webrtc/talk/p2p/client/basicportallocator.cc

1132 lines
38 KiB
C++
Raw Normal View History

/*
* libjingle
* Copyright 2004--2005, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "talk/p2p/client/basicportallocator.h"
#include <string>
#include <vector>
#include "talk/base/common.h"
#include "talk/base/helpers.h"
#include "talk/base/logging.h"
#include "talk/p2p/base/basicpacketsocketfactory.h"
#include "talk/p2p/base/common.h"
#include "talk/p2p/base/port.h"
#include "talk/p2p/base/relayport.h"
#include "talk/p2p/base/stunport.h"
#include "talk/p2p/base/tcpport.h"
#include "talk/p2p/base/turnport.h"
#include "talk/p2p/base/udpport.h"
using talk_base::CreateRandomId;
using talk_base::CreateRandomString;
namespace {
const uint32 MSG_CONFIG_START = 1;
const uint32 MSG_CONFIG_READY = 2;
const uint32 MSG_ALLOCATE = 3;
const uint32 MSG_ALLOCATION_PHASE = 4;
const uint32 MSG_SHAKE = 5;
const uint32 MSG_SEQUENCEOBJECTS_CREATED = 6;
const uint32 MSG_CONFIG_STOP = 7;
const uint32 ALLOCATE_DELAY = 250;
const int PHASE_UDP = 0;
const int PHASE_RELAY = 1;
const int PHASE_TCP = 2;
const int PHASE_SSLTCP = 3;
const int kNumPhases = 4;
const int SHAKE_MIN_DELAY = 45 * 1000; // 45 seconds
const int SHAKE_MAX_DELAY = 90 * 1000; // 90 seconds
int ShakeDelay() {
int range = SHAKE_MAX_DELAY - SHAKE_MIN_DELAY + 1;
return SHAKE_MIN_DELAY + CreateRandomId() % range;
}
} // namespace
namespace cricket {
const uint32 DISABLE_ALL_PHASES =
PORTALLOCATOR_DISABLE_UDP
| PORTALLOCATOR_DISABLE_TCP
| PORTALLOCATOR_DISABLE_STUN
| PORTALLOCATOR_DISABLE_RELAY;
// Performs the allocation of ports, in a sequenced (timed) manner, for a given
// network and IP address.
class AllocationSequence : public talk_base::MessageHandler,
public sigslot::has_slots<> {
public:
enum State {
kInit, // Initial state.
kRunning, // Started allocating ports.
kStopped, // Stopped from running.
kCompleted, // All ports are allocated.
// kInit --> kRunning --> {kCompleted|kStopped}
};
AllocationSequence(BasicPortAllocatorSession* session,
talk_base::Network* network,
PortConfiguration* config,
uint32 flags);
~AllocationSequence();
bool Init();
State state() const { return state_; }
// Disables the phases for a new sequence that this one already covers for an
// equivalent network setup.
void DisableEquivalentPhases(talk_base::Network* network,
PortConfiguration* config, uint32* flags);
// Starts and stops the sequence. When started, it will continue allocating
// new ports on its own timed schedule.
void Start();
void Stop();
// MessageHandler
void OnMessage(talk_base::Message* msg);
void EnableProtocol(ProtocolType proto);
bool ProtocolEnabled(ProtocolType proto) const;
// Signal from AllocationSequence, when it's done with allocating ports.
// This signal is useful, when port allocation fails which doesn't result
// in any candidates. Using this signal BasicPortAllocatorSession can send
// its candidate discovery conclusion signal. Without this signal,
// BasicPortAllocatorSession doesn't have any event to trigger signal. This
// can also be achieved by starting timer in BPAS.
sigslot::signal1<AllocationSequence*> SignalPortAllocationComplete;
private:
typedef std::vector<ProtocolType> ProtocolList;
bool IsFlagSet(uint32 flag) {
return ((flags_ & flag) != 0);
}
void CreateUDPPorts();
void CreateTCPPorts();
void CreateStunPorts();
void CreateRelayPorts();
void CreateGturnPort(const RelayServerConfig& config);
void CreateTurnPort(const RelayServerConfig& config);
void OnReadPacket(talk_base::AsyncPacketSocket* socket,
const char* data, size_t size,
const talk_base::SocketAddress& remote_addr,
const talk_base::PacketTime& packet_time);
void OnPortDestroyed(PortInterface* port);
void OnResolvedTurnServerAddress(
TurnPort* port, const talk_base::SocketAddress& server_address,
const talk_base::SocketAddress& resolved_server_address);
BasicPortAllocatorSession* session_;
talk_base::Network* network_;
talk_base::IPAddress ip_;
PortConfiguration* config_;
State state_;
uint32 flags_;
ProtocolList protocols_;
talk_base::scoped_ptr<talk_base::AsyncPacketSocket> udp_socket_;
// There will be only one udp port per AllocationSequence.
