Add support for arbitrary array geometries in Beamformer
R=andrew@webrtc.org, mgraczyk@chromium.org Review URL: https://webrtc-codereview.appspot.com/38299004 Cr-Commit-Position: refs/heads/master@{#8621} git-svn-id: http://webrtc.googlecode.com/svn/trunk@8621 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
parent
0933d01d09
commit
1d88394bcb
49
webrtc/modules/audio_processing/beamformer/array_util.h
Normal file
49
webrtc/modules/audio_processing/beamformer/array_util.h
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
/*
|
||||||
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
||||||
|
*
|
||||||
|
* Use of this source code is governed by a BSD-style license
|
||||||
|
* that can be found in the LICENSE file in the root of the source
|
||||||
|
* tree. An additional intellectual property rights grant can be found
|
||||||
|
* in the file PATENTS. All contributing project authors may
|
||||||
|
* be found in the AUTHORS file in the root of the source tree.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
|
||||||
|
#define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
|
||||||
|
|
||||||
|
#include <cmath>
|
||||||
|
|
||||||
|
namespace webrtc {
|
||||||
|
|
||||||
|
// Coordinates in meters.
|
||||||
|
template<typename T>
|
||||||
|
struct CartesianPoint {
|
||||||
|
CartesianPoint(T x, T y, T z) {
|
||||||
|
c[0] = x;
|
||||||
|
c[1] = y;
|
||||||
|
c[2] = z;
|
||||||
|
}
|
||||||
|
T x() const {
|
||||||
|
return c[0];
|
||||||
|
}
|
||||||
|
T y() const {
|
||||||
|
return c[1];
|
||||||
|
}
|
||||||
|
T z() const {
|
||||||
|
return c[2];
|
||||||
|
}
|
||||||
|
T c[3];
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef CartesianPoint<float> Point;
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
float Distance(CartesianPoint<T> a, CartesianPoint<T> b) {
|
||||||
|
return std::sqrt((a.x() - b.x()) * (a.x() - b.x()) +
|
||||||
|
(a.y() - b.y()) * (a.y() - b.y()) +
|
||||||
|
(a.z() - b.z()) * (a.z() - b.z()));
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace webrtc
|
||||||
|
|
||||||
|
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
|
@ -30,15 +30,16 @@ const float kMaskMinimum = 0.01f;
|
|||||||
|
|
||||||
const float kSpeedOfSoundMeterSeconds = 343;
|
const float kSpeedOfSoundMeterSeconds = 343;
|
||||||
|
|
||||||
// For both target and interference angles, 0 is perpendicular to the microphone
|
// For both target and interference angles, PI / 2 is perpendicular to the
|
||||||
// array, facing forwards. The positive direction goes counterclockwise.
|
// microphone array, facing forwards. The positive direction goes
|
||||||
|
// counterclockwise.
|
||||||
// The angle at which we amplify sound.
|
// The angle at which we amplify sound.
|
||||||
const float kTargetAngleRadians = 0.f;
|
const float kTargetAngleRadians = static_cast<float>(M_PI) / 2.f;
|
||||||
|
|
||||||
// The angle at which we suppress sound. Suppression is symmetric around 0
|
// The angle at which we suppress sound. Suppression is symmetric around PI / 2
|
||||||
// radians, so sound is suppressed at both +|kInterfAngleRadians| and
|
// radians, so sound is suppressed at both +|kInterfAngleRadians| and
|
||||||
// -|kInterfAngleRadians|. Since the beamformer is robust, this should
|
// PI - |kInterfAngleRadians|. Since the beamformer is robust, this should
|
||||||
// suppress sound coming from angles near +-|kInterfAngleRadians| as well.
|
// suppress sound coming from close angles as well.
|
||||||
const float kInterfAngleRadians = static_cast<float>(M_PI) / 4.f;
|
const float kInterfAngleRadians = static_cast<float>(M_PI) / 4.f;
|
||||||
|
|
||||||
// When calculating the interference covariance matrix, this is the weight for
|
// When calculating the interference covariance matrix, this is the weight for
|
||||||
@ -50,15 +51,6 @@ const float kBalance = 0.4f;
|
|||||||
// TODO(claguna): need comment here.
|
// TODO(claguna): need comment here.
|
||||||
const float kBeamwidthConstant = 0.00002f;
|
const float kBeamwidthConstant = 0.00002f;
|
||||||
|
|
||||||
// Width of the boxcar.
|
|
||||||
const float kBoxcarHalfWidth = 0.01f;
|
|
||||||
|
|
||||||
// We put a gap in the covariance matrix where we expect the target to come
|
|
||||||
// from. Warning: This must be very small, ex. < 0.01, because otherwise it can
|
|
||||||
// cause the covariance matrix not to be positive semidefinite, and we require
|
|
||||||
// that our covariance matrices are positive semidefinite.
|
|
||||||
const float kCovUniformGapHalfWidth = 0.01f;
|
|
||||||
|
|
||||||
// Alpha coefficient for mask smoothing.
|
// Alpha coefficient for mask smoothing.
|
||||||
const float kMaskSmoothAlpha = 0.2f;
|
const float kMaskSmoothAlpha = 0.2f;
|
||||||
|
|
||||||
@ -151,11 +143,40 @@ float SumSquares(const ComplexMatrix<float>& mat) {
|
|||||||
return sum_squares;
|
return sum_squares;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Does |out| = |in|.' * conj(|in|) for row vector |in|.
