Adds robust validation functionality to the delay estimator
Evaluated over a 51 recordings: False positives went from 4.4% to 0.7% Missed detections unchanged at 0.8% No increase in complexity, but need to re-evaluate that. TESTED=trybots, unittests, verified against Matlab implementation BUG=None R=aluebs@webrtc.org, andrew@webrtc.org Review URL: https://webrtc-codereview.appspot.com/5419004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@5296 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
parent
87ad57bc75
commit
5c64508b03
@ -23,6 +23,22 @@ static const int32_t kProbabilityOffset = 1024; // 2 in Q9.
|
||||
static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9.
|
||||
static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9.
|
||||
|
||||
// Robust validation settings
|
||||
static const float kHistogramMax = 3000.f;
|
||||
static const float kLastHistogramMax = 250.f;
|
||||
static const float kMinHistogramThreshold = 1.5f;
|
||||
static const int kMinRequiredHits = 10;
|
||||
static const int kMaxHitsWhenPossiblyNonCausal = 10;
|
||||
static const int kMaxHitsWhenPossiblyCausal = 1000;
|
||||
// TODO(bjornv): Make kMaxDelayDifference a configurable parameter, since it
|
||||
// corresponds to the filter length if the delay estimation is used in echo
|
||||
// control.
|
||||
static const int kMaxDelayDifference = 32;
|
||||
static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0.
|
||||
static const float kFractionSlope = 0.05f;
|
||||
static const float kMinFractionWhenPossiblyCausal = 0.5f;
|
||||
static const float kMinFractionWhenPossiblyNonCausal = 0.25f;
|
||||
|
||||
// Counts and returns number of bits of a 32-bit word.
|
||||
static int BitCount(uint32_t u32) {
|
||||
uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) -
|
||||
@ -59,6 +75,219 @@ static void BitCountComparison(uint32_t binary_vector,
|
||||
}
|
||||
}
|
||||
|
||||
// Collects necessary statistics for the HistogramBasedValidation(). This
|
||||
// function has to be called prior to calling HistogramBasedValidation(). The
|
||||
// statistics updated and used by the HistogramBasedValidation() are:
|
||||
// 1. the number of |candidate_hits|, which states for how long we have had the
|
||||
// same |candidate_delay|
|
||||
// 2. the |histogram| of candidate delays over time. This histogram is
|
||||
// weighted with respect to a reliability measure and time-varying to cope
|
||||
// with possible delay shifts.
|
||||
// For further description see commented code.
|
||||
//
|
||||
// Inputs:
|
||||
// - candidate_delay : The delay to validate.
|
||||
// - valley_depth_q14 : The cost function has a valley/minimum at the
|
||||
// |candidate_delay| location. |valley_depth_q14| is the
|
||||
// cost function difference between the minimum and
|
||||
// maximum locations. The value is in the Q14 domain.
|
||||
// - valley_level_q14 : Is the cost function value at the minimum, in Q14.
|
||||
static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self,
|
||||
int candidate_delay,
|
||||
int32_t valley_depth_q14,
|
||||
int32_t valley_level_q14) {
|
||||
const float valley_depth = valley_depth_q14 * kQ14Scaling;
|
||||
float decrease_in_last_set = valley_depth;
|
||||
const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ?
|
||||
kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal;
|
||||
int i = 0;
|
||||
|
||||
// Reset |candidate_hits| if we have a new candidate.
|
||||
if (candidate_delay != self->last_candidate_delay) {
|
||||
self->candidate_hits = 0;
|
||||
self->last_candidate_delay = candidate_delay;
|
||||
}
|
||||
self->candidate_hits++;
|
||||
|
||||
// The |histogram| is updated differently across the bins.
|
||||
// 1. The |candidate_delay| histogram bin is increased with the
|
||||
// |valley_depth|, which is a simple measure of how reliable the
|
||||
// |candidate_delay| is. The histogram is not increased above
|
||||
// |kHistogramMax|.
|
||||
self->histogram[candidate_delay] += valley_depth;
|
||||
if (self->histogram[candidate_delay] > kHistogramMax) {
|
||||
self->histogram[candidate_delay] = kHistogramMax;
|
||||
}
|
||||
// 2. The histogram bins in the neighborhood of |candidate_delay| are
|
||||
// unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}.
|
||||
// 3. The histogram bins in the neighborhood of |last_delay| are decreased
|
||||
// with |decrease_in_last_set|. This value equals the difference between
|
||||
// the cost function values at the locations |candidate_delay| and
|
||||
// |last_delay| until we reach |max_hits_for_slow_change| consecutive hits
|
||||
// at the |candidate_delay|. If we exceed this amount of hits the
|
||||
// |candidate_delay| is a "potential" candidate and we start decreasing
|
||||
// these histogram bins more rapidly with |valley_depth|.
