webrtc/modules/video_coding/main/test/test_util.cc

726 lines
22 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test_util.h"
#include "rtp_dump.h"
#include <cmath>
using namespace webrtc;
/******************************
* VCMEncodeCompleteCallback
*****************************/
// Basic callback implementation
// passes the encoded frame directly to the encoder
// Packetization callback implmentation
VCMEncodeCompleteCallback::VCMEncodeCompleteCallback(FILE* encodedFile):
_seqNo(0),
_encodedFile(encodedFile),
_encodedBytes(0),
_VCMReceiver(NULL),
_encodeComplete(false),
_width(0),
_height(0),
_codecType(kRTPVideoNoVideo),
_layerPacketId(1)
{
//
}
VCMEncodeCompleteCallback::~VCMEncodeCompleteCallback()
{
}
void
VCMEncodeCompleteCallback::RegisterTransportCallback(VCMPacketizationCallback* transport)
{
}
WebRtc_Word32
VCMEncodeCompleteCallback::SendData(const FrameType frameType,
const WebRtc_UWord8 payloadType,
const WebRtc_UWord32 timeStamp,
const WebRtc_UWord8* payloadData,
const WebRtc_UWord32 payloadSize,
const RTPFragmentationHeader& fragmentationHeader)
{
// will call the VCMReceiver input packet
_frameType = frameType;
// writing encodedData into file
fwrite(payloadData, 1, payloadSize, _encodedFile);
WebRtcRTPHeader rtpInfo;
rtpInfo.header.markerBit = true; // end of frame
rtpInfo.type.Video.isFirstPacket = true;
rtpInfo.type.Video.codec = _codecType;
switch (_codecType)
{
case webrtc::kRTPVideoH263:
rtpInfo.type.Video.codecHeader.H263.bits = false;
rtpInfo.type.Video.codecHeader.H263.independentlyDecodable = false;
rtpInfo.type.Video.height = (WebRtc_UWord16)_height;
rtpInfo.type.Video.width = (WebRtc_UWord16)_width;
break;
}
rtpInfo.header.payloadType = payloadType;
rtpInfo.header.sequenceNumber = _seqNo++;
rtpInfo.header.ssrc = 0;
rtpInfo.header.timestamp = timeStamp;
rtpInfo.frameType = frameType;
// Size should also be received from that table, since the payload type
// defines the size.
_encodedBytes += payloadSize;
// directly to receiver
_VCMReceiver->IncomingPacket(payloadData, payloadSize, rtpInfo);
_encodeComplete = true;
return 0;
}
float
VCMEncodeCompleteCallback::EncodedBytes()
{
return _encodedBytes;
}
bool
VCMEncodeCompleteCallback::EncodeComplete()
{
if (_encodeComplete)
{
_encodeComplete = false;
return true;
}
return false;
}
void
VCMEncodeCompleteCallback::Initialize()
{
_encodeComplete = false;
_encodedBytes = 0;
_seqNo = 0;
return;
}
void
VCMEncodeCompleteCallback::ResetByteCount()
{
_encodedBytes = 0;
}
/**********************************/
/* VCMRTPEncodeCompleteCallback /
/********************************/
// Encode Complete callback implementation
// passes the encoded frame via the RTP module to the decoder
// Packetization callback implmentation
WebRtc_Word32
VCMRTPEncodeCompleteCallback::SendData(const FrameType frameType,
const WebRtc_UWord8 payloadType,
const WebRtc_UWord32 timeStamp,
const WebRtc_UWord8* payloadData,
const WebRtc_UWord32 payloadSize,
const RTPFragmentationHeader& fragmentationHeader)
{
_frameType = frameType;
_encodedBytes+= payloadSize;
_encodeComplete = true;
//printf("encoded = %d Bytes\n", payloadSize);
return _RTPModule->SendOutgoingData(frameType, payloadType, timeStamp, payloadData, payloadSize, &fragmentationHeader);
}
float
VCMRTPEncodeCompleteCallback::EncodedBytes()
{
