Remove the different block lengths in ns_core
Relanding the CL: https://webrtc-codereview.appspot.com/30539004/ It had to be reverted because some development code was uploaded by mistake. TBR=bjornv@webrtc.org BUG=webrtc:3811 Review URL: https://webrtc-codereview.appspot.com/28589005 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7307 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
parent
5088377d70
commit
384d05f362
@ -90,24 +90,18 @@ int WebRtcNs_InitCore(NSinst_t* inst, uint32_t fs) {
|
||||
if (fs == 8000) {
|
||||
// We only support 10ms frames
|
||||
inst->blockLen = 80;
|
||||
inst->blockLen10ms = 80;
|
||||
inst->anaLen = 128;
|
||||
inst->window = kBlocks80w128;
|
||||
inst->outLen = 0;
|
||||
} else if (fs == 16000) {
|
||||
// We only support 10ms frames
|
||||
inst->blockLen = 160;
|
||||
inst->blockLen10ms = 160;
|
||||
inst->anaLen = 256;
|
||||
inst->window = kBlocks160w256;
|
||||
inst->outLen = 0;
|
||||
} else if (fs == 32000) {
|
||||
// We only support 10ms frames
|
||||
inst->blockLen = 160;
|
||||
inst->blockLen10ms = 160;
|
||||
inst->anaLen = 256;
|
||||
inst->window = kBlocks160w256;
|
||||
inst->outLen = 0;
|
||||
}
|
||||
inst->magnLen = inst->anaLen / 2 + 1; // Number of frequency bins
|
||||
|
||||
@ -148,13 +142,13 @@ int WebRtcNs_InitCore(NSinst_t* inst, uint32_t fs) {
|
||||
// initialize variables for new method
|
||||
inst->priorSpeechProb = (float)0.5; // prior prob for speech/noise
|
||||
for (i = 0; i < HALF_ANAL_BLOCKL; i++) {
|
||||
inst->magnPrev[i] = (float)0.0; // previous mag spectrum
|
||||
inst->magnPrev[i] = (float)0.0; // previous mag spectrum
|
||||
inst->noisePrev[i] = (float)0.0; // previous noise-spectrum
|
||||
inst->logLrtTimeAvg[i] =
|
||||
LRT_FEATURE_THR; // smooth LR ratio (same as threshold)
|
||||
LRT_FEATURE_THR; // smooth LR ratio (same as threshold)
|
||||
inst->magnAvgPause[i] = (float)0.0; // conservative noise spectrum estimate
|
||||
inst->speechProb[i] = (float)0.0; // for estimation of HB in second pass
|
||||
inst->initMagnEst[i] = (float)0.0; // initial average mag spectrum
|
||||
inst->speechProb[i] = (float)0.0; // for estimation of HB in second pass
|
||||
inst->initMagnEst[i] = (float)0.0; // initial average mag spectrum
|
||||
}
|
||||
|
||||
// feature quantities
|
||||
@ -215,8 +209,6 @@ int WebRtcNs_InitCore(NSinst_t* inst, uint32_t fs) {
|
||||
// default mode
|
||||
WebRtcNs_set_policy_core(inst, 0);
|
||||
|
||||
memset(inst->outBuf, 0, sizeof(float) * 3 * BLOCKL_MAX);
|
||||
|
||||
inst->initFlag = 1;
|
||||
return 0;
|
||||
}
|
||||
@ -789,250 +781,245 @@ int WebRtcNs_AnalyzeCore(NSinst_t* inst, float* speechFrame) {
|
||||
|
||||
// update analysis buffer for L band
|
||||
memcpy(inst->analyzeBuf,
|
||||
inst->analyzeBuf + inst->blockLen10ms,
|
||||
sizeof(float) * (inst->anaLen - inst->blockLen10ms));
|
||||
memcpy(inst->analyzeBuf + inst->anaLen - inst->blockLen10ms,
|
||||
inst->analyzeBuf + inst->blockLen,
|
||||
sizeof(float) * (inst->anaLen - inst->blockLen));
|
||||
memcpy(inst->analyzeBuf + inst->anaLen - inst->blockLen,
|
||||
speechFrame,
|
||||
sizeof(float) * inst->blockLen10ms);
|
||||
sizeof(float) * inst->blockLen);
|
||||
|
||||
// check if processing needed
|
||||
if (inst->outLen == 0) {
|
||||
// windowing
|
||||
energy = 0.0;
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
winData[i] = inst->window[i] * inst->analyzeBuf[i];
|
||||
energy += winData[i] * winData[i];
|
||||
}
|
||||
if (energy == 0.0) {
|
||||
// we want to avoid updating statistics in this case:
|
||||
// Updating feature statistics when we have zeros only will cause
|
||||
// thresholds to move towards zero signal situations. This in turn has the
|
||||
// effect that once the signal is "turned on" (non-zero values) everything
|
||||
// will be treated as speech and there is no noise suppression effect.
|
||||
// Depending on the duration of the inactive signal it takes a
|
||||
// considerable amount of time for the system to learn what is noise and
|
||||
// what is speech.
|
||||
return 0;
|
||||
}
|
||||
// windowing
|
||||
energy = 0.0;
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
winData[i] = inst->window[i] * inst->analyzeBuf[i];
|
||||
energy += winData[i] * winData[i];
|
||||
}
|
||||
if (energy == 0.0) {
|
||||
// we want to avoid updating statistics in this case:
|
||||
// Updating feature statistics when we have zeros only will cause
|
||||
// thresholds to move towards zero signal situations. This in turn has the
|
||||
// effect that once the signal is "turned on" (non-zero values) everything
|
||||
// will be treated as speech and there is no noise suppression effect.
|
||||
// Depending on the duration of the inactive signal it takes a
|
||||
// considerable amount of time for the system to learn what is noise and
|
||||
// what is speech.
|
||||
return 0;
|
||||
}
|
||||
|
||||
//
|
||||
inst->blockInd++; // Update the block index only when we process a block.