|
||||
if (self->candidate_hits < max_hits_for_slow_change) {
|
||||
decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] -
|
||||
valley_level_q14) * kQ14Scaling;
|
||||
}
|
||||
// 4. All other bins are decreased with |valley_depth|.
|
||||
// TODO(bjornv): Investigate how to make this loop more efficient. Split up
|
||||
// the loop? Remove parts that doesn't add too much.
|
||||
for (i = 0; i < self->farend->history_size; ++i) {
|
||||
int is_in_last_set = (i >= self->last_delay - 2) &&
|
||||
(i <= self->last_delay + 1) && (i != candidate_delay);
|
||||
int is_in_candidate_set = (i >= candidate_delay - 2) &&
|
||||
(i <= candidate_delay + 1);
|
||||
self->histogram[i] -= decrease_in_last_set * is_in_last_set +
|
||||
valley_depth * (!is_in_last_set && !is_in_candidate_set);
|
||||
// 5. No histogram bin can go below 0.
|
||||
if (self->histogram[i] < 0) {
|
||||
self->histogram[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(),
|
||||
// based on a mix of counting concurring hits with a modified histogram
|
||||
// of recent delay estimates. In brief a candidate is valid (returns 1) if it
|
||||
// is the most likely according to the histogram. There are a couple of
|
||||
// exceptions that are worth mentioning:
|
||||
// 1. If the |candidate_delay| < |last_delay| it can be that we are in a
|
||||
// non-causal state, breaking a possible echo control algorithm. Hence, we
|
||||
// open up for a quicker change by allowing the change even if the
|
||||
// |candidate_delay| is not the most likely one according to the histogram.
|
||||
// 2. There's a minimum number of hits (kMinRequiredHits) and the histogram
|
||||
// value has to reached a minimum (kMinHistogramThreshold) to be valid.
|
||||
// 3. The action is also depending on the filter length used for echo control.
|
||||
// If the delay difference is larger than what the filter can capture, we
|
||||
// also move quicker towards a change.
|
||||
// For further description see commented code.
|
||||
//
|
||||
// Input:
|
||||
// - candidate_delay : The delay to validate.
|
||||
//
|
||||
// Return value:
|
||||
// - is_histogram_valid : 1 - The |candidate_delay| is valid.
|
||||
// 0 - Otherwise.
|
||||
static int HistogramBasedValidation(const BinaryDelayEstimator* self,
|
||||
int candidate_delay) {
|
||||
float fraction = 1.f;
|
||||
float histogram_threshold = self->histogram[self->compare_delay];
|
||||
const int delay_difference = candidate_delay - self->last_delay;
|
||||
int is_histogram_valid = 0;
|
||||
|
||||
// The histogram based validation of |candidate_delay| is done by comparing
|
||||
// the |histogram| at bin |candidate_delay| with a |histogram_threshold|.
|
||||
// This |histogram_threshold| equals a |fraction| of the |histogram| at bin
|
||||
// |last_delay|. The |fraction| is a piecewise linear function of the
|
||||
// |delay_difference| between the |candidate_delay| and the |last_delay|
|
||||
// allowing for a quicker move if
|
||||
// i) a potential echo control filter can not handle these large differences.
|
||||
// ii) keeping |last_delay| instead of updating to |candidate_delay| could
|
||||
// force an echo control into a non-causal state.
|
||||
// We further require the histogram to have reached a minimum value of
|
||||
// |kMinHistogramThreshold|. In addition, we also require the number of
|
||||
// |candidate_hits| to be more than |kMinRequiredHits| to remove spurious
|
||||
// values.
|
||||
|
||||
// Calculate a comparison histogram value (|histogram_threshold|) that is
|
||||
// depending on the distance between the |candidate_delay| and |last_delay|.
|
||||
// TODO(bjornv): How much can we gain by turning the fraction calculation
|
||||
// into tables?
|
||||
if (delay_difference >= kMaxDelayDifference) {
|
||||
fraction = 1.f - kFractionSlope * (delay_difference - kMaxDelayDifference);
|
||||
fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction :
|
||||
kMinFractionWhenPossiblyCausal);
|
||||
} else if (delay_difference < 0) {
|
||||
fraction = kMinFractionWhenPossiblyNonCausal -
|
||||
kFractionSlope * delay_difference;
|
||||
fraction = (fraction > 1.f ? 1.f : fraction);
|
||||
}
|
||||
histogram_threshold *= fraction;
|
||||
histogram_threshold = (histogram_threshold > kMinHistogramThreshold ?