|
||||||
|
void TransposedConjugatedProduct(const ComplexMatrix<float>& in,
|
||||||
|
ComplexMatrix<float>* out) {
|
||||||
|
CHECK_EQ(in.num_rows(), 1);
|
||||||
|
CHECK_EQ(out->num_rows(), in.num_columns());
|
||||||
|
CHECK_EQ(out->num_columns(), in.num_columns());
|
||||||
|
const complex<float>* in_elements = in.elements()[0];
|
||||||
|
complex<float>* const* out_elements = out->elements();
|
||||||
|
for (int i = 0; i < out->num_rows(); ++i) {
|
||||||
|
for (int j = 0; j < out->num_columns(); ++j) {
|
||||||
|
out_elements[i][j] = in_elements[i] * conj(in_elements[j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) {
|
||||||
|
for (int dim = 0; dim < 3; ++dim) {
|
||||||
|
float center = 0.f;
|
||||||
|
for (size_t i = 0; i < array_geometry.size(); ++i) {
|
||||||
|
center += array_geometry[i].c[dim];
|
||||||
|
}
|
||||||
|
center /= array_geometry.size();
|
||||||
|
for (size_t i = 0; i < array_geometry.size(); ++i) {
|
||||||
|
array_geometry[i].c[dim] -= center;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return array_geometry;
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
Beamformer::Beamformer(const std::vector<Point>& array_geometry)
|
Beamformer::Beamformer(const std::vector<Point>& array_geometry)
|
||||||
: num_input_channels_(array_geometry.size()),
|
: num_input_channels_(array_geometry.size()),
|
||||||
mic_spacing_(MicSpacingFromGeometry(array_geometry)) {
|
array_geometry_(GetCenteredArray(array_geometry)) {
|
||||||
WindowGenerator::KaiserBesselDerived(kAlpha, kFftSize, window_);
|
WindowGenerator::KaiserBesselDerived(kAlpha, kFftSize, window_);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -210,16 +231,14 @@ void Beamformer::Initialize(int chunk_size_ms, int sample_rate_hz) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void Beamformer::InitDelaySumMasks() {
|
void Beamformer::InitDelaySumMasks() {
|
||||||
float sin_target = sin(kTargetAngleRadians);
|
|
||||||
for (int f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
|
for (int f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
|
||||||
delay_sum_masks_[f_ix].Resize(1, num_input_channels_);
|
delay_sum_masks_[f_ix].Resize(1, num_input_channels_);
|
||||||
CovarianceMatrixGenerator::PhaseAlignmentMasks(f_ix,
|
CovarianceMatrixGenerator::PhaseAlignmentMasks(f_ix,
|
||||||
kFftSize,
|
kFftSize,
|
||||||
sample_rate_hz_,
|
sample_rate_hz_,
|
||||||
kSpeedOfSoundMeterSeconds,
|
kSpeedOfSoundMeterSeconds,
|
||||||
mic_spacing_,
|
array_geometry_,
|
||||||
num_input_channels_,
|
kTargetAngleRadians,
|
||||||
sin_target,
|
|
||||||
&delay_sum_masks_[f_ix]);
|
&delay_sum_masks_[f_ix]);
|
||||||
|
|
||||||
complex_f norm_factor = sqrt(
|
complex_f norm_factor = sqrt(
|
||||||
@ -232,45 +251,23 @@ void Beamformer::InitDelaySumMasks() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void Beamformer::InitTargetCovMats() {
|
void Beamformer::InitTargetCovMats() {
|
||||||
target_cov_mats_[0].Resize(num_input_channels_, num_input_channels_);
|
for (int i = 0; i < kNumFreqBins; ++i) {
|
||||||
CovarianceMatrixGenerator::DCCovarianceMatrix(
|
|
||||||
num_input_channels_, kBoxcarHalfWidth, &target_cov_mats_[0]);
|
|
||||||
|
|
||||||
complex_f normalization_factor = target_cov_mats_[0].Trace();
|
|
||||||
target_cov_mats_[0].Scale(1.f / normalization_factor);
|
|
||||||
|
|
||||||
for (int i = 1; i < kNumFreqBins; ++i) {
|
|
||||||
target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
|
target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
|
||||||
CovarianceMatrixGenerator::Boxcar(wave_numbers_[i],
|
TransposedConjugatedProduct(delay_sum_masks_[i], &target_cov_mats_[i]);
|
||||||
num_input_channels_,
|
|
||||||
mic_spacing_,
|
|
||||||
kBoxcarHalfWidth,
|
|
||||||
&target_cov_mats_[i]);
|
|
||||||
|
|
||||||
complex_f normalization_factor = target_cov_mats_[i].Trace();
|
complex_f normalization_factor = target_cov_mats_[i].Trace();
|
||||||
target_cov_mats_[i].Scale(1.f / normalization_factor);
|
target_cov_mats_[i].Scale(1.f / normalization_factor);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void Beamformer::InitInterfCovMats() {
|
void Beamformer::InitInterfCovMats() {
|
||||||
interf_cov_mats_[0].Resize(num_input_channels_, num_input_channels_);
|
for (int i = 0; i < kNumFreqBins; ++i) {
|
||||||
CovarianceMatrixGenerator::DCCovarianceMatrix(
|
|
||||||
num_input_channels_, kCovUniformGapHalfWidth, &interf_cov_mats_[0]);
|
|
||||||
|
|
||||||
complex_f normalization_factor = interf_cov_mats_[0].Trace();
|
|
||||||
interf_cov_mats_[0].Scale(1.f / normalization_factor);
|
|
||||||
reflected_interf_cov_mats_[0].PointwiseConjugate(interf_cov_mats_[0]);
|
|
||||||
for (int i = 1; i < kNumFreqBins; ++i) {
|
|
||||||
interf_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
|
interf_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
|
||||||
ComplexMatrixF uniform_cov_mat(num_input_channels_, num_input_channels_);
|
ComplexMatrixF uniform_cov_mat(num_input_channels_, num_input_channels_);
|
||||||
ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_);
|
ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_);
|
||||||
|
|
||||||
CovarianceMatrixGenerator::GappedUniformCovarianceMatrix(
|
CovarianceMatrixGenerator::UniformCovarianceMatrix(wave_numbers_[i],
|
||||||
wave_numbers_[i],
|
array_geometry_,
|
||||||
num_input_channels_,
|
&uniform_cov_mat);
|
||||||
mic_spacing_,
|
|
||||||
kCovUniformGapHalfWidth,
|
|
||||||
&uniform_cov_mat);
|
|
||||||
|
|
||||||
CovarianceMatrixGenerator::AngledCovarianceMatrix(kSpeedOfSoundMeterSeconds,
|
CovarianceMatrixGenerator::AngledCovarianceMatrix(kSpeedOfSoundMeterSeconds,
|
||||||
kInterfAngleRadians,
|
kInterfAngleRadians,
|
||||||
@ -278,8 +275,7 @@ void Beamformer::InitInterfCovMats() {
|
|||||||
kFftSize,
|
kFftSize,
|
||||||
kNumFreqBins,
|
kNumFreqBins,
|
||||||
sample_rate_hz_,
|
sample_rate_hz_,
|
||||||
num_input_channels_,
|
array_geometry_,
|
||||||
mic_spacing_,
|
|
||||||
&angled_cov_mat);
|
&angled_cov_mat);
|
||||||
// Normalize matrices before averaging them.