|
||||
// FFT
|
||||
WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);
|
||||
//
|
||||
inst->blockInd++; // Update the block index only when we process a block.
|
||||
// FFT
|
||||
WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);
|
||||
|
||||
imag[0] = 0;
|
||||
real[0] = winData[0];
|
||||
magn[0] = (float)(fabs(real[0]) + 1.0f);
|
||||
imag[inst->magnLen - 1] = 0;
|
||||
real[inst->magnLen - 1] = winData[1];
|
||||
magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
|
||||
signalEnergy = (float)(real[0] * real[0]) +
|
||||
(float)(real[inst->magnLen - 1] * real[inst->magnLen - 1]);
|
||||
sumMagn = magn[0] + magn[inst->magnLen - 1];
|
||||
imag[0] = 0;
|
||||
real[0] = winData[0];
|
||||
magn[0] = (float)(fabs(real[0]) + 1.0f);
|
||||
imag[inst->magnLen - 1] = 0;
|
||||
real[inst->magnLen - 1] = winData[1];
|
||||
magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
|
||||
signalEnergy = (float)(real[0] * real[0]) +
|
||||
(float)(real[inst->magnLen - 1] * real[inst->magnLen - 1]);
|
||||
sumMagn = magn[0] + magn[inst->magnLen - 1];
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
tmpFloat2 = log((float)(inst->magnLen - 1));
|
||||
sum_log_i = tmpFloat2;
|
||||
sum_log_i_square = tmpFloat2 * tmpFloat2;
|
||||
tmpFloat1 = log(magn[inst->magnLen - 1]);
|
||||
sum_log_magn = tmpFloat1;
|
||||
sum_log_i_log_magn = tmpFloat2 * tmpFloat1;
|
||||
}
|
||||
for (i = 1; i < inst->magnLen - 1; i++) {
|
||||
real[i] = winData[2 * i];
|
||||
imag[i] = winData[2 * i + 1];
|
||||
// magnitude spectrum
|
||||
fTmp = real[i] * real[i];
|
||||
fTmp += imag[i] * imag[i];
|
||||
signalEnergy += fTmp;
|
||||
magn[i] = ((float)sqrt(fTmp)) + 1.0f;
|
||||
sumMagn += magn[i];
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
tmpFloat2 = log((float)(inst->magnLen - 1));
|
||||
sum_log_i = tmpFloat2;
|
||||
sum_log_i_square = tmpFloat2 * tmpFloat2;
|
||||
tmpFloat1 = log(magn[inst->magnLen - 1]);
|
||||
sum_log_magn = tmpFloat1;
|
||||
sum_log_i_log_magn = tmpFloat2 * tmpFloat1;
|
||||
}
|
||||
for (i = 1; i < inst->magnLen - 1; i++) {
|
||||
real[i] = winData[2 * i];
|
||||
imag[i] = winData[2 * i + 1];
|
||||
// magnitude spectrum
|
||||
fTmp = real[i] * real[i];
|
||||
fTmp += imag[i] * imag[i];
|
||||
signalEnergy += fTmp;
|
||||
magn[i] = ((float)sqrt(fTmp)) + 1.0f;
|
||||
sumMagn += magn[i];
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
if (i >= kStartBand) {
|
||||
tmpFloat2 = log((float)i);
|
||||
sum_log_i += tmpFloat2;
|
||||
sum_log_i_square += tmpFloat2 * tmpFloat2;
|
||||
tmpFloat1 = log(magn[i]);
|
||||
sum_log_magn += tmpFloat1;
|
||||
sum_log_i_log_magn += tmpFloat2 * tmpFloat1;
|
||||
}
|
||||
if (i >= kStartBand) {
|
||||
tmpFloat2 = log((float)i);
|
||||
sum_log_i += tmpFloat2;
|
||||
sum_log_i_square += tmpFloat2 * tmpFloat2;
|
||||
tmpFloat1 = log(magn[i]);
|
||||
sum_log_magn += tmpFloat1;
|
||||
sum_log_i_log_magn += tmpFloat2 * tmpFloat1;
|
||||
}
|
||||
}
|
||||
signalEnergy = signalEnergy / ((float)inst->magnLen);
|
||||
inst->signalEnergy = signalEnergy;
|
||||
inst->sumMagn = sumMagn;
|
||||
}
|
||||
signalEnergy = signalEnergy / ((float)inst->magnLen);
|
||||
inst->signalEnergy = signalEnergy;
|
||||
inst->sumMagn = sumMagn;
|
||||
|
||||
// compute spectral flatness on input spectrum
|
||||
WebRtcNs_ComputeSpectralFlatness(inst, magn);
|
||||
// quantile noise estimate
|
||||
WebRtcNs_NoiseEstimation(inst, magn, noise);
|
||||
// compute simplified noise model during startup
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
// Estimate White noise
|
||||
inst->whiteNoiseLevel +=
|
||||
sumMagn / ((float)inst->magnLen) * inst->overdrive;
|
||||
// Estimate Pink noise parameters
|
||||
tmpFloat1 = sum_log_i_square * ((float)(inst->magnLen - kStartBand));
|
||||
tmpFloat1 -= (sum_log_i * sum_log_i);
|
||||
tmpFloat2 =
|
||||
(sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
|
||||
tmpFloat3 = tmpFloat2 / tmpFloat1;
|
||||
// Constrain the estimated spectrum to be positive
|
||||
if (tmpFloat3 < 0.0f) {
|
||||
tmpFloat3 = 0.0f;
|
||||
}
|
||||
inst->pinkNoiseNumerator += tmpFloat3;
|
||||
tmpFloat2 = (sum_log_i * sum_log_magn);
|
||||
tmpFloat2 -= ((float)(inst->magnLen - kStartBand)) * sum_log_i_log_magn;
|
||||
tmpFloat3 = tmpFloat2 / tmpFloat1;
|
||||
// Constrain the pink noise power to be in the interval [0, 1];
|
||||
if (tmpFloat3 < 0.0f) {
|
||||
tmpFloat3 = 0.0f;
|
||||
}
|
||||
if (tmpFloat3 > 1.0f) {
|
||||
tmpFloat3 = 1.0f;
|
||||
}
|
||||
inst->pinkNoiseExp += tmpFloat3;
|
||||
// compute spectral flatness on input spectrum
|
||||