// only good for one call - after which will reset value;
float tmp = _encodedBytes;
_encodedBytes = 0;
return tmp;
}
bool
VCMRTPEncodeCompleteCallback::EncodeComplete()
{
if (_encodeComplete)
{
_encodeComplete = false;
return true;
}
return false;
}
// Decoded Frame Callback Implmentation
WebRtc_Word32
VCMDecodeCompleteCallback::FrameToRender(VideoFrame& videoFrame)
{
fwrite(videoFrame.Buffer(), 1, videoFrame.Length(), _decodedFile);
_decodedBytes+= videoFrame.Length();
// keeping last decoded frame
_lastDecodedFrame.VerifyAndAllocate(videoFrame.Size());
_lastDecodedFrame.CopyFrame(videoFrame.Size(), videoFrame.Buffer());
_lastDecodedFrame.SetHeight(videoFrame.Height());
_lastDecodedFrame.SetWidth(videoFrame.Width());
_lastDecodedFrame.SetTimeStamp(videoFrame.TimeStamp());
return VCM_OK;
}
int
VCMDecodeCompleteCallback::PSNRLastFrame(const VideoFrame& sourceFrame, double *YPSNRptr)
{
double mse = 0.0;
double mseLogSum = 0.0;
WebRtc_Word32 frameBytes = sourceFrame.Height() * sourceFrame.Width(); // only Y
WebRtc_UWord8 *ref = sourceFrame.Buffer();
if (_lastDecodedFrame.Height() == 0)
{
*YPSNRptr = 0;
return 0; // no new decoded frames
}
WebRtc_UWord8 *test = _lastDecodedFrame.Buffer();
for( int k = 0; k < frameBytes; k++ )
{
mse += (test[k] - ref[k]) * (test[k] - ref[k]);
}
// divide by number of pixels
mse /= (double) (frameBytes);
// accumulate for total average
mseLogSum += std::log10( mse );
*YPSNRptr = 20.0 * std::log10(255.0) - 10.0 * mseLogSum; // for only 1 frame
_lastDecodedFrame.Free();
_lastDecodedFrame.SetHeight(0);
return 0;
}
WebRtc_Word32
VCMDecodeCompleteCallback::DecodedBytes()
{
return _decodedBytes;
}
RTPSendCompleteCallback::RTPSendCompleteCallback(RtpRtcp* rtp, const char* filename):
_rtp(rtp),
_sendCount(0),
_lossPct(0),
_rtpDump(NULL)
{
if (filename != NULL)
{
_rtpDump = RtpDump::CreateRtpDump();
_rtpDump->Start(filename);
}
}
RTPSendCompleteCallback::~RTPSendCompleteCallback()
{
if (_rtpDump != NULL)
{
_rtpDump->Stop();
RtpDump::DestroyRtpDump(_rtpDump);
}
}
int
RTPSendCompleteCallback::SendPacket(int channel, const void *data, int len)
{
_sendCount++;
// Packet Loss - randomly drop %loss packets
// don't drop I-frame packets
if(PacketLoss(_lossPct) && (_sendCount > 12))
{
// drop
//printf("\tDrop packet, sendCount = %d\n", _sendCount);
return len;
}
if (_rtpDump != NULL)
{
if (_rtpDump->DumpPacket((const WebRtc_UWord8*)data, len) != 0)
{
return -1;
}
}
if(_rtp->IncomingPacket((const WebRtc_UWord8*)data, len) == 0)
{
return len;
}
return -1;
}
int
RTPSendCompleteCallback::SendRTCPPacket(int channel, const void *data, int len)
{
if(_rtp->IncomingPacket((const WebRtc_UWord8*)data, len) == 0)
{
return len;
}
return -1;
}
void
RTPSendCompleteCallback::SetLossPct(double lossPct)
{
_lossPct = lossPct;
return;
}
bool
RTPSendCompleteCallback::PacketLoss(double lossPct)
{
double randVal = (std::rand() + 1.0)/(RAND_MAX + 1.0);
return randVal < lossPct/100;
}
WebRtc_Word32
PacketRequester::ResendPackets(const WebRtc_UWord16* sequenceNumbers, WebRtc_UWord16 length)
{
return _rtp.SendNACK(sequenceNumbers, length);
}
WebRtc_Word32
PSNRfromFiles(const WebRtc_Word8 *refFileName, const WebRtc_Word8 *testFileName, WebRtc_Word32 width, WebRtc_Word32 height, double *YPSNRptr)
{
FILE *refFp = fopen(refFileName, "rb");
if( refFp == NULL ) {