|
||||
histogram_threshold : kMinHistogramThreshold);
|
||||
|
||||
is_histogram_valid =
|
||||
(self->histogram[candidate_delay] >= histogram_threshold) &&
|
||||
(self->candidate_hits > kMinRequiredHits);
|
||||
|
||||
return is_histogram_valid;
|
||||
}
|
||||
|
||||
// Performs a robust validation of the |candidate_delay| estimated in
|
||||
// WebRtc_ProcessBinarySpectrum(). The algorithm takes the
|
||||
// |is_instantaneous_valid| and the |is_histogram_valid| and combines them
|
||||
// into a robust validation. The HistogramBasedValidation() has to be called
|
||||
// prior to this call.
|
||||
// For further description on how the combination is done, see commented code.
|
||||
//
|
||||
// Inputs:
|
||||
// - candidate_delay : The delay to validate.
|
||||
// - is_instantaneous_valid : The instantaneous validation performed in
|
||||
// WebRtc_ProcessBinarySpectrum().
|
||||
// - is_histogram_valid : The histogram based validation.
|
||||
//
|
||||
// Return value:
|
||||
// - is_robust : 1 - The candidate_delay is valid according to a
|
||||
// combination of the two inputs.
|
||||
// : 0 - Otherwise.
|
||||
static int RobustValidation(const BinaryDelayEstimator* self,
|
||||
int candidate_delay,
|
||||
int is_instantaneous_valid,
|
||||
int is_histogram_valid) {
|
||||
int is_robust = 0;
|
||||
|
||||
// The final robust validation is based on the two algorithms; 1) the
|
||||
// |is_instantaneous_valid| and 2) the histogram based with result stored in
|
||||
// |is_histogram_valid|.
|
||||
// i) Before we actually have a valid estimate (|last_delay| == -2), we say
|
||||
// a candidate is valid if either algorithm states so
|
||||
// (|is_instantaneous_valid| OR |is_histogram_valid|).
|
||||
is_robust = (self->last_delay < 0) &&
|
||||
(is_instantaneous_valid || is_histogram_valid);
|
||||
// ii) Otherwise, we need both algorithms to be certain
|
||||
// (|is_instantaneous_valid| AND |is_histogram_valid|)
|
||||
is_robust |= is_instantaneous_valid && is_histogram_valid;
|
||||
// iii) With one exception, i.e., the histogram based algorithm can overrule
|
||||
// the instantaneous one if |is_histogram_valid| = 1 and the histogram
|
||||
// is significantly strong.
|
||||
is_robust |= is_histogram_valid &&
|
||||
(self->histogram[candidate_delay] > self->last_delay_histogram);
|
||||
|
||||
return is_robust;
|
||||
}
|
||||
|
||||
// UpdatesMadeUponChange() makes two parameter updates only done when we have a
|
||||
// change/jump in delay. For further description, see commented code.
|
||||
//
|
||||
// Inputs:
|
||||
// - candidate_delay : The delay to validate.
|
||||
static void UpdatesMadeUponChange(BinaryDelayEstimator* self,
|
||||
int candidate_delay) {
|
||||
int i = 0;
|
||||
|
||||
self->last_delay_histogram =
|
||||
(self->histogram[candidate_delay] > kLastHistogramMax ?
|
||||
kLastHistogramMax : self->histogram[candidate_delay]);
|
||||
// TODO(bjornv): Investigate if we can simplify to only change
|
||||
// self->histogram[self->last_delay] instead of looping through all histogram
|
||||
// bins. Looping through all bins is to ensure
|
||||
// self->histogram[candidate_delay] is currently the most likely bin.
|
||||
// Otherwise we might jump back too easy to a neighbor even for spurious
|
||||
// changes.
|
||||
// Since we may jump to a new delay even if it is not the most likely
|
||||
// according to the histogram, we here adjust the histogram to make sure the
|
||||
// |candidate_delay| now is the most likely one.
|
||||
if (self->histogram[candidate_delay] < self->histogram[self->compare_delay]) {
|
||||
for (i = 0; i < self->farend->history_size; ++i) {
|
||||
if (self->histogram[i] > self->histogram[candidate_delay]) {
|
||||
self->histogram[i] = self->histogram[candidate_delay];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
|
||||
|
||||
if (self == NULL) {
|
||||
@ -139,6 +368,9 @@ void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) {
|
||||
free(self->binary_near_history);
|
||||
self->binary_near_history = NULL;
|
||||
|
||||
free(self->histogram);
|
||||
self->histogram = NULL;
|
||||
|
||||
// BinaryDelayEstimator does not have ownership of |farend|, hence we do not
|
||||
// free the memory here. That should be handled separately by the user.