WebRtcNs_ComputeSpectralFlatness(inst, magn);
|
||||
// quantile noise estimate
|
||||
WebRtcNs_NoiseEstimation(inst, magn, noise);
|
||||
// compute simplified noise model during startup
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
// Estimate White noise
|
||||
inst->whiteNoiseLevel += sumMagn / ((float)inst->magnLen) * inst->overdrive;
|
||||
// Estimate Pink noise parameters
|
||||
tmpFloat1 = sum_log_i_square * ((float)(inst->magnLen - kStartBand));
|
||||
tmpFloat1 -= (sum_log_i * sum_log_i);
|
||||
tmpFloat2 =
|
||||
(sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
|
||||
tmpFloat3 = tmpFloat2 / tmpFloat1;
|
||||
// Constrain the estimated spectrum to be positive
|
||||
if (tmpFloat3 < 0.0f) {
|
||||
tmpFloat3 = 0.0f;
|
||||
}
|
||||
inst->pinkNoiseNumerator += tmpFloat3;
|
||||
tmpFloat2 = (sum_log_i * sum_log_magn);
|
||||
tmpFloat2 -= ((float)(inst->magnLen - kStartBand)) * sum_log_i_log_magn;
|
||||
tmpFloat3 = tmpFloat2 / tmpFloat1;
|
||||
// Constrain the pink noise power to be in the interval [0, 1];
|
||||
if (tmpFloat3 < 0.0f) {
|
||||
tmpFloat3 = 0.0f;
|
||||
}
|
||||
if (tmpFloat3 > 1.0f) {
|
||||
tmpFloat3 = 1.0f;
|
||||
}
|
||||
inst->pinkNoiseExp += tmpFloat3;
|
||||
|
||||
// Calculate frequency independent parts of parametric noise estimate.
|
||||
if (inst->pinkNoiseExp > 0.0f) {
|
||||
// Calculate frequency independent parts of parametric noise estimate.
|
||||
if (inst->pinkNoiseExp > 0.0f) {
|
||||
// Use pink noise estimate
|
||||
parametric_num =
|
||||
exp(inst->pinkNoiseNumerator / (float)(inst->blockInd + 1));
|
||||
parametric_num *= (float)(inst->blockInd + 1);
|
||||
parametric_exp = inst->pinkNoiseExp / (float)(inst->blockInd + 1);
|
||||
}
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
// Estimate the background noise using the white and pink noise
|
||||
// parameters
|
||||
if (inst->pinkNoiseExp == 0.0f) {
|
||||
// Use white noise estimate
|
||||
inst->parametricNoise[i] = inst->whiteNoiseLevel;
|
||||
} else {
|
||||
// Use pink noise estimate
|
||||
parametric_num =
|
||||
exp(inst->pinkNoiseNumerator / (float)(inst->blockInd + 1));
|
||||
parametric_num *= (float)(inst->blockInd + 1);
|
||||
parametric_exp = inst->pinkNoiseExp / (float)(inst->blockInd + 1);
|
||||
}
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
// Estimate the background noise using the white and pink noise
|
||||
// parameters
|
||||
if (inst->pinkNoiseExp == 0.0f) {
|
||||
// Use white noise estimate
|
||||
inst->parametricNoise[i] = inst->whiteNoiseLevel;
|
||||
} else {
|
||||
// Use pink noise estimate
|
||||
float use_band = (float)(i < kStartBand ? kStartBand : i);
|
||||
inst->parametricNoise[i] =
|
||||
parametric_num / pow(use_band, parametric_exp);
|
||||
}
|
||||
// Weight quantile noise with modeled noise
|
||||
noise[i] *= (inst->blockInd);
|
||||
tmpFloat2 =
|
||||
inst->parametricNoise[i] * (END_STARTUP_SHORT - inst->blockInd);
|
||||
noise[i] += (tmpFloat2 / (float)(inst->blockInd + 1));
|
||||
noise[i] /= END_STARTUP_SHORT;
|
||||
float use_band = (float)(i < kStartBand ? kStartBand : i);
|
||||
inst->parametricNoise[i] =
|
||||
parametric_num / pow(use_band, parametric_exp);
|
||||
}
|
||||
// Weight quantile noise with modeled noise
|
||||
noise[i] *= (inst->blockInd);
|
||||
tmpFloat2 =
|
||||
inst->parametricNoise[i] * (END_STARTUP_SHORT - inst->blockInd);
|
||||
noise[i] += (tmpFloat2 / (float)(inst->blockInd + 1));
|
||||
noise[i] /= END_STARTUP_SHORT;
|
||||
}
|
||||
// compute average signal during END_STARTUP_LONG time:
|
||||
// used to normalize spectral difference measure
|
||||
if (inst->blockInd < END_STARTUP_LONG) {
|
||||
inst->featureData[5] *= inst->blockInd;
|
||||
inst->featureData[5] += signalEnergy;
|
||||
inst->featureData[5] /= (inst->blockInd + 1);
|
||||
}
|
||||
}
|
||||
// compute average signal during END_STARTUP_LONG time:
|
||||
// used to normalize spectral difference measure
|
||||
if (inst->blockInd < END_STARTUP_LONG) {
|
||||
inst->featureData[5] *= inst->blockInd;
|
||||
inst->featureData[5] += signalEnergy;
|
||||
inst->featureData[5] /= (inst->blockInd + 1);
|
||||
}
|
||||
|
||||
// start processing at frames == converged+1
|
||||
// STEP 1: compute prior and post snr based on quantile noise est
|
||||
// compute DD estimate of prior SNR: needed for new method
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
// post snr
|
||||
snrLocPost[i] = (float)0.0;
|
||||
if (magn[i] > noise[i]) {
|
||||
snrLocPost[i] = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
|
||||
}
|
||||
// previous post snr
|
||||