// cannot open reference file
fprintf(stderr, "Cannot open file %s\n", refFileName);
return -1;
}
FILE *testFp = fopen(testFileName, "rb");
if( testFp == NULL ) {
// cannot open test file
fprintf(stderr, "Cannot open file %s\n", testFileName);
return -2;
}
double mse = 0.0;
double mseLogSum = 0.0;
WebRtc_Word32 frames = 0;
WebRtc_Word32 frameBytes = 3*width*height/2; // bytes in one frame I420
WebRtc_UWord8 *ref = new WebRtc_UWord8[frameBytes]; // space for one frame I420
WebRtc_UWord8 *test = new WebRtc_UWord8[frameBytes]; // space for one frame I420
WebRtc_Word32 refBytes = (WebRtc_Word32) fread(ref, 1, frameBytes, refFp);
WebRtc_Word32 testBytes = (WebRtc_Word32) fread(test, 1, frameBytes, testFp);
while( refBytes == frameBytes && testBytes == frameBytes )
{
mse = 0.0;
int sh = 8;//boundary offset
for( int k2 = sh; k2 < height-sh;k2++)
for( int k = sh; k < width-sh;k++)
{
int kk = k2*width + k;
mse += (test[kk] - ref[kk]) * (test[kk] - ref[kk]);
}
// divide by number of pixels
mse /= (double) (width * height);
// accumulate for total average
mseLogSum += std::log10( mse );
frames++;
refBytes = (int) fread(ref, 1, frameBytes, refFp);
testBytes = (int) fread(test, 1, frameBytes, testFp);
}
// for identical reproduction:
if (mse == 0)
{
*YPSNRptr = 48;
}
else
{
*YPSNRptr = 20.0 * std::log10(255.0) - 10.0 * mseLogSum / frames;
}
delete [] ref;
delete [] test;
fclose(refFp);
fclose(testFp);
return 0;
}
WebRtc_Word32
SSIMfromFiles(const WebRtc_Word8 *refFileName, const WebRtc_Word8 *testFileName, WebRtc_Word32 width, WebRtc_Word32 height, double *SSIMptr)
{
FILE *refFp = fopen(refFileName, "rb");
if( refFp == NULL ) {
// cannot open reference file
fprintf(stderr, "Cannot open file %s\n", refFileName);
return -1;
}
FILE *testFp = fopen(testFileName, "rb");
if( testFp == NULL ) {
// cannot open test file
fprintf(stderr, "Cannot open file %s\n", testFileName);
return -2;
}
int frames = 0;
int frameBytes = 3*width*height/2; // bytes in one frame I420
unsigned char *ref = new unsigned char[frameBytes]; // space for one frame I420
unsigned char *test = new unsigned char[frameBytes]; // space for one frame I420
int refBytes = (int) fread(ref, 1, frameBytes, refFp);
int testBytes = (int) fread(test, 1, frameBytes, testFp);
float *righMostColumnAvgTest = new float[width];
float *righMostColumnAvgRef = new float[width];
float *righMostColumnContrastTest = new float[width];
float *righMostColumnContrastRef = new float[width];
float *righMostColumnCrossCorr = new float[width];
float term1,term2,term3,term4,term5;
//
// SSIM: variable definition, window function, initialization
int window = 10;
//
int flag_window = 0; //0 and 1 for uniform window filter, 2 for gaussian window
//
float variance_window = 2.0; //variance for window function
float ssimFilter[121]; //2d window filter: typically 11x11 = (window+1)*(window+1)
//statistics per column of window (#columns = window+1), 0 element for avg over all columns
float avgTest[12];
float avgRef[12];
float contrastTest[12];
float contrastRef[12];
float crossCorr[12];
//
//offsets for stability
float offset1 = 1.0f; //0.1
float offset2 = 1.0f; //0.1
//for Guassian window: settings from paper:
//float offset1 = 6.0f; // ~ (K1*L)^2 , K1 = 0.01
//float offset2 = 58.0f; // ~ (K1*L)^2 , K2 = 0.03
float offset3 = offset2/2;
