228 lines
8.4 KiB
C++
228 lines
8.4 KiB
C++
|
/*
|
||
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include "receiver_tests.h"
|
||
|
#include "video_coding.h"
|
||
|
#include "trace.h"
|
||
|
#include "tick_time.h"
|
||
|
#include "../source/event.h"
|
||
|
#include "../source/internal_defines.h"
|
||
|
#include "timing.h"
|
||
|
#include "test_macros.h"
|
||
|
#include "test_util.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cstdlib>
|
||
|
#include <cmath>
|
||
|
|
||
|
using namespace webrtc;
|
||
|
|
||
|
float vcmFloatMax(float a, float b)
|
||
|
{
|
||
|
return a > b ? a : b;
|
||
|
}
|
||
|
|
||
|
float vcmFloatMin(float a, float b)
|
||
|
{
|
||
|
return a < b ? a : b;
|
||
|
}
|
||
|
|
||
|
double const pi = 4*std::atan(1.0);
|
||
|
|
||
|
class GaussDist
|
||
|
{
|
||
|
public:
|
||
|
static float RandValue(float m, float stdDev) // returns a single normally distributed number
|
||
|
{
|
||
|
float r1 = static_cast<float>((std::rand() + 1.0)/(RAND_MAX + 1.0)); // gives equal distribution in (0, 1]
|
||
|
float r2 = static_cast<float>((std::rand() + 1.0)/(RAND_MAX + 1.0));
|
||
|
return m + stdDev * static_cast<float>(std::sqrt(-2*std::log(r1))*std::cos(2*pi*r2));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
int ReceiverTimingTests(CmdArgs& args)
|
||
|
{
|
||
|
// Make sure this test is never executed with simulated clocks
|
||
|
#if defined(TICK_TIME_DEBUG) || defined(EVENT_DEBUG)
|
||
|
return -1;
|
||
|
#endif
|
||
|
|
||
|
// Set up trace
|
||
|
Trace::CreateTrace();
|
||
|
Trace::SetTraceFile("receiverTestTrace.txt");
|
||
|
Trace::SetLevelFilter(webrtc::kTraceAll);
|
||
|
|
||
|
// A static random seed
|
||
|
srand(0);
|
||
|
|
||
|
VCMTiming timing;
|
||
|
float clockInMs = 0.0;
|
||
|
WebRtc_UWord32 waitTime = 0;
|
||
|
WebRtc_Word32 jitterDelayMs = 0;
|
||
|
WebRtc_Word32 maxDecodeTimeMs = 0;
|
||
|
WebRtc_Word32 extraDelayMs = 0;
|
||
|
WebRtc_UWord32 timeStamp = 0;
|
||
|
|
||
|
timing.Reset(static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
TEST(timing.MaxWaitingTime(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5)) >= 0);
|
||
|
|
||
|
timing.Reset(static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
|
||
|
timing.IncomingTimestamp(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
jitterDelayMs = 20;
|
||
|
timing.SetRequiredDelay(jitterDelayMs);
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5)),
|
||
|
static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
// First update initializes the render time. Since we have no decode delay
|
||
|
// we get waitTime = renderTime - now - renderDelay = jitter
|
||
|
TEST(waitTime == jitterDelayMs);
|
||
|
|
||
|
jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
|
||
|
timeStamp += 90000;
|
||
|
clockInMs += 1000.0f;
|
||
|
timing.SetRequiredDelay(jitterDelayMs);
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5)),
|
||
|
static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
// Since we gradually increase the delay we only get
|
||
|
// 100 ms every second.
|
||
|
TEST(waitTime == jitterDelayMs - 10);
|
||
|
|
||
|
timeStamp += 90000;
|
||
|
clockInMs += 1000.0;
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5)),
|
||
|
static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
TEST(waitTime == jitterDelayMs);
|
||
|
|
||
|
// 300 incoming frames without jitter, verify that this gives the exact wait time
|
||
|
for (int i=0; i < 300; i++)
|
||
|
{
|
||
|
clockInMs += 1000.0f/30.0f;
|
||
|
timeStamp += 3000;
|
||
|
timing.IncomingTimestamp(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
}
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5)),
|
||
|
static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
TEST(waitTime == jitterDelayMs);
|
||
|
|
||
|
// Add decode time estimates
|
||
|
for (int i=0; i < 10; i++)
|
||
|
{
|
||
|
WebRtc_Word64 startTimeMs = static_cast<WebRtc_Word64>(clockInMs + 0.5);
|
||
|
clockInMs += 10.0f;
|
||
|
timing.StopDecodeTimer(timeStamp, startTimeMs, static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
timeStamp += 3000;
|
||
|
clockInMs += 1000.0f/30.0f - 10.0f;
|
||
|
timing.IncomingTimestamp(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
}
|
||
|
maxDecodeTimeMs = 10;
|
||
|
timing.SetRequiredDelay(jitterDelayMs);
|
||
|
clockInMs += 1000.0f;
|
||
|
timeStamp += 90000;
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5)),
|
||
|
static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
TEST(waitTime == jitterDelayMs);
|
||
|
|
||
|
WebRtc_UWord32 totalDelay1 = timing.TargetVideoDelay();
|
||
|
WebRtc_UWord32 minTotalDelayMs = 200;
|
||
|
timing.SetMinimumTotalDelay(minTotalDelayMs);
|
||
|
clockInMs += 5000.0f;
|
||
|
timeStamp += 5*90000;
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5)),
|
||
|
static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
WebRtc_UWord32 totalDelay2 = timing.TargetVideoDelay();
|
||
|
// We should at least have minTotalDelayMs - decodeTime (10) - renderTime (10) to wait
|
||
|
TEST(waitTime == minTotalDelayMs - maxDecodeTimeMs - 10);
|
||
|
// The total video delay should not increase with the extra delay,
|
||
|
// the extra delay should be independent.