// previous estimate: based on previous frame with gain filter
|
||||
inst->previousEstimateStsa[i] = inst->magnPrev[i] /
|
||||
(inst->noisePrev[i] + (float)0.0001) *
|
||||
(inst->smooth[i]);
|
||||
// DD estimate is sum of two terms: current estimate and previous estimate
|
||||
// directed decision update of snrPrior
|
||||
snrLocPrior[i] = DD_PR_SNR * inst->previousEstimateStsa[i] +
|
||||
((float)1.0 - DD_PR_SNR) * snrLocPost[i];
|
||||
// post and prior snr needed for step 2
|
||||
} // end of loop over freqs
|
||||
// done with step 1: dd computation of prior and post snr
|
||||
// start processing at frames == converged+1
|
||||
// STEP 1: compute prior and post snr based on quantile noise est
|
||||
// compute DD estimate of prior SNR: needed for new method
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
// post snr
|
||||
snrLocPost[i] = (float)0.0;
|
||||
if (magn[i] > noise[i]) {
|
||||
snrLocPost[i] = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
|
||||
}
|
||||
// previous post snr
|
||||
// previous estimate: based on previous frame with gain filter
|
||||
inst->previousEstimateStsa[i] = inst->magnPrev[i] /
|
||||
(inst->noisePrev[i] + (float)0.0001) *
|
||||
(inst->smooth[i]);
|
||||
// DD estimate is sum of two terms: current estimate and previous estimate
|
||||
// directed decision update of snrPrior
|
||||
snrLocPrior[i] = DD_PR_SNR * inst->previousEstimateStsa[i] +
|
||||
((float)1.0 - DD_PR_SNR) * snrLocPost[i];
|
||||
// post and prior snr needed for step 2
|
||||
} // end of loop over freqs
|
||||
// done with step 1: dd computation of prior and post snr
|
||||
|
||||
// STEP 2: compute speech/noise likelihood
|
||||
// compute difference of input spectrum with learned/estimated noise
|
||||
// spectrum
|
||||
WebRtcNs_ComputeSpectralDifference(inst, magn);
|
||||
// compute histograms for parameter decisions (thresholds and weights for
|
||||
// features)
|
||||
// parameters are extracted once every window time
|
||||
// (=inst->modelUpdatePars[1])
|
||||
if (updateParsFlag >= 1) {
|
||||
// counter update
|
||||
inst->modelUpdatePars[3]--;
|
||||
// update histogram
|
||||
if (inst->modelUpdatePars[3] > 0) {
|
||||
WebRtcNs_FeatureParameterExtraction(inst, 0);
|
||||
}
|
||||
// compute model parameters
|
||||
if (inst->modelUpdatePars[3] == 0) {
|
||||
WebRtcNs_FeatureParameterExtraction(inst, 1);
|
||||
inst->modelUpdatePars[3] = inst->modelUpdatePars[1];
|
||||
// if wish to update only once, set flag to zero
|
||||
if (updateParsFlag == 1) {
|
||||
inst->modelUpdatePars[0] = 0;
|
||||
} else {
|
||||
// update every window:
|
||||
// get normalization for spectral difference for next window estimate
|
||||
inst->featureData[6] =
|
||||
inst->featureData[6] / ((float)inst->modelUpdatePars[1]);
|
||||
inst->featureData[5] =
|
||||
(float)0.5 * (inst->featureData[6] + inst->featureData[5]);
|
||||
inst->featureData[6] = (float)0.0;
|
||||
}
|
||||
// STEP 2: compute speech/noise likelihood
|
||||
// compute difference of input spectrum with learned/estimated noise
|
||||
// spectrum
|
||||
WebRtcNs_ComputeSpectralDifference(inst, magn);
|
||||
// compute histograms for parameter decisions (thresholds and weights for
|
||||
// features)
|
||||
// parameters are extracted once every window time
|
||||
// (=inst->modelUpdatePars[1])
|
||||
if (updateParsFlag >= 1) {
|
||||
// counter update
|
||||
inst->modelUpdatePars[3]--;
|
||||
// update histogram
|
||||
if (inst->modelUpdatePars[3] > 0) {
|
||||
WebRtcNs_FeatureParameterExtraction(inst, 0);
|
||||
}
|
||||
// compute model parameters
|
||||
if (inst->modelUpdatePars[3] == 0) {
|
||||
WebRtcNs_FeatureParameterExtraction(inst, 1);
|
||||
inst->modelUpdatePars[3] = inst->modelUpdatePars[1];
|
||||
// if wish to update only once, set flag to zero
|
||||
if (updateParsFlag == 1) {
|
||||
inst->modelUpdatePars[0] = 0;
|
||||
} else {
|
||||
// update every window:
|
||||
// get normalization for spectral difference for next window estimate
|
||||
inst->featureData[6] =
|
||||
inst->featureData[6] / ((float)inst->modelUpdatePars[1]);
|
||||
inst->featureData[5] =
|
||||
(float)0.5 * (inst->featureData[6] + inst->featureData[5]);
|
||||
inst->featureData[6] = (float)0.0;
|
||||
}
|
||||
}
|
||||
// compute speech/noise probability
|
||||
WebRtcNs_SpeechNoiseProb(inst, inst->speechProb, snrLocPrior, snrLocPost);
|
||||
// time-avg parameter for noise update
|
||||
}
|
||||
// compute speech/noise probability
|
||||
WebRtcNs_SpeechNoiseProb(inst, inst->speechProb, snrLocPrior, snrLocPost);
|
||||
// time-avg parameter for noise update
|
||||