|
// Normalize matrices before averaging them.
|
||||||
complex_f normalization_factor = uniform_cov_mat.Trace();
|
complex_f normalization_factor = uniform_cov_mat.Trace();
|
||||||
@ -447,20 +443,6 @@ void Beamformer::ApplyHighFrequencyCorrection() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// This method CHECKs for a uniform linear array.
|
|
||||||
float Beamformer::MicSpacingFromGeometry(const std::vector<Point>& geometry) {
|
|
||||||
CHECK_GE(geometry.size(), 2u);
|
|
||||||
float mic_spacing = 0.f;
|
|
||||||
for (size_t i = 0u; i < 3u; ++i) {
|
|
||||||
float difference = geometry[1].c[i] - geometry[0].c[i];
|
|
||||||
for (size_t j = 2u; j < geometry.size(); ++j) {
|
|
||||||
CHECK_LT(geometry[j].c[i] - geometry[j - 1].c[i] - difference, 1e-6);
|
|
||||||
}
|
|
||||||
mic_spacing += difference * difference;
|
|
||||||
}
|
|
||||||
return sqrt(mic_spacing);
|
|
||||||
}
|
|
||||||
|
|
||||||
void Beamformer::EstimateTargetPresence() {
|
void Beamformer::EstimateTargetPresence() {
|
||||||
const int quantile = (1.f - kMaskQuantile) * high_average_end_bin_ +
|
const int quantile = (1.f - kMaskQuantile) * high_average_end_bin_ +
|
||||||
kMaskQuantile * low_average_start_bin_;
|
kMaskQuantile * low_average_start_bin_;
|
||||||
|
@ -13,7 +13,7 @@
|
|||||||
|
|
||||||
#include "webrtc/common_audio/lapped_transform.h"
|
#include "webrtc/common_audio/lapped_transform.h"
|
||||||
#include "webrtc/modules/audio_processing/beamformer/complex_matrix.h"
|
#include "webrtc/modules/audio_processing/beamformer/complex_matrix.h"
|
||||||
#include "webrtc/modules/audio_processing/include/audio_processing.h"
|
#include "webrtc/modules/audio_processing/beamformer/array_util.h"
|
||||||
|
|
||||||
namespace webrtc {
|
namespace webrtc {
|
||||||
|
|
||||||
@ -94,7 +94,6 @@ class Beamformer : public LappedTransform::Callback {
|
|||||||
// Applies both sets of masks to |input| and store in |output|.
|
// Applies both sets of masks to |input| and store in |output|.
|
||||||
void ApplyMasks(const complex_f* const* input, complex_f* const* output);
|
void ApplyMasks(const complex_f* const* input, complex_f* const* output);
|
||||||
|
|
||||||
float MicSpacingFromGeometry(const std::vector<Point>& array_geometry);
|
|
||||||
void EstimateTargetPresence();
|
void EstimateTargetPresence();
|
||||||
|
|
||||||
static const int kFftSize = 256;
|
static const int kFftSize = 256;
|
||||||
@ -108,7 +107,8 @@ class Beamformer : public LappedTransform::Callback {
|
|||||||
// Parameters exposed to the user.
|
// Parameters exposed to the user.
|
||||||
const int num_input_channels_;
|
const int num_input_channels_;
|
||||||
int sample_rate_hz_;
|
int sample_rate_hz_;
|
||||||
const float mic_spacing_;
|
|
||||||
|
const std::vector<Point> array_geometry_;
|
||||||
|
|
||||||
// Calculated based on user-input and constants in the .cc file.
|
// Calculated based on user-input and constants in the .cc file.
|
||||||
int low_average_start_bin_;
|
int low_average_start_bin_;
|
||||||
|
@ -28,57 +28,26 @@ float BesselJ0(float x) {
|
|||||||
|
|
||||||
namespace webrtc {
|
namespace webrtc {
|
||||||
|
|
||||||
// Calculates the boxcar-angular desired source distribution at a given
|
void CovarianceMatrixGenerator::UniformCovarianceMatrix(
|
||||||
// wavenumber, and stores it in |mat|.