|
||||
self->farend = NULL;
|
||||
@ -161,8 +393,11 @@ BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
|
||||
self->farend = farend;
|
||||
self->near_history_size = lookahead + 1;
|
||||
|
||||
// Allocate memory for spectrum buffers.
|
||||
self->mean_bit_counts = malloc(farend->history_size * sizeof(int32_t));
|
||||
// Allocate memory for spectrum buffers. The extra array element in
|
||||
// |mean_bit_counts| and |histogram| is a dummy element only used while
|
||||
// |last_delay| == -2, i.e., before we have a valid estimate.
|
||||
self->mean_bit_counts =
|
||||
malloc((farend->history_size + 1) * sizeof(int32_t));
|
||||
malloc_fail |= (self->mean_bit_counts == NULL);
|
||||
|
||||
self->bit_counts = malloc(farend->history_size * sizeof(int32_t));
|
||||
@ -172,6 +407,9 @@ BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
|
||||
self->binary_near_history = malloc((lookahead + 1) * sizeof(uint32_t));
|
||||
malloc_fail |= (self->binary_near_history == NULL);
|
||||
|
||||
self->histogram = malloc((farend->history_size + 1) * sizeof(float));
|
||||
malloc_fail |= (self->histogram == NULL);
|
||||
|
||||
if (malloc_fail) {
|
||||
WebRtc_FreeBinaryDelayEstimator(self);
|
||||
self = NULL;
|
||||
@ -188,8 +426,9 @@ void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) {
|
||||
memset(self->bit_counts, 0, sizeof(int32_t) * self->farend->history_size);
|
||||
memset(self->binary_near_history, 0,
|
||||
sizeof(uint32_t) * self->near_history_size);
|
||||
for (i = 0; i < self->farend->history_size; ++i) {
|
||||
for (i = 0; i <= self->farend->history_size; ++i) {
|
||||
self->mean_bit_counts[i] = (20 << 9); // 20 in Q9.
|
||||
self->histogram[i] = 0.f;
|
||||
}
|
||||
self->minimum_probability = (32 << 9); // 32 in Q9.
|
||||
self->last_delay_probability = (32 << 9); // 32 in Q9.
|
||||
@ -198,6 +437,10 @@ void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) {
|
||||
self->last_delay = -2;
|
||||
|
||||
self->robust_validation_enabled = 0; // Disabled by default.
|
||||
self->last_candidate_delay = -2;
|
||||
self->compare_delay = self->farend->history_size;
|
||||
self->candidate_hits = 0;
|
||||
self->last_delay_histogram = 0.f;
|
||||
}
|
||||
|
||||
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
|
||||
@ -298,11 +541,24 @@ int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
|
||||
((value_best_candidate < self->minimum_probability) ||
|
||||
(value_best_candidate < self->last_delay_probability)));
|
||||
|
||||
if (self->robust_validation_enabled) {
|
||||
int is_histogram_valid = 0;
|
||||
UpdateRobustValidationStatistics(self, candidate_delay, valley_depth,
|
||||
value_best_candidate);
|
||||
is_histogram_valid = HistogramBasedValidation(self, candidate_delay);
|
||||
valid_candidate = RobustValidation(self, candidate_delay, valid_candidate,
|
||||
is_histogram_valid);
|
||||
|
||||
}
|
||||
if (valid_candidate) {
|
||||
if (candidate_delay != self->last_delay) {
|
||||
UpdatesMadeUponChange(self, candidate_delay);
|
||||
}
|
||||
self->last_delay = candidate_delay;
|
||||
if (value_best_candidate < self->last_delay_probability) {
|
||||
self->last_delay_probability = value_best_candidate;
|
||||
}
|
||||
self->compare_delay = self->last_delay;
|
||||
}
|
||||
|
||||
return self->last_delay;
|
||||
|
@ -44,6 +44,11 @@ typedef struct {
|
||||
|
||||
// Robust validation
|
||||
int robust_validation_enabled;
|
||||
int last_candidate_delay;
|
||||
int compare_delay;
|
||||
int candidate_hits;
|
||||
float* histogram;
|
||||
float last_delay_histogram;
|
||||
|
||||
// Far-end binary spectrum history buffer etc.
|
||||
BinaryDelayEstimatorFarend* farend;
|
||||
|
Loading…
x
Reference in New Issue
Block a user