gammaNoiseTmp = NOISE_UPDATE;
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
probSpeech = inst->speechProb[i];
|
||||
probNonSpeech = (float)1.0 - probSpeech;
|
||||
// temporary noise update:
|
||||
// use it for speech frames if update value is less than previous
|
||||
noiseUpdateTmp =
|
||||
gammaNoiseTmp * inst->noisePrev[i] +
|
||||
((float)1.0 - gammaNoiseTmp) *
|
||||
(probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
|
||||
//
|
||||
// time-constant based on speech/noise state
|
||||
gammaNoiseOld = gammaNoiseTmp;
|
||||
gammaNoiseTmp = NOISE_UPDATE;
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
probSpeech = inst->speechProb[i];
|
||||
probNonSpeech = (float)1.0 - probSpeech;
|
||||
// temporary noise update:
|
||||
// use it for speech frames if update value is less than previous
|
||||
noiseUpdateTmp =
|
||||
// increase gamma (i.e., less noise update) for frame likely to be speech
|
||||
if (probSpeech > PROB_RANGE) {
|
||||
gammaNoiseTmp = SPEECH_UPDATE;
|
||||
}
|
||||
// conservative noise update
|
||||
if (probSpeech < PROB_RANGE) {
|
||||
inst->magnAvgPause[i] += GAMMA_PAUSE * (magn[i] - inst->magnAvgPause[i]);
|
||||
}
|
||||
// noise update
|
||||
if (gammaNoiseTmp == gammaNoiseOld) {
|
||||
noise[i] = noiseUpdateTmp;
|
||||
} else {
|
||||
noise[i] =
|
||||
gammaNoiseTmp * inst->noisePrev[i] +
|
||||
((float)1.0 - gammaNoiseTmp) *
|
||||
(probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
|
||||
//
|
||||
// time-constant based on speech/noise state
|
||||
gammaNoiseOld = gammaNoiseTmp;
|
||||
gammaNoiseTmp = NOISE_UPDATE;
|
||||
// increase gamma (i.e., less noise update) for frame likely to be speech
|
||||
if (probSpeech > PROB_RANGE) {
|
||||
gammaNoiseTmp = SPEECH_UPDATE;
|
||||
}
|
||||
// conservative noise update
|
||||
if (probSpeech < PROB_RANGE) {
|
||||
inst->magnAvgPause[i] +=
|
||||
GAMMA_PAUSE * (magn[i] - inst->magnAvgPause[i]);
|
||||
}
|
||||
// noise update
|
||||
if (gammaNoiseTmp == gammaNoiseOld) {
|
||||
// allow for noise update downwards:
|
||||
// if noise update decreases the noise, it is safe, so allow it to
|
||||
// happen
|
||||
if (noiseUpdateTmp < noise[i]) {
|
||||
noise[i] = noiseUpdateTmp;
|
||||
} else {
|
||||
noise[i] =
|
||||
gammaNoiseTmp * inst->noisePrev[i] +
|
||||
((float)1.0 - gammaNoiseTmp) *
|
||||
(probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
|
||||
// allow for noise update downwards:
|
||||
// if noise update decreases the noise, it is safe, so allow it to
|
||||
// happen
|
||||
if (noiseUpdateTmp < noise[i]) {
|
||||
noise[i] = noiseUpdateTmp;
|
||||
}
|
||||
}
|
||||
} // end of freq loop
|
||||
// done with step 2: noise update
|
||||
|
||||
// keep track of noise spectrum for next frame
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
inst->noisePrev[i] = noise[i];
|
||||
}
|
||||
} // end of if inst->outLen == 0
|
||||
} // end of freq loop
|
||||
// done with step 2: noise update
|
||||
|
||||
// keep track of noise spectrum for next frame
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
inst->noisePrev[i] = noise[i];
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -1081,194 +1068,30 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
|
||||
|
||||
// update analysis buffer for L band
|
||||
memcpy(inst->dataBuf,
|
||||
inst->dataBuf + inst->blockLen10ms,
|
||||
sizeof(float) * (inst->anaLen - inst->blockLen10ms));
|
||||
memcpy(inst->dataBuf + inst->anaLen - inst->blockLen10ms,
|
||||
inst->dataBuf + inst->blockLen,
|
||||
sizeof(float) * (inst->anaLen - inst->blockLen));
|
||||
memcpy(inst->dataBuf + inst->anaLen - inst->blockLen,
|
||||
speechFrame,
|
||||
sizeof(float) * inst->blockLen10ms);
|
||||
sizeof(float) * inst->blockLen);
|
||||
|
||||
if (flagHB == 1) {
|
||||
// update analysis buffer for H band
|
||||
memcpy(inst->dataBufHB,
|
||||
inst->dataBufHB + inst->blockLen10ms,
|
||||
sizeof(float) * (inst->anaLen - inst->blockLen10ms));
|
||||
memcpy(inst->dataBufHB + inst->anaLen - inst->blockLen10ms,
|
||||
inst->dataBufHB + inst->blockLen,
|
||||
sizeof(float) * (inst->anaLen - inst->blockLen));
|
||||
memcpy(inst->dataBufHB + inst->anaLen - inst->blockLen,
|
||||
speechFrameHB,
|
||||
sizeof(float) * inst->blockLen10ms);
|
||||
sizeof(float) * inst->blockLen);
|
||||
}
|
||||
|
||||
// check if processing needed
|
||||
if (inst->outLen == 0) {
|
||||
// windowing
|
||||
energy1 = 0.0;
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
winData[i] = inst->window[i] * inst->dataBuf[i];
|
||||
energy1 += winData[i] * winData[i];
|
||||
}
|
||||
if (energy1 == 0.0) {