|
float wave_number,
|
||||||
void CovarianceMatrixGenerator::Boxcar(float wave_number,
|
const std::vector<Point>& geometry,
|
||||||
int num_input_channels,
|
ComplexMatrix<float>* mat) {
|
||||||
float mic_spacing,
|
CHECK_EQ(static_cast<int>(geometry.size()), mat->num_rows());
|
||||||
float half_width,
|
CHECK_EQ(static_cast<int>(geometry.size()), mat->num_columns());
|
||||||
ComplexMatrix<float>* mat) {
|
|
||||||
CHECK_EQ(num_input_channels, mat->num_rows());
|
|
||||||
CHECK_EQ(num_input_channels, mat->num_columns());
|
|
||||||
|
|
||||||
complex<float>* const* boxcar_elements = mat->elements();
|
complex<float>* const* mat_els = mat->elements();
|
||||||
|
for (size_t i = 0; i < geometry.size(); ++i) {
|
||||||
for (int i = 0; i < num_input_channels; ++i) {
|
for (size_t j = 0; j < geometry.size(); ++j) {
|
||||||
for (int j = 0; j < num_input_channels; ++j) {
|
if (wave_number > 0.f) {
|
||||||
if (i == j) {
|
mat_els[i][j] =
|
||||||
boxcar_elements[i][j] = complex<float>(2.f * half_width, 0.f);
|
BesselJ0(wave_number * Distance(geometry[i], geometry[j]));
|
||||||
} else {
|
} else {
|
||||||
float factor = (j - i) * wave_number * mic_spacing;
|
mat_els[i][j] = i == j ? 1.f : 0.f;
|
||||||
float boxcar_real = 2.f * sin(factor * half_width) / factor;
|
|
||||||
boxcar_elements[i][j] = complex<float>(boxcar_real, 0.f);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void CovarianceMatrixGenerator::GappedUniformCovarianceMatrix(
|
|
||||||
float wave_number,
|
|
||||||
float num_input_channels,
|
|
||||||
float mic_spacing,
|
|
||||||
float gap_half_width,
|
|
||||||
ComplexMatrix<float>* mat) {
|
|
||||||
CHECK_EQ(num_input_channels, mat->num_rows());
|
|
||||||
CHECK_EQ(num_input_channels, mat->num_columns());
|
|
||||||
|
|
||||||
complex<float>* const* mat_els = mat->elements();
|
|
||||||
for (int i = 0; i < num_input_channels; ++i) {
|
|
||||||
for (int j = 0; j < num_input_channels; ++j) {
|
|
||||||
float x = (j - i) * wave_number * mic_spacing;
|
|
||||||
mat_els[i][j] = BesselJ0(x);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ComplexMatrix<float> boxcar_mat(num_input_channels, num_input_channels);
|
|
||||||
CovarianceMatrixGenerator::Boxcar(wave_number,
|
|
||||||
num_input_channels,
|
|
||||||
mic_spacing,
|
|
||||||
gap_half_width,
|
|
||||||
&boxcar_mat);
|
|
||||||
mat->Subtract(boxcar_mat);
|
|
||||||
}
|
|
||||||
|
|
||||||
void CovarianceMatrixGenerator::AngledCovarianceMatrix(
|
void CovarianceMatrixGenerator::AngledCovarianceMatrix(
|
||||||
float sound_speed,
|
float sound_speed,
|
||||||
float angle,
|
float angle,
|
||||||
@ -86,66 +55,44 @@ void CovarianceMatrixGenerator::AngledCovarianceMatrix(
|
|||||||
int fft_size,
|
int fft_size,
|
||||||
int num_freq_bins,
|
int num_freq_bins,
|
||||||
int sample_rate,
|
int sample_rate,
|
||||||
int num_input_channels,
|
const std::vector<Point>& geometry,
|
||||||
float mic_spacing,
|
|
||||||
ComplexMatrix<float>* mat) {
|
ComplexMatrix<float>* mat) {
|
||||||
CHECK_EQ(num_input_channels, mat->num_rows());
|
CHECK_EQ(static_cast<int>(geometry.size()), mat->num_rows());
|
||||||
CHECK_EQ(num_input_channels, mat->num_columns());
|
CHECK_EQ(static_cast<int>(geometry.size()), mat->num_columns());
|
||||||
|
|
||||||
ComplexMatrix<float> interf_cov_vector(1, num_input_channels);
|
ComplexMatrix<float> interf_cov_vector(1, geometry.size());
|
||||||
ComplexMatrix<float> interf_cov_vector_transposed(num_input_channels, 1);
|
ComplexMatrix<float> interf_cov_vector_transposed(geometry.size(), 1);
|
||||||
PhaseAlignmentMasks(frequency_bin,
|
PhaseAlignmentMasks(frequency_bin,
|
||||||
fft_size,
|
fft_size,
|
||||||
sample_rate,
|
sample_rate,
|
||||||
sound_speed,
|
sound_speed,
|
||||||
mic_spacing,
|
geometry,
|
||||||
num_input_channels,
|
angle,
|
||||||
sin(angle),
|
|
||||||
&interf_cov_vector);
|
&interf_cov_vector);
|
||||||
interf_cov_vector_transposed.Transpose(interf_cov_vector);
|
interf_cov_vector_transposed.Transpose(interf_cov_vector);
|
||||||
interf_cov_vector.PointwiseConjugate();
|
interf_cov_vector.PointwiseConjugate();
|
||||||
mat->Multiply(interf_cov_vector_transposed, interf_cov_vector);
|
mat->Multiply(interf_cov_vector_transposed, interf_cov_vector);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CovarianceMatrixGenerator::DCCovarianceMatrix(int num_input_channels,
|
void CovarianceMatrixGenerator::PhaseAlignmentMasks(
|
||||||
float half_width,
|
int frequency_bin,
|
||||||
ComplexMatrix<float>* mat) {
|
int fft_size,
|
||||||
CHECK_EQ(num_input_channels, mat->num_rows());
|
int sample_rate,
|
||||||
CHECK_EQ(num_input_channels, mat->num_columns());
|
float sound_speed,
|
||||||
|
const std::vector<Point>& geometry,
|
||||||
complex<float>* const* elements = mat->elements();
|
float angle,
|
||||||
|
ComplexMatrix<float>* mat) {
|
||||||
float diagonal_value = 1.f - 2.f * half_width;
|
|
||||||
for (int i = 0; i < num_input_channels; ++i) {
|
|
||||||
for (int j = 0; j < num_input_channels; ++j) {
|
|
||||||
if (i == j) {
|
|
||||||
elements[i][j] = complex<float>(diagonal_value, 0.f);
|
|
||||||
} else {
|
|
||||||
elements[i][j] = complex<float>(0.f, 0.f);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void CovarianceMatrixGenerator::PhaseAlignmentMasks(int frequency_bin,
|
|
||||||
int fft_size,
|
|
||||||
int sample_rate,
|
|
||||||
float sound_speed,
|
|
||||||
float mic_spacing,
|
|
||||||
int num_input_channels,
|
|
||||||
float sin_angle,
|
|
||||||
ComplexMatrix<float>* mat) {
|
|
||||||
CHECK_EQ(1, mat->num_rows());
|
CHECK_EQ(1, mat->num_rows());
|
||||||
CHECK_EQ(num_input_channels, mat->num_columns());
|
CHECK_EQ(static_cast<int>(geometry.size()), mat->num_columns());
|
||||||
|
|
||||||
float freq_in_hertz =
|
float freq_in_hertz =
|
||||||
(static_cast<float>(frequency_bin) / fft_size) * sample_rate;
|
(static_cast<float>(frequency_bin) / fft_size) * sample_rate;
|
||||||
|
|
||||||
complex<float>* const* mat_els = mat->elements();
|
complex<float>* const* mat_els = mat->elements();
|
||||||
for (int c_ix = 0; c_ix < num_input_channels; ++c_ix) {
|
for (size_t c_ix = 0; c_ix < geometry.size(); ++c_ix) {
|
||||||
// TODO(aluebs): Generalize for non-uniform-linear microphone arrays.