//
//define window for SSIM: take uniform filter for now
float sumfil = 0.0;
int nn=-1;
for(int j=-window/2;j<=window/2;j++)
for(int i=-window/2;i<=window/2;i++)
{
nn+=1;
if (flag_window != 2)
ssimFilter[nn] = 1.0;
else
{
float dist = (float)(i*i) + (float)(j*j);
float tmp = 0.5f*dist/variance_window;
ssimFilter[nn] = exp(-tmp);
}
sumfil +=ssimFilter[nn];
}
//normalize window
nn=-1;
for(int j=-window/2;j<=window/2;j++)
for(int i=-window/2;i<=window/2;i++)
{
nn+=1;
ssimFilter[nn] = ssimFilter[nn]/((float)sumfil);
}
//
float ssimScene = 0.0; //avgerage SSIM for sequence
//
//SSIM: done with variables and defintion
//
int sh = 8; //boundary offset
while( refBytes == frameBytes && testBytes == frameBytes )
{
float ssimFrame = 0.0;
int numPixels = 0;
//skip over pixels vertically and horizontally
//for window cases 1 and 2
int skipH = 2;
int skipV = 2;
//uniform window case, with window computation updated for each pixel horiz and vert: can't skip pixels for this case
if (flag_window == 0)
{
skipH = 1;
skipV = 1;
}
for(int i=sh;i<height-sh;i+=skipV)
for(int j=sh;j<width-sh;j+=skipH)
{
avgTest[0] = 0.0;
avgRef[0] = 0.0;
contrastTest[0] = 0.0;
contrastRef[0] = 0.0;
crossCorr[0] = 0.0;
numPixels +=1;
if (flag_window > 0 )
{
//initialize statistics
avgTest[0] = 0.0;
avgRef[0] = 0.0;
contrastTest[0] = 0.0;
contrastRef[0] = 0.0;
crossCorr[0] = 0.0;
int nn=-1;
//compute contrast and correlation
//windows are symmetrics
for(int jj=-window/2;jj<=window/2;jj++)
for(int ii=-window/2;ii<=window/2;ii++)
{
nn+=1;
int i2 = i+ii;
int j2 = j+jj;
float tmp1 = (float)test[i2*width+j2];
float tmp2 = (float)ref[i2*width+j2];
term1 = tmp1;
term2 = tmp2;
term3 = tmp1*tmp1;
term4 = tmp2*tmp2;
term5 = tmp1*tmp2;
//local average of each signal
avgTest[0] += ssimFilter[nn]*term1;
avgRef[0] += ssimFilter[nn]*term2;
//local correlation/contrast of each signal
contrastTest[0] += ssimFilter[nn]*term3;
contrastRef[0] += ssimFilter[nn]*term4;
//local cross correlation
crossCorr[0] += ssimFilter[nn]*term5;
}
}
else
{
//for uniform window case == 0: only need to loop over whole window for first row and column, and then shift/update
if (j == sh || i == sh)
{
//initialize statistics
for(int k=0;k<window+2;k++)
{
avgTest[k] = 0.0;
avgRef[k] = 0.0;
contrastTest[k] = 0.0;
contrastRef[k] = 0.0;
crossCorr[k] = 0.0;
}
int nn=-1;
//compute contrast and correlation
//windows are symmetrics
for(int jj=-window/2;jj<=window/2;jj++)
for(int ii=-window/2;ii<=window/2;ii++)
{
nn+=1;
int i2 = i+ii;
int j2 = j+jj;
float tmp1 = (float)test[i2*width+j2];
float tmp2 = (float)ref[i2*width+j2];
term1 = tmp1;
term2 = tmp2;
term3 = tmp1*tmp1;
term4 = tmp2*tmp2;
term5 = tmp1*tmp2;
//local average of each signal
avgTest[jj+window/2+1] += term1;
avgRef[jj+window/2+1] += term2;
//local correlation/contrast of each signal
contrastTest[jj+window/2+1] += term3;
contrastRef[jj+window/2+1] += term4;
//local cross correlation
crossCorr[jj+window/2+1] += term5;
}
//normalize
for(int k=1;k<window+2;k++)
{
avgTest[k] = ssimFilter[0]*avgTest[k];
avgRef[k] = ssimFilter[0]*avgRef[k];
contrastTest[k] = ssimFilter[0]*contrastTest[k];
contrastRef[k] = ssimFilter[0]*contrastRef[k];
crossCorr[k] = ssimFilter[0]*crossCorr[k];
}
}
//for all other pixels, update window filter computation
else
{
//shift statistics horiz.