|
||||
// synthesize the special case of zero input
|
||||
// read out fully processed segment
|
||||
for (i = inst->windShift; i < inst->blockLen + inst->windShift; i++) {
|
||||
fout[i - inst->windShift] = inst->syntBuf[i];
|
||||
}
|
||||
// update synthesis buffer
|
||||
memcpy(inst->syntBuf,
|
||||
inst->syntBuf + inst->blockLen,
|
||||
sizeof(float) * (inst->anaLen - inst->blockLen));
|
||||
memset(inst->syntBuf + inst->anaLen - inst->blockLen,
|
||||
0,
|
||||
sizeof(float) * inst->blockLen);
|
||||
|
||||
// out buffer
|
||||
inst->outLen = inst->blockLen - inst->blockLen10ms;
|
||||
if (inst->blockLen > inst->blockLen10ms) {
|
||||
for (i = 0; i < inst->outLen; i++) {
|
||||
inst->outBuf[i] = fout[i + inst->blockLen10ms];
|
||||
}
|
||||
}
|
||||
for (i = 0; i < inst->blockLen10ms; ++i)
|
||||
outFrame[i] = WEBRTC_SPL_SAT(
|
||||
WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
|
||||
|
||||
// for time-domain gain of HB
|
||||
if (flagHB == 1)
|
||||
for (i = 0; i < inst->blockLen10ms; ++i)
|
||||
outFrameHB[i] = WEBRTC_SPL_SAT(
|
||||
WEBRTC_SPL_WORD16_MAX, inst->dataBufHB[i], WEBRTC_SPL_WORD16_MIN);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// FFT
|
||||
WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);
|
||||
|
||||
imag[0] = 0;
|
||||
real[0] = winData[0];
|
||||
magn[0] = (float)(fabs(real[0]) + 1.0f);
|
||||
imag[inst->magnLen - 1] = 0;
|
||||
real[inst->magnLen - 1] = winData[1];
|
||||
magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
inst->initMagnEst[0] += magn[0];
|
||||
inst->initMagnEst[inst->magnLen - 1] += magn[inst->magnLen - 1];
|
||||
}
|
||||
for (i = 1; i < inst->magnLen - 1; i++) {
|
||||
real[i] = winData[2 * i];
|
||||
imag[i] = winData[2 * i + 1];
|
||||
// magnitude spectrum
|
||||
fTmp = real[i] * real[i];
|
||||
fTmp += imag[i] * imag[i];
|
||||
magn[i] = ((float)sqrt(fTmp)) + 1.0f;
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
inst->initMagnEst[i] += magn[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute dd update of prior snr and post snr based on new noise estimate
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
// post and prior snr
|
||||
currentEstimateStsa = (float)0.0;
|
||||
if (magn[i] > inst->noisePrev[i]) {
|
||||
currentEstimateStsa =
|
||||
magn[i] / (inst->noisePrev[i] + (float)0.0001) - (float)1.0;
|
||||
}
|
||||
// DD estimate is sume of two terms: current estimate and previous
|
||||
// estimate
|
||||
// directed decision update of snrPrior
|
||||
snrPrior = DD_PR_SNR * inst->previousEstimateStsa[i] +
|
||||
((float)1.0 - DD_PR_SNR) * currentEstimateStsa;
|
||||
// gain filter
|
||||
tmpFloat1 = inst->overdrive + snrPrior;
|
||||
tmpFloat2 = (float)snrPrior / tmpFloat1;
|
||||
theFilter[i] = (float)tmpFloat2;
|
||||
} // end of loop over freqs
|
||||
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
// flooring bottom
|
||||
if (theFilter[i] < inst->denoiseBound) {
|
||||
theFilter[i] = inst->denoiseBound;
|
||||
}
|
||||
// flooring top
|
||||
if (theFilter[i] > (float)1.0) {
|
||||
theFilter[i] = 1.0;
|
||||
}
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
theFilterTmp[i] =
|
||||
(inst->initMagnEst[i] - inst->overdrive * inst->parametricNoise[i]);
|
||||
theFilterTmp[i] /= (inst->initMagnEst[i] + (float)0.0001);
|
||||
// flooring bottom
|
||||
if (theFilterTmp[i] < inst->denoiseBound) {
|
||||
theFilterTmp[i] = inst->denoiseBound;
|
||||
}
|
||||
// flooring top
|
||||
if (theFilterTmp[i] > (float)1.0) {
|
||||
theFilterTmp[i] = 1.0;
|
||||
}
|
||||
// Weight the two suppression filters
|
||||
theFilter[i] *= (inst->blockInd);
|
||||
theFilterTmp[i] *= (END_STARTUP_SHORT - inst->blockInd);
|
||||
theFilter[i] += theFilterTmp[i];
|
||||
theFilter[i] /= (END_STARTUP_SHORT);
|
||||
}
|
||||
// smoothing
|
||||
inst->smooth[i] = theFilter[i];
|
||||
real[i] *= inst->smooth[i];
|
||||
imag[i] *= inst->smooth[i];
|
||||
}
|
||||
// keep track of magn spectrum for next frame
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
inst->magnPrev[i] = magn[i];
|
||||
}
|
||||
// back to time domain
|
||||
winData[0] = real[0];
|
||||
winData[1] = real[inst->magnLen - 1];
|
||||
for (i = 1; i < inst->magnLen - 1; i++) {
|
||||
winData[2 * i] = real[i];
|
||||
winData[2 * i + 1] = imag[i];
|
||||
}
|
||||
WebRtc_rdft(inst->anaLen, -1, winData, inst->ip, inst->wfft);
|
||||
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
real[i] = 2.0f * winData[i] / inst->anaLen; // fft scaling
|
||||
}
|
||||
|
||||
// scale factor: only do it after END_STARTUP_LONG time
|
||||
factor = (float)1.0;
|
||||