|
float distance = std::cos(angle) * geometry[c_ix].x() +
|
||||||
float distance = mic_spacing * c_ix * sin_angle * -1.f;
|
std::sin(angle) * geometry[c_ix].y();
|
||||||
float phase_shift = 2 * M_PI * distance * freq_in_hertz / sound_speed;
|
float phase_shift = -2.f * M_PI * distance * freq_in_hertz / sound_speed;
|
||||||
|
|
||||||
// Euler's formula for mat[0][c_ix] = e^(j * phase_shift).
|
// Euler's formula for mat[0][c_ix] = e^(j * phase_shift).
|
||||||
mat_els[0][c_ix] = complex<float>(cos(phase_shift), sin(phase_shift));
|
mat_els[0][c_ix] = complex<float>(cos(phase_shift), sin(phase_shift));
|
||||||
|
@ -12,6 +12,7 @@
|
|||||||
#define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_COVARIANCE_MATRIX_GENERATOR_H_
|
#define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_COVARIANCE_MATRIX_GENERATOR_H_
|
||||||
|
|
||||||
#include "webrtc/modules/audio_processing/beamformer/complex_matrix.h"
|
#include "webrtc/modules/audio_processing/beamformer/complex_matrix.h"
|
||||||
|
#include "webrtc/modules/audio_processing/beamformer/array_util.h"
|
||||||
|
|
||||||
namespace webrtc {
|
namespace webrtc {
|
||||||
|
|
||||||
@ -20,23 +21,11 @@ namespace webrtc {
|
|||||||
// |num_input_channels| x |num_input_channels|.
|
// |num_input_channels| x |num_input_channels|.
|
||||||
class CovarianceMatrixGenerator {
|
class CovarianceMatrixGenerator {
|
||||||
public:
|
public:
|
||||||
// Generates the covariance matrix of the target. The boxcar implementation
|
|
||||||
// suppresses some high-frequency distortion caused by narrow high-frequency
|
|
||||||
// suppression bands turning on/off too quickly. WARNING: The target angle is
|
|
||||||
// assumed to be 0.
|
|
||||||
static void Boxcar(float wave_number,
|
|
||||||
int num_input_channels,
|
|
||||||
float mic_spacing,
|
|
||||||
float half_width,
|
|
||||||
ComplexMatrix<float>* mat);
|
|
||||||
|
|
||||||
// A uniform covariance matrix with a gap at the target location. WARNING:
|
// A uniform covariance matrix with a gap at the target location. WARNING:
|
||||||
// The target angle is assumed to be 0.
|
// The target angle is assumed to be 0.
|
||||||
static void GappedUniformCovarianceMatrix(float wave_number,
|
static void UniformCovarianceMatrix(float wave_number,
|
||||||
float num_input_channels,
|
const std::vector<Point>& geometry,
|
||||||
float mic_spacing,
|
ComplexMatrix<float>* mat);
|
||||||
float gap_half_width,
|
|
||||||
ComplexMatrix<float>* mat);
|
|
||||||
|
|
||||||
// The covariance matrix of a source at the given angle.
|
// The covariance matrix of a source at the given angle.
|
||||||
static void AngledCovarianceMatrix(float sound_speed,
|
static void AngledCovarianceMatrix(float sound_speed,
|
||||||
@ -45,15 +34,9 @@ class CovarianceMatrixGenerator {
|
|||||||
int fft_size,
|
int fft_size,
|
||||||
int num_freq_bins,
|
int num_freq_bins,
|
||||||
int sample_rate,
|
int sample_rate,
|
||||||
int num_input_channels,
|
const std::vector<Point>& geometry,
|
||||||
float mic_spacing,
|
|
||||||
ComplexMatrix<float>* mat);
|
ComplexMatrix<float>* mat);
|
||||||
|
|
||||||
// A base-case covariance matrix for when the frequency is 0 Hertz.
|
|
||||||
static void DCCovarianceMatrix(int num_input_channels,
|
|
||||||
float half_width,
|
|
||||||
ComplexMatrix<float>* mat);
|
|
||||||
|
|
||||||
// Calculates phase shifts that, when applied to a multichannel signal and
|
// Calculates phase shifts that, when applied to a multichannel signal and
|
||||||
// added together, cause constructive interferernce for sources located at
|
// added together, cause constructive interferernce for sources located at
|
||||||
// the given angle.
|
// the given angle.
