;
class StreamSynchronization {

View File

@ -459,152 +459,4 @@ TEST_F(StreamSynchronizationTest, BothDelayedVideoClockDrift) {
video_clock_drift_ = 1.05;
BothDelayedAudioLaterTest();
}
TEST(WrapAroundTests, NoWrap) {
EXPECT_EQ(0, synchronization::CheckForWrapArounds(0xFFFFFFFF, 0xFFFFFFFE));
EXPECT_EQ(0, synchronization::CheckForWrapArounds(1, 0));
EXPECT_EQ(0, synchronization::CheckForWrapArounds(0x00010000, 0x0000FFFF));
}
TEST(WrapAroundTests, ForwardWrap) {
EXPECT_EQ(1, synchronization::CheckForWrapArounds(0, 0xFFFFFFFF));
EXPECT_EQ(1, synchronization::CheckForWrapArounds(0, 0xFFFF0000));
EXPECT_EQ(1, synchronization::CheckForWrapArounds(0x0000FFFF, 0xFFFFFFFF));
EXPECT_EQ(1, synchronization::CheckForWrapArounds(0x0000FFFF, 0xFFFF0000));
}
TEST(WrapAroundTests, BackwardWrap) {
EXPECT_EQ(-1, synchronization::CheckForWrapArounds(0xFFFFFFFF, 0));
EXPECT_EQ(-1, synchronization::CheckForWrapArounds(0xFFFF0000, 0));
EXPECT_EQ(-1, synchronization::CheckForWrapArounds(0xFFFFFFFF, 0x0000FFFF));
EXPECT_EQ(-1, synchronization::CheckForWrapArounds(0xFFFF0000, 0x0000FFFF));
}
TEST(WrapAroundTests, OldRtcpWrapped) {
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0;
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
// This expected to fail since it's highly unlikely that the older RTCP
// has a much smaller RTP timestamp than the newer.
EXPECT_FALSE(synchronization::RtpToNtpMs(timestamp, rtcp, &timestamp_in_ms));
}
TEST(WrapAroundTests, NewRtcpWrapped) {
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0xFFFFFFFF;
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
int64_t timestamp_in_ms = -1;
EXPECT_TRUE(synchronization::RtpToNtpMs(rtcp.back().rtp_timestamp, rtcp,
&timestamp_in_ms));
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(0, timestamp_in_ms);
}
TEST(WrapAroundTests, RtpWrapped) {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0xFFFFFFFF - 2 * kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
EXPECT_TRUE(synchronization::RtpToNtpMs(timestamp, rtcp,
&timestamp_in_ms));
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(2, timestamp_in_ms);
}
TEST(WrapAroundTests, OldRtp_RtcpsWrapped) {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= 2*kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
EXPECT_FALSE(synchronization::RtpToNtpMs(timestamp, rtcp,
&timestamp_in_ms));
}
TEST(WrapAroundTests, OldRtp_NewRtcpWrapped) {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0xFFFFFFFF;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
EXPECT_TRUE(synchronization::RtpToNtpMs(timestamp, rtcp,
&timestamp_in_ms));
// Constructed at the same time as the first RTCP and should therefore be
// mapped to zero.
EXPECT_EQ(0, timestamp_in_ms);
}
TEST(WrapAroundTests, OldRtp_OldRtcpWrapped) {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kTimestampTicksPerMs = 90;
synchronization::RtcpList rtcp;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
rtcp.push_front(synchronization::RtcpMeasurement(ntp_sec, ntp_frac,
timestamp));
ntp_frac += kOneMsInNtpFrac;
timestamp += 2*kTimestampTicksPerMs;
int64_t timestamp_in_ms = -1;
EXPECT_FALSE(synchronization::RtpToNtpMs(timestamp, rtcp,
&timestamp_in_ms));
}
} // namespace webrtc