if (inst->gainmap == 1 && inst->blockInd > END_STARTUP_LONG) {
|
||||
factor1 = (float)1.0;
|
||||
factor2 = (float)1.0;
|
||||
|
||||
energy2 = 0.0;
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
energy2 += (float)real[i] * (float)real[i];
|
||||
}
|
||||
gain = (float)sqrt(energy2 / (energy1 + (float)1.0));
|
||||
|
||||
// scaling for new version
|
||||
if (gain > B_LIM) {
|
||||
factor1 = (float)1.0 + (float)1.3 * (gain - B_LIM);
|
||||
if (gain * factor1 > (float)1.0) {
|
||||
factor1 = (float)1.0 / gain;
|
||||
}
|
||||
}
|
||||
if (gain < B_LIM) {
|
||||
// don't reduce scale too much for pause regions:
|
||||
// attenuation here should be controlled by flooring
|
||||
if (gain <= inst->denoiseBound) {
|
||||
gain = inst->denoiseBound;
|
||||
}
|
||||
factor2 = (float)1.0 - (float)0.3 * (B_LIM - gain);
|
||||
}
|
||||
// combine both scales with speech/noise prob:
|
||||
// note prior (priorSpeechProb) is not frequency dependent
|
||||
factor = inst->priorSpeechProb * factor1 +
|
||||
((float)1.0 - inst->priorSpeechProb) * factor2;
|
||||
} // out of inst->gainmap==1
|
||||
|
||||
// synthesis
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
inst->syntBuf[i] += factor * inst->window[i] * (float)real[i];
|
||||
}
|
||||
// windowing
|
||||
energy1 = 0.0;
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
winData[i] = inst->window[i] * inst->dataBuf[i];
|
||||
energy1 += winData[i] * winData[i];
|
||||
}
|
||||
if (energy1 == 0.0) {
|
||||
// synthesize the special case of zero input
|
||||
// read out fully processed segment
|
||||
for (i = inst->windShift; i < inst->blockLen + inst->windShift; i++) {
|
||||
fout[i - inst->windShift] = inst->syntBuf[i];
|
||||
@ -1281,28 +1104,161 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
|
||||
0,
|
||||
sizeof(float) * inst->blockLen);
|
||||
|
||||
// out buffer
|
||||
inst->outLen = inst->blockLen - inst->blockLen10ms;
|
||||
if (inst->blockLen > inst->blockLen10ms) {
|
||||
for (i = 0; i < inst->outLen; i++) {
|
||||
inst->outBuf[i] = fout[i + inst->blockLen10ms];
|
||||
}
|
||||
for (i = 0; i < inst->blockLen; ++i)
|
||||
outFrame[i] =
|
||||
WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
|
||||
|
||||
// for time-domain gain of HB
|
||||
if (flagHB == 1)
|
||||
for (i = 0; i < inst->blockLen; ++i)
|
||||
outFrameHB[i] = WEBRTC_SPL_SAT(
|
||||
WEBRTC_SPL_WORD16_MAX, inst->dataBufHB[i], WEBRTC_SPL_WORD16_MIN);
|
||||
|
||||
return 0;
|
||||
}
|
||||
// FFT
|
||||
WebRtc_rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);
|
||||
|
||||
imag[0] = 0;
|
||||
real[0] = winData[0];
|
||||
magn[0] = (float)(fabs(real[0]) + 1.0f);
|
||||
imag[inst->magnLen - 1] = 0;
|
||||
real[inst->magnLen - 1] = winData[1];
|
||||
magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
inst->initMagnEst[0] += magn[0];
|
||||
inst->initMagnEst[inst->magnLen - 1] += magn[inst->magnLen - 1];
|
||||
}
|
||||
for (i = 1; i < inst->magnLen - 1; i++) {
|
||||
real[i] = winData[2 * i];
|
||||
imag[i] = winData[2 * i + 1];
|
||||
// magnitude spectrum
|
||||
fTmp = real[i] * real[i];
|
||||
fTmp += imag[i] * imag[i];
|
||||
magn[i] = ((float)sqrt(fTmp)) + 1.0f;
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
inst->initMagnEst[i] += magn[i];
|
||||
}
|
||||
} // end of if out.len==0
|
||||
else {
|
||||
for (i = 0; i < inst->blockLen10ms; i++) {
|
||||
fout[i] = inst->outBuf[i];
|
||||
}
|
||||
memcpy(inst->outBuf,
|
||||
inst->outBuf + inst->blockLen10ms,
|
||||
sizeof(float) * (inst->outLen - inst->blockLen10ms));
|
||||
memset(inst->outBuf + inst->outLen - inst->blockLen10ms,
|
||||
0,
|
||||
sizeof(float) * inst->blockLen10ms);
|
||||
inst->outLen -= inst->blockLen10ms;
|
||||
}
|
||||
|
||||
for (i = 0; i < inst->blockLen10ms; ++i)
|
||||
// Compute dd update of prior snr and post snr based on new noise estimate
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
// post and prior snr
|
||||
currentEstimateStsa = (float)0.0;
|
||||
if (magn[i] > inst->noisePrev[i]) {
|
||||
currentEstimateStsa =
|
||||
magn[i] / (inst->noisePrev[i] + (float)0.0001) - (float)1.0;
|
||||
}
|
||||
// DD estimate is sume of two terms: current estimate and previous
|
||||
// estimate
|
||||
// directed decision update of snrPrior
|
||||
snrPrior = DD_PR_SNR * inst->previousEstimateStsa[i] +
|
||||
((float)1.0 - DD_PR_SNR) * currentEstimateStsa;
|
||||
// gain filter
|
||||
tmpFloat1 = inst->overdrive + snrPrior;
|
||||
tmpFloat2 = (float)snrPrior / tmpFloat1;
|
||||
theFilter[i] = (float)tmpFloat2;
|
||||
} // end of loop over freqs
|
||||