|
||||||
@ -61,9 +44,8 @@ class CovarianceMatrixGenerator {
|
|||||||
int fft_size,
|
int fft_size,
|
||||||
int sample_rate,
|
int sample_rate,
|
||||||
float sound_speed,
|
float sound_speed,
|
||||||
float mic_spacing,
|
const std::vector<Point>& geometry,
|
||||||
int num_input_channels,
|
float angle,
|
||||||
float sin_angle,
|
|
||||||
ComplexMatrix<float>* mat);
|
ComplexMatrix<float>* mat);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -21,97 +21,27 @@ namespace webrtc {
|
|||||||
|
|
||||||
using std::complex;
|
using std::complex;
|
||||||
|
|
||||||
TEST(CovarianceMatrixGeneratorTest, TestBoxcar) {
|
TEST(CovarianceMatrixGeneratorTest, TestUniformCovarianceMatrix2Mics) {
|
||||||
const float kWaveNumber = 10.3861f;
|
|
||||||
const int kNumberMics = 3;
|
|
||||||
const float kMicSpacing = 0.23f;
|
|
||||||
const float kHalfWidth = 0.001f;
|
|
||||||
const float kTolerance = 0.0001f;
|
|
||||||
|
|
||||||
ComplexMatrix<float> actual_boxcar(kNumberMics, kNumberMics);
|
|
||||||
CovarianceMatrixGenerator::Boxcar(
|
|
||||||
kWaveNumber, kNumberMics, kMicSpacing, kHalfWidth, &actual_boxcar);
|
|
||||||
|
|
||||||
complex<float>* const* actual_els = actual_boxcar.elements();
|
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].real(), 0.002f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][1].real(), 0.002f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][2].real(), 0.002f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][0].real(), 0.002f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][1].real(), 0.002f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][2].real(), 0.002f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][0].real(), 0.002f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][1].real(), 0.002f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][2].real(), 0.002f, kTolerance);
|
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][1].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][2].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][0].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][1].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][2].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][0].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][1].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][2].imag(), 0.f, kTolerance);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Test Boxcar with large numbers to generate matrix with varying
|
|
||||||
// numbers.
|
|
||||||
TEST(CovarianceMatrixGeneratorTest, TestBoxcarLargeNumbers) {
|
|
||||||
const float kWaveNumber = 10.3861f;
|
|
||||||
const int kNumberMics = 3;
|
|
||||||
const float kMicSpacing = 3.f;
|
|
||||||
const float kHalfWidth = 0.1f;
|
|
||||||
const float kTolerance = 0.0001f;
|
|
||||||
|
|
||||||
ComplexMatrix<float> actual_boxcar(kNumberMics, kNumberMics);
|
|
||||||
CovarianceMatrixGenerator::Boxcar(
|
|
||||||
kWaveNumber, kNumberMics, kMicSpacing, kHalfWidth, &actual_boxcar);
|
|
||||||
|
|
||||||
complex<float>* const* actual_els = actual_boxcar.elements();
|
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].real(), 0.2f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][1].real(), 0.0017f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][2].real(), -0.0017f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][0].real(), 0.0017f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][1].real(), 0.2f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][2].real(), 0.0017f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][0].real(), -0.0017f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][1].real(), 0.0017f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][2].real(), 0.2f, kTolerance);
|
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][1].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][2].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][0].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][1].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][2].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][0].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][1].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[2][2].imag(), 0.f, kTolerance);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST(CovarianceMatrixGeneratorTest, TestGappedUniformCovarianceMatrix2Mics) {
|
|
||||||
const float kWaveNumber = 0.5775f;
|
const float kWaveNumber = 0.5775f;
|
||||||
const int kNumberMics = 2;
|
const int kNumberMics = 2;
|
||||||
const float kMicSpacing = 0.05f;
|
const float kMicSpacing = 0.05f;
|
||||||
const float kHalfWidth = 0.001f;
|
|
||||||
const float kTolerance = 0.0001f;
|
const float kTolerance = 0.0001f;
|
||||||
|
std::vector<Point> geometry;
|
||||||
|
float first_mic = (kNumberMics - 1) * kMicSpacing / 2.f;
|
||||||
|
for (int i = 0; i < kNumberMics; ++i) {
|
||||||
|
geometry.push_back(Point(i * kMicSpacing - first_mic, 0.f, 0.f));
|
||||||
|
}
|
||||||
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
||||||
CovarianceMatrixGenerator::GappedUniformCovarianceMatrix(
|
CovarianceMatrixGenerator::UniformCovarianceMatrix(kWaveNumber,
|
||||||
kWaveNumber,
|
geometry,
|
||||||
kNumberMics,
|
&actual_covariance_matrix);
|
||||||
kMicSpacing,
|
|
||||||
kHalfWidth,
|
|
||||||
&actual_covariance_matrix);
|
|
||||||
|
|
||||||
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].real(), 0.998f, kTolerance);
|
EXPECT_NEAR(actual_els[0][0].real(), 1.f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[0][1].real(), 0.9978f, kTolerance);
|
EXPECT_NEAR(actual_els[0][1].real(), 0.9998f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[1][0].real(), 0.9978f, kTolerance);
|
EXPECT_NEAR(actual_els[1][0].real(), 0.9998f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[1][1].real(), 0.998f, kTolerance);
|
EXPECT_NEAR(actual_els[1][1].real(), 1.f, kTolerance);
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].imag(), 0.f, kTolerance);
|
EXPECT_NEAR(actual_els[0][0].imag(), 0.f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[0][1].imag(), 0.f, kTolerance);