|
||
|
TEST(totalDelay1 == totalDelay2);
|
||
|
|
||
|
// Reset min total delay
|
||
|
timing.SetMinimumTotalDelay(0);
|
||
|
clockInMs += 5000.0f;
|
||
|
timeStamp += 5*90000;
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
|
||
|
// A sudden increase in timestamp of 2.1 seconds
|
||
|
clockInMs += 1000.0f/30.0f;
|
||
|
timeStamp += static_cast<WebRtc_UWord32>(2.1*90000 + 0.5);
|
||
|
WebRtc_Word64 ret = timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
TEST(ret == -1);
|
||
|
timing.Reset();
|
||
|
|
||
|
// This test produces a trace which can be parsed with plotTimingTest.m. The plot
|
||
|
// can be used to see that the timing is reasonable under noise, and that the
|
||
|
// gradual transition between delays works as expected.
|
||
|
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "Stochastic test 1");
|
||
|
|
||
|
jitterDelayMs = 60;
|
||
|
maxDecodeTimeMs = 10;
|
||
|
extraDelayMs = 0;
|
||
|
|
||
|
timeStamp = static_cast<WebRtc_UWord32>(-10000); // To produce a wrap
|
||
|
clockInMs = 10000.0f;
|
||
|
timing.Reset(static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
|
||
|
float noise = 0.0f;
|
||
|
for (int i=0; i < 1400; i++)
|
||
|
{
|
||
|
if (i == 400)
|
||
|
{
|
||
|
jitterDelayMs = 30;
|
||
|
}
|
||
|
else if (i == 700)
|
||
|
{
|
||
|
jitterDelayMs = 100;
|
||
|
}
|
||
|
else if (i == 1000)
|
||
|
{
|
||
|
minTotalDelayMs = 200;
|
||
|
timing.SetMinimumTotalDelay(minTotalDelayMs);
|
||
|
}
|
||
|
else if (i == 1200)
|
||
|
{
|
||
|
minTotalDelayMs = 0;
|
||
|
timing.SetMinimumTotalDelay(minTotalDelayMs);
|
||
|
}
|
||
|
WebRtc_Word64 startTimeMs = static_cast<WebRtc_Word64>(clockInMs + 0.5);
|
||
|
noise = vcmFloatMin(vcmFloatMax(GaussDist::RandValue(0, 2), -10.0f), 30.0f);
|
||
|
clockInMs += 10.0f;
|
||
|
timing.StopDecodeTimer(timeStamp, startTimeMs, static_cast<WebRtc_Word64>(clockInMs + noise + 0.5));
|
||
|
timeStamp += 3000;
|
||
|
clockInMs += 1000.0f/30.0f - 10.0f;
|
||
|
noise = vcmFloatMin(vcmFloatMax(GaussDist::RandValue(0, 8), -15.0f), 15.0f);
|
||
|
timing.IncomingTimestamp(timeStamp, static_cast<WebRtc_Word64>(clockInMs + noise + 0.5));
|
||
|
timing.SetRequiredDelay(jitterDelayMs);
|
||
|
timing.UpdateCurrentDelay(timeStamp);
|
||
|
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5)),
|
||
|
static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
|
||
|
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "timeStamp=%u clock=%u maxWaitTime=%u", timeStamp,
|
||
|
static_cast<WebRtc_UWord32>(clockInMs + 0.5), waitTime);
|
||
|
|
||
|
WebRtc_Word64 renderTimeMs = timing.RenderTimeMs(timeStamp, static_cast<WebRtc_Word64>(clockInMs + 0.5));
|
||
|
|
||
|
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1,
|
||
|
"timeStamp=%u renderTime=%u",
|
||
|
timeStamp,
|
||
|
MaskWord64ToUWord32(renderTimeMs));
|
||
|
}
|
||
|
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "End Stochastic test 1");
|
||
|
Trace::ReturnTrace();
|
||
|
return 0;
|
||
|
}
|