for(int k=1;k<window+1;k++)
{
avgTest[k]=avgTest[k+1];
avgRef[k]=avgRef[k+1];
contrastTest[k] = contrastTest[k+1];
contrastRef[k] = contrastRef[k+1];
crossCorr[k] = crossCorr[k+1];
}
//compute statistics for last column
//update right-most column, by updating with bottom pixel contribution
int j2 = j + window/2; //last column of window
int i2 = i + window/2; //last window pixel of column
int ix = i - window/2 - 1; //last window pixel of top neighboring pixel
float tmp1 = (float)test[i2*width+j2];
float tmp2 = (float)ref[i2*width+j2];
float tmp1x = (float)test[ix*width+j2];
float tmp2x = (float)ref[ix*width+j2];
avgTest[window+1] = righMostColumnAvgTest[j] + ssimFilter[0]*(tmp1 - tmp1x);
avgRef[window+1] = righMostColumnAvgRef[j] + ssimFilter[0]*(tmp2 - tmp2x);
contrastTest[window+1] = righMostColumnContrastTest[j] + ssimFilter[0]*(tmp1*tmp1 - tmp1x*tmp1x);
contrastRef[window+1] = righMostColumnContrastRef[j] + ssimFilter[0]*(tmp2*tmp2 - tmp2x*tmp2x);
crossCorr[window+1] = righMostColumnCrossCorr[j] + ssimFilter[0]*(tmp1*tmp2 - tmp1x*tmp2x);
}
//sum over all columns
for(int k=1;k<window+2;k++)
{
avgTest[0] += avgTest[k];
avgRef[0] += avgRef[k];
contrastTest[0] += contrastTest[k];
contrastRef[0] += contrastRef[k];
crossCorr[0] += crossCorr[k];
}
//
righMostColumnAvgTest[j] = avgTest[window+1];
righMostColumnAvgRef[j] = avgRef[window+1];
righMostColumnContrastTest[j] = contrastTest[window+1];
righMostColumnContrastRef[j] = contrastRef[window+1];
righMostColumnCrossCorr[j] = crossCorr[window+1];
//
} //end of window = 0 case
float tmp1 = (contrastTest[0] - avgTest[0]*avgTest[0]);
if (tmp1 < 0.0) tmp1 = 0.0;
contrastTest[0] = sqrt(tmp1);
float tmp2 = (contrastRef[0] - avgRef[0]*avgRef[0]);
if (tmp2 < 0.0) tmp2 = 0.0;
contrastRef[0] = sqrt(tmp2);
crossCorr[0] = crossCorr[0] - avgTest[0]*avgRef[0];
float ssimCorrCoeff = (crossCorr[0]+offset3)/(contrastTest[0]*contrastRef[0] + offset3);
float ssimLuminance = (2*avgTest[0]*avgRef[0]+offset1)/(avgTest[0]*avgTest[0] + avgRef[0]*avgRef[0] + offset1);
float ssimContrast = (2*contrastTest[0]*contrastRef[0]+offset2)/(contrastTest[0]*contrastTest[0] + contrastRef[0]*contrastRef[0] + offset2);
float ssimPixel = ssimCorrCoeff * ssimLuminance * ssimContrast;
ssimFrame += ssimPixel;
} //done with ssim computation
ssimFrame = ssimFrame / (numPixels);
//printf("***SSIM for frame ***%f \n",ssimFrame);
ssimScene += ssimFrame;
//
//SSIM: done with SSIM computation
//
frames++;
refBytes = (int) fread(ref, 1, frameBytes, refFp);
testBytes = (int) fread(test, 1, frameBytes, testFp);
}
//SSIM: normalize/average for sequence
ssimScene = ssimScene / frames;
*SSIMptr = ssimScene;
delete [] ref;
delete [] test;
delete [] righMostColumnAvgTest;
delete [] righMostColumnAvgRef;
delete [] righMostColumnContrastTest;
delete [] righMostColumnContrastRef;
delete [] righMostColumnCrossCorr;
fclose(refFp);
fclose(testFp);
return 0;
}
RTPVideoCodecTypes
ConvertCodecType(const char* plname)
{
if (strncmp(plname,"VP8" , 3) == 0)
{
return kRTPVideoVP8;
}else if (strncmp(plname,"H263" , 5) == 0)
{
return kRTPVideoH263;
}else if (strncmp(plname, "H263-1998",10) == 0)
{
return kRTPVideoH263;
}else if (strncmp(plname,"I420" , 5) == 0)
{
return kRTPVideoI420;
}else
{
return kRTPVideoNoVideo; // defualt value
}
}
WebRtc_Word32
SendStatsTest::SendStatistics(const WebRtc_UWord32 bitRate, const WebRtc_UWord32 frameRate)
{
TEST(frameRate <= _frameRate);
TEST(bitRate > 0 && bitRate < 100000);
printf("VCM 1 sec: Bit rate: %u\tFrame rate: %u\n", bitRate, frameRate);
return 0;
}
WebRtc_Word32
KeyFrameReqTest::FrameTypeRequest(const FrameType frameType)
{
TEST(frameType == kVideoFrameKey);
if (frameType == kVideoFrameKey)
{
printf("Key frame requested\n");
}
else
{
printf("Non-key frame requested: %d\n", frameType);
}
return 0;
}