|
EXPECT_NEAR(actual_els[0][1].imag(), 0.f, kTolerance);
|
||||||
@ -119,32 +49,32 @@ TEST(CovarianceMatrixGeneratorTest, TestGappedUniformCovarianceMatrix2Mics) {
|
|||||||
EXPECT_NEAR(actual_els[1][1].imag(), 0.f, kTolerance);
|
EXPECT_NEAR(actual_els[1][1].imag(), 0.f, kTolerance);
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(CovarianceMatrixGeneratorTest, TestGappedUniformCovarianceMatrix3Mics) {
|
TEST(CovarianceMatrixGeneratorTest, TestUniformCovarianceMatrix3Mics) {
|
||||||
const float kWaveNumber = 10.3861f;
|
const float kWaveNumber = 10.3861f;
|
||||||
const int kNumberMics = 3;
|
const int kNumberMics = 3;
|
||||||
const float kMicSpacing = 0.04f;
|
const float kMicSpacing = 0.04f;
|
||||||
const float kHalfWidth = 0.001f;
|
|
||||||
const float kTolerance = 0.0001f;
|
const float kTolerance = 0.0001f;
|
||||||
|
std::vector<Point> geometry;
|
||||||
|
float first_mic = (kNumberMics - 1) * kMicSpacing / 2.f;
|
||||||
|
for (int i = 0; i < kNumberMics; ++i) {
|
||||||
|
geometry.push_back(Point(i * kMicSpacing - first_mic, 0.f, 0.f));
|
||||||
|
}
|
||||||
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
||||||
CovarianceMatrixGenerator::GappedUniformCovarianceMatrix(
|
CovarianceMatrixGenerator::UniformCovarianceMatrix(kWaveNumber,
|
||||||
kWaveNumber,
|
geometry,
|
||||||
kNumberMics,
|
&actual_covariance_matrix);
|
||||||
kMicSpacing,
|
|
||||||
kHalfWidth,
|
|
||||||
&actual_covariance_matrix);
|
|
||||||
|
|
||||||
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].real(), 0.998f, kTolerance);
|
EXPECT_NEAR(actual_els[0][0].real(), 1.f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[0][1].real(), 0.9553f, kTolerance);
|
EXPECT_NEAR(actual_els[0][1].real(), 0.9573f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[0][2].real(), 0.8327f, kTolerance);
|
EXPECT_NEAR(actual_els[0][2].real(), 0.8347f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[1][0].real(), 0.9553f, kTolerance);
|
EXPECT_NEAR(actual_els[1][0].real(), 0.9573f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[1][1].real(), 0.998f, kTolerance);
|
EXPECT_NEAR(actual_els[1][1].real(), 1.f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[1][2].real(), 0.9553f, kTolerance);
|
EXPECT_NEAR(actual_els[1][2].real(), 0.9573f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[2][0].real(), 0.8327f, kTolerance);
|
EXPECT_NEAR(actual_els[2][0].real(), 0.8347f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[2][1].real(), 0.9553f, kTolerance);
|
EXPECT_NEAR(actual_els[2][1].real(), 0.9573f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[2][2].real(), 0.998f, kTolerance);
|
EXPECT_NEAR(actual_els[2][2].real(), 1.f, kTolerance);
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].imag(), 0.f, kTolerance);
|
EXPECT_NEAR(actual_els[0][0].imag(), 0.f, kTolerance);
|
||||||
EXPECT_NEAR(actual_els[0][1].imag(), 0.f, kTolerance);
|
EXPECT_NEAR(actual_els[0][1].imag(), 0.f, kTolerance);
|
||||||
@ -157,6 +87,57 @@ TEST(CovarianceMatrixGeneratorTest, TestGappedUniformCovarianceMatrix3Mics) {
|
|||||||
EXPECT_NEAR(actual_els[2][2].imag(), 0.f, kTolerance);
|
EXPECT_NEAR(actual_els[2][2].imag(), 0.f, kTolerance);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(CovarianceMatrixGeneratorTest, TestUniformCovarianceMatrix3DArray) {
|
||||||
|
const float kWaveNumber = 1.2345f;
|
||||||
|
const int kNumberMics = 4;
|
||||||
|
const float kTolerance = 0.0001f;
|
||||||
|
std::vector<Point> geometry;
|
||||||
|
geometry.push_back(Point(-0.025f, -0.05f, -0.075f));
|
||||||
|
geometry.push_back(Point(0.075f, -0.05f, -0.075f));
|
||||||
|
geometry.push_back(Point(-0.025f, 0.15f, -0.075f));
|
||||||
|
geometry.push_back(Point(-0.025f, -0.05f, 0.225f));
|
||||||
|
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
||||||
|
CovarianceMatrixGenerator::UniformCovarianceMatrix(kWaveNumber,
|
||||||
|
geometry,
|
||||||
|
&actual_covariance_matrix);
|
||||||
|
|
||||||
|
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
||||||
|
|
||||||
|
EXPECT_NEAR(actual_els[0][0].real(), 1.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[0][1].real(), 0.9962f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[0][2].real(), 0.9848f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[0][3].real(), 0.9660f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[1][0].real(), 0.9962f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[1][1].real(), 1.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[1][2].real(), 0.9810f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[1][3].real(), 0.9623f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[2][0].real(), 0.9848f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[2][1].real(), 0.9810f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[2][2].real(), 1.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[2][3].real(), 0.9511f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[3][0].real(), 0.9660f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[3][1].real(), 0.9623f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[3][2].real(), 0.9511f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[3][3].real(), 1.f, kTolerance);
|
||||||
|
|
||||||
|
EXPECT_NEAR(actual_els[0][0].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[0][1].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[0][2].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[0][3].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[1][0].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[1][1].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[1][2].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[1][3].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[2][0].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[2][1].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[2][2].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[2][3].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[3][0].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[3][1].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[3][2].imag(), 0.f, kTolerance);