Port* udp_port_;
// Keeping a map for turn ports keyed with server addresses.
std::map<talk_base::SocketAddress, Port*> turn_ports_;
int phase_;
};
// BasicPortAllocator
BasicPortAllocator::BasicPortAllocator(
talk_base::NetworkManager* network_manager,
talk_base::PacketSocketFactory* socket_factory)
: network_manager_(network_manager),
socket_factory_(socket_factory) {
ASSERT(socket_factory_ != NULL);
Construct();
}
BasicPortAllocator::BasicPortAllocator(
talk_base::NetworkManager* network_manager)
: network_manager_(network_manager),
socket_factory_(NULL) {
Construct();
}
BasicPortAllocator::BasicPortAllocator(
talk_base::NetworkManager* network_manager,
talk_base::PacketSocketFactory* socket_factory,
const talk_base::SocketAddress& stun_address)
: network_manager_(network_manager),
socket_factory_(socket_factory),
stun_address_(stun_address) {
ASSERT(socket_factory_ != NULL);
Construct();
}
BasicPortAllocator::BasicPortAllocator(
talk_base::NetworkManager* network_manager,
const talk_base::SocketAddress& stun_address,
const talk_base::SocketAddress& relay_address_udp,
const talk_base::SocketAddress& relay_address_tcp,
const talk_base::SocketAddress& relay_address_ssl)
: network_manager_(network_manager),
socket_factory_(NULL),
stun_address_(stun_address) {
RelayServerConfig config(RELAY_GTURN);
if (!relay_address_udp.IsAny())
config.ports.push_back(ProtocolAddress(relay_address_udp, PROTO_UDP));
if (!relay_address_tcp.IsAny())
config.ports.push_back(ProtocolAddress(relay_address_tcp, PROTO_TCP));
if (!relay_address_ssl.IsAny())
config.ports.push_back(ProtocolAddress(relay_address_ssl, PROTO_SSLTCP));
AddRelay(config);
Construct();
}
void BasicPortAllocator::Construct() {
allow_tcp_listen_ = true;
}
BasicPortAllocator::~BasicPortAllocator() {
}
PortAllocatorSession *BasicPortAllocator::CreateSessionInternal(
const std::string& content_name, int component,
const std::string& ice_ufrag, const std::string& ice_pwd) {
return new BasicPortAllocatorSession(this, content_name, component,
ice_ufrag, ice_pwd);
}
// BasicPortAllocatorSession
BasicPortAllocatorSession::BasicPortAllocatorSession(
BasicPortAllocator *allocator,
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd)
: PortAllocatorSession(content_name, component,
ice_ufrag, ice_pwd, allocator->flags()),
allocator_(allocator), network_thread_(NULL),
socket_factory_(allocator->socket_factory()),
allocation_started_(false),
network_manager_started_(false),
running_(false),
allocation_sequences_created_(false) {
allocator_->network_manager()->SignalNetworksChanged.connect(
this, &BasicPortAllocatorSession::OnNetworksChanged);
allocator_->network_manager()->StartUpdating();
}
BasicPortAllocatorSession::~BasicPortAllocatorSession() {
allocator_->network_manager()->StopUpdating();
if (network_thread_ != NULL)
network_thread_->Clear(this);
std::vector<PortData>::iterator it;
for (it = ports_.begin(); it != ports_.end(); it++)
delete it->port();
for (uint32 i = 0; i < configs_.size(); ++i)
delete configs_[i];
for (uint32 i = 0; i < sequences_.size(); ++i)
delete sequences_[i];
}
void BasicPortAllocatorSession::StartGettingPorts() {
network_thread_ = talk_base::Thread::Current();
if (!socket_factory_) {
owned_socket_factory_.reset(
new talk_base::BasicPacketSocketFactory(network_thread_));
socket_factory_ = owned_socket_factory_.get();
}
running_ = true;
network_thread_->Post(this, MSG_CONFIG_START);
if (flags() & PORTALLOCATOR_ENABLE_SHAKER)
network_thread_->PostDelayed(ShakeDelay(), this, MSG_SHAKE);
}
void BasicPortAllocatorSession::StopGettingPorts() {
ASSERT(talk_base::Thread::Current() == network_thread_);
running_ = false;
network_thread_->Clear(this, MSG_ALLOCATE);
for (uint32 i = 0; i < sequences_.size(); ++i)
sequences_[i]->Stop();
network_thread_->Post(this, MSG_CONFIG_STOP);
}
void BasicPortAllocatorSession::OnMessage(talk_base::Message *message) {
switch (message->message_id) {
case MSG_CONFIG_START:
ASSERT(talk_base::Thread::Current() == network_thread_);
GetPortConfigurations();
break;
case MSG_CONFIG_READY:
ASSERT(talk_base::Thread::Current() == network_thread_);