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
// flooring bottom
|
||||
if (theFilter[i] < inst->denoiseBound) {
|
||||
theFilter[i] = inst->denoiseBound;
|
||||
}
|
||||
// flooring top
|
||||
if (theFilter[i] > (float)1.0) {
|
||||
theFilter[i] = 1.0;
|
||||
}
|
||||
if (inst->blockInd < END_STARTUP_SHORT) {
|
||||
theFilterTmp[i] =
|
||||
(inst->initMagnEst[i] - inst->overdrive * inst->parametricNoise[i]);
|
||||
theFilterTmp[i] /= (inst->initMagnEst[i] + (float)0.0001);
|
||||
// flooring bottom
|
||||
if (theFilterTmp[i] < inst->denoiseBound) {
|
||||
theFilterTmp[i] = inst->denoiseBound;
|
||||
}
|
||||
// flooring top
|
||||
if (theFilterTmp[i] > (float)1.0) {
|
||||
theFilterTmp[i] = 1.0;
|
||||
}
|
||||
// Weight the two suppression filters
|
||||
theFilter[i] *= (inst->blockInd);
|
||||
theFilterTmp[i] *= (END_STARTUP_SHORT - inst->blockInd);
|
||||
theFilter[i] += theFilterTmp[i];
|
||||
theFilter[i] /= (END_STARTUP_SHORT);
|
||||
}
|
||||
// smoothing
|
||||
inst->smooth[i] = theFilter[i];
|
||||
real[i] *= inst->smooth[i];
|
||||
imag[i] *= inst->smooth[i];
|
||||
}
|
||||
// keep track of magn spectrum for next frame
|
||||
for (i = 0; i < inst->magnLen; i++) {
|
||||
inst->magnPrev[i] = magn[i];
|
||||
}
|
||||
// back to time domain
|
||||
winData[0] = real[0];
|
||||
winData[1] = real[inst->magnLen - 1];
|
||||
for (i = 1; i < inst->magnLen - 1; i++) {
|
||||
winData[2 * i] = real[i];
|
||||
winData[2 * i + 1] = imag[i];
|
||||
}
|
||||
WebRtc_rdft(inst->anaLen, -1, winData, inst->ip, inst->wfft);
|
||||
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
real[i] = 2.0f * winData[i] / inst->anaLen; // fft scaling
|
||||
}
|
||||
|
||||
// scale factor: only do it after END_STARTUP_LONG time
|
||||
factor = (float)1.0;
|
||||
if (inst->gainmap == 1 && inst->blockInd > END_STARTUP_LONG) {
|
||||
factor1 = (float)1.0;
|
||||
factor2 = (float)1.0;
|
||||
|
||||
energy2 = 0.0;
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
energy2 += (float)real[i] * (float)real[i];
|
||||
}
|
||||
gain = (float)sqrt(energy2 / (energy1 + (float)1.0));
|
||||
|
||||
// scaling for new version
|
||||
if (gain > B_LIM) {
|
||||
factor1 = (float)1.0 + (float)1.3 * (gain - B_LIM);
|
||||
if (gain * factor1 > (float)1.0) {
|
||||
factor1 = (float)1.0 / gain;
|
||||
}
|
||||
}
|
||||
if (gain < B_LIM) {
|
||||
// don't reduce scale too much for pause regions:
|
||||
// attenuation here should be controlled by flooring
|
||||
if (gain <= inst->denoiseBound) {
|
||||
gain = inst->denoiseBound;
|
||||
}
|
||||
factor2 = (float)1.0 - (float)0.3 * (B_LIM - gain);
|
||||
}
|
||||
// combine both scales with speech/noise prob:
|
||||
// note prior (priorSpeechProb) is not frequency dependent
|
||||
factor = inst->priorSpeechProb * factor1 +
|
||||
((float)1.0 - inst->priorSpeechProb) * factor2;
|
||||
} // out of inst->gainmap==1
|
||||
|
||||
// synthesis
|
||||
for (i = 0; i < inst->anaLen; i++) {
|
||||
inst->syntBuf[i] += factor * inst->window[i] * (float)real[i];
|
||||
}
|
||||
// read out fully processed segment
|
||||
for (i = inst->windShift; i < inst->blockLen + inst->windShift; i++) {
|
||||
fout[i - inst->windShift] = inst->syntBuf[i];
|
||||
}
|
||||
// update synthesis buffer
|
||||
memcpy(inst->syntBuf,
|
||||
inst->syntBuf + inst->blockLen,
|
||||
sizeof(float) * (inst->anaLen - inst->blockLen));
|
||||
memset(inst->syntBuf + inst->anaLen - inst->blockLen,
|
||||
0,
|
||||
sizeof(float) * inst->blockLen);
|
||||
|
||||
for (i = 0; i < inst->blockLen; ++i)
|
||||
outFrame[i] =
|
||||
WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
|
||||
|
||||
@ -1343,7 +1299,7 @@ int WebRtcNs_ProcessCore(NSinst_t* inst,
|
||||
gainTimeDomainHB = 1.0;
|
||||
}
|
||||
// apply gain
|
||||
for (i = 0; i < inst->blockLen10ms; i++) {
|
||||
for (i = 0; i < inst->blockLen; i++) {
|
||||
float o = gainTimeDomainHB * inst->dataBufHB[i];
|
||||
outFrameHB[i] =
|
||||
WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, o, WEBRTC_SPL_WORD16_MIN);
|
||||
|
@ -52,9 +52,7 @@ typedef struct NSParaExtract_t_ {
|
||||
typedef struct NSinst_t_ {
|
||||
uint32_t fs;
|
||||
int blockLen;
|
||||
int blockLen10ms;
|
||||
int windShift;
|
||||
int outLen;
|
||||
int anaLen;
|
||||
int magnLen;
|
||||
int aggrMode;
|
||||
@ -62,7 +60,6 @@ typedef struct NSinst_t_ {
|
||||
float analyzeBuf[ANAL_BLOCKL_MAX];
|
||||
float dataBuf[ANAL_BLOCKL_MAX];
|
||||
float syntBuf[ANAL_BLOCKL_MAX];
|
||||
float outBuf[3 * BLOCKL_MAX];
|
||||
|
||||
int initFlag;
|
||||
// parameters for quantile noise estimation
|
||||
|
Loading…
x
Reference in New Issue
Block a user