|
||||||
|
EXPECT_NEAR(actual_els[3][3].imag(), 0.f, kTolerance);
|
||||||
|
}
|
||||||
|
|
||||||
TEST(CovarianceMatrixGeneratorTest, TestAngledCovarianceMatrix2Mics) {
|
TEST(CovarianceMatrixGeneratorTest, TestAngledCovarianceMatrix2Mics) {
|
||||||
const float kSpeedOfSound = 340;
|
const float kSpeedOfSound = 340;
|
||||||
const float kAngle = static_cast<float>(M_PI) / 4.f;
|
const float kAngle = static_cast<float>(M_PI) / 4.f;
|
||||||
@ -167,6 +148,11 @@ TEST(CovarianceMatrixGeneratorTest, TestAngledCovarianceMatrix2Mics) {
|
|||||||
const int kNumberMics = 2;
|
const int kNumberMics = 2;
|
||||||
const float kMicSpacing = 0.04f;
|
const float kMicSpacing = 0.04f;
|
||||||
const float kTolerance = 0.0001f;
|
const float kTolerance = 0.0001f;
|
||||||
|
std::vector<Point> geometry;
|
||||||
|
float first_mic = (kNumberMics - 1) * kMicSpacing / 2.f;
|
||||||
|
for (int i = 0; i < kNumberMics; ++i) {
|
||||||
|
geometry.push_back(Point(i * kMicSpacing - first_mic, 0.f, 0.f));
|
||||||
|
}
|
||||||
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
||||||
CovarianceMatrixGenerator::AngledCovarianceMatrix(kSpeedOfSound,
|
CovarianceMatrixGenerator::AngledCovarianceMatrix(kSpeedOfSound,
|
||||||
kAngle,
|
kAngle,
|
||||||
@ -174,8 +160,7 @@ TEST(CovarianceMatrixGeneratorTest, TestAngledCovarianceMatrix2Mics) {
|
|||||||
kFftSize,
|
kFftSize,
|
||||||
kNumberFrequencyBins,
|
kNumberFrequencyBins,
|
||||||
kSampleRate,
|
kSampleRate,
|
||||||
kNumberMics,
|
geometry,
|
||||||
kMicSpacing,
|
|
||||||
&actual_covariance_matrix);
|
&actual_covariance_matrix);
|
||||||
|
|
||||||
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
||||||
@ -201,7 +186,11 @@ TEST(CovarianceMatrixGeneratorTest, TestAngledCovarianceMatrix3Mics) {
|
|||||||
const int kNumberMics = 3;
|
const int kNumberMics = 3;
|
||||||
const float kMicSpacing = 0.05f;
|
const float kMicSpacing = 0.05f;
|
||||||
const float kTolerance = 0.0001f;
|
const float kTolerance = 0.0001f;
|
||||||
|
std::vector<Point> geometry;
|
||||||
|
float first_mic = (kNumberMics - 1) * kMicSpacing / 2.f;
|
||||||
|
for (int i = 0; i < kNumberMics; ++i) {
|
||||||
|
geometry.push_back(Point(i * kMicSpacing - first_mic, 0.f, 0.f));
|
||||||
|
}
|
||||||
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
||||||
CovarianceMatrixGenerator::AngledCovarianceMatrix(kSpeedOfSound,
|
CovarianceMatrixGenerator::AngledCovarianceMatrix(kSpeedOfSound,
|
||||||
kAngle,
|
kAngle,
|
||||||
@ -209,8 +198,7 @@ TEST(CovarianceMatrixGeneratorTest, TestAngledCovarianceMatrix3Mics) {
|
|||||||
kFftSize,
|
kFftSize,
|
||||||
kNumberFrequencyBins,
|
kNumberFrequencyBins,
|
||||||
kSampleRate,
|
kSampleRate,
|
||||||
kNumberMics,
|
geometry,
|
||||||
kMicSpacing,
|
|
||||||
&actual_covariance_matrix);
|
&actual_covariance_matrix);
|
||||||
|
|
||||||
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
||||||
@ -236,27 +224,6 @@ TEST(CovarianceMatrixGeneratorTest, TestAngledCovarianceMatrix3Mics) {
|
|||||||
EXPECT_NEAR(actual_els[2][2].imag(), 0.f, kTolerance);
|
EXPECT_NEAR(actual_els[2][2].imag(), 0.f, kTolerance);
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(CovarianceMatrixGeneratorTest, TestDCCovarianceMatrix) {
|
|
||||||
const int kNumberMics = 2;
|
|
||||||
const float kHalfWidth = 0.01f;
|
|
||||||
|
|
||||||
ComplexMatrix<float> actual_covariance_matrix(kNumberMics, kNumberMics);
|
|
||||||
CovarianceMatrixGenerator::DCCovarianceMatrix(
|
|
||||||
kNumberMics, kHalfWidth, &actual_covariance_matrix);
|
|
||||||
|
|
||||||
complex<float>* const* actual_els = actual_covariance_matrix.elements();
|
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].real(), 0.98f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][1].real(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][0].real(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][1].real(), 0.98f, kTolerance);
|
|
||||||
|
|
||||||
EXPECT_NEAR(actual_els[0][0].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[0][1].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][0].imag(), 0.f, kTolerance);
|
|
||||||
EXPECT_NEAR(actual_els[1][1].imag(), 0.f, kTolerance);
|
|
||||||
}
|
|
||||||
|
|
||||||
// PhaseAlignmentMasks is tested by AngledCovarianceMatrix and by
|
// PhaseAlignmentMasks is tested by AngledCovarianceMatrix and by
|
||||||
// InitBeamformerWeights in BeamformerUnittest.
|
// InitBeamformerWeights in BeamformerUnittest.
|
||||||
|
|
||||||
|
@ -17,6 +17,7 @@
|
|||||||
|
|
||||||
#include "webrtc/base/platform_file.h"
|
#include "webrtc/base/platform_file.h"
|
||||||
#include "webrtc/common.h"
|
#include "webrtc/common.h"
|
||||||
|
#include "webrtc/modules/audio_processing/beamformer/array_util.h"
|
||||||
#include "webrtc/typedefs.h"
|
#include "webrtc/typedefs.h"
|
||||||
|
|
||||||
struct AecCore;
|
struct AecCore;
|
||||||
@ -84,16 +85,6 @@ struct ExperimentalNs {
|
|||||||
bool enabled;
|
bool enabled;
|
||||||
};
|
};
|
||||||
|
|
||||||
// Coordinates in meters.
|
|
||||||
struct Point {
|
|
||||||
Point(float x, float y, float z) {
|
|
||||||
c[0] = x;
|
|
||||||
c[1] = y;
|
|
||||||
c[2] = z;
|
|
||||||
}
|
|
||||||
float c[3];
|
|
||||||
};
|
|
||||||
|
|
||||||
// Use to enable beamforming. Must be provided through the constructor. It will
|
// Use to enable beamforming. Must be provided through the constructor. It will
|
||||||
// have no impact if used with AudioProcessing::SetExtraOptions().
|
// have no impact if used with AudioProcessing::SetExtraOptions().
|
||||||
struct Beamforming {
|
struct Beamforming {
|
||||||
|
@ -101,7 +101,7 @@ std::vector<Point> get_array_geometry(size_t num_mics) {
|
|||||||
"mic_spacing must a positive value when beamforming is enabled.\n");
|
"mic_spacing must a positive value when beamforming is enabled.\n");
|
||||||
} else {
|
} else {
|
||||||
for (size_t i = 0; i < num_mics; ++i) {
|
for (size_t i = 0; i < num_mics; ++i) {
|
||||||
result.push_back(Point(0.0, i * FLAGS_mic_spacing, 0.0));
|
result.push_back(Point(i * FLAGS_mic_spacing, 0.f, 0.f));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user