OnConfigReady(static_cast<PortConfiguration*>(message->pdata));
break;
case MSG_ALLOCATE:
ASSERT(talk_base::Thread::Current() == network_thread_);
OnAllocate();
break;
case MSG_SHAKE:
ASSERT(talk_base::Thread::Current() == network_thread_);
OnShake();
break;
case MSG_SEQUENCEOBJECTS_CREATED:
ASSERT(talk_base::Thread::Current() == network_thread_);
OnAllocationSequenceObjectsCreated();
break;
case MSG_CONFIG_STOP:
ASSERT(talk_base::Thread::Current() == network_thread_);
OnConfigStop();
break;
default:
ASSERT(false);
}
}
void BasicPortAllocatorSession::GetPortConfigurations() {
PortConfiguration* config = new PortConfiguration(allocator_->stun_address(),
username(),
password());
for (size_t i = 0; i < allocator_->relays().size(); ++i) {
config->AddRelay(allocator_->relays()[i]);
}
ConfigReady(config);
}
void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) {
network_thread_->Post(this, MSG_CONFIG_READY, config);
}
// Adds a configuration to the list.
void BasicPortAllocatorSession::OnConfigReady(PortConfiguration* config) {
if (config)
configs_.push_back(config);
AllocatePorts();
}
void BasicPortAllocatorSession::OnConfigStop() {
ASSERT(talk_base::Thread::Current() == network_thread_);
// If any of the allocated ports have not completed the candidates allocation,
// mark those as error. Since session doesn't need any new candidates
// at this stage of the allocation, it's safe to discard any new candidates.
bool send_signal = false;
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (!it->complete()) {
// Updating port state to error, which didn't finish allocating candidates
// yet.
it->set_error();
send_signal = true;
}
}
// Did we stop any running sequences?
for (std::vector<AllocationSequence*>::iterator it = sequences_.begin();
it != sequences_.end() && !send_signal; ++it) {
if ((*it)->state() == AllocationSequence::kStopped) {
send_signal = true;
}
}
// If we stopped anything that was running, send a done signal now.
if (send_signal) {
MaybeSignalCandidatesAllocationDone();
}
}
void BasicPortAllocatorSession::AllocatePorts() {
ASSERT(talk_base::Thread::Current() == network_thread_);
network_thread_->Post(this, MSG_ALLOCATE);
}
void BasicPortAllocatorSession::OnAllocate() {
if (network_manager_started_)
DoAllocate();
allocation_started_ = true;
if (running_)
network_thread_->PostDelayed(ALLOCATE_DELAY, this, MSG_ALLOCATE);
}
// For each network, see if we have a sequence that covers it already. If not,
// create a new sequence to create the appropriate ports.
void BasicPortAllocatorSession::DoAllocate() {
bool done_signal_needed = false;
std::vector<talk_base::Network*> networks;
allocator_->network_manager()->GetNetworks(&networks);
if (networks.empty()) {
LOG(LS_WARNING) << "Machine has no networks; no ports will be allocated";
done_signal_needed = true;
} else {
for (uint32 i = 0; i < networks.size(); ++i) {
PortConfiguration* config = NULL;
if (configs_.size() > 0)
config = configs_.back();
uint32 sequence_flags = flags();
if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
// If all the ports are disabled we should just fire the allocation
// done event and return.
done_signal_needed = true;
break;
}
// Disables phases that are not specified in this config.
if (!config || config->stun_address.IsNil()) {
// No STUN ports specified in this config.
sequence_flags |= PORTALLOCATOR_DISABLE_STUN;
}
if (!config || config->relays.empty()) {
// No relay ports specified in this config.
sequence_flags |= PORTALLOCATOR_DISABLE_RELAY;
}
if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) &&
networks[i]->ip().family() == AF_INET6) {
// Skip IPv6 networks unless the flag's been set.
continue;
}
// Disable phases that would only create ports equivalent to
// ones that we have already made.
DisableEquivalentPhases(networks[i], config, &sequence_flags);
if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
// New AllocationSequence would have nothing to do, so don't make it.
continue;
}
AllocationSequence* sequence =
new AllocationSequence(this, networks[i], config, sequence_flags);
if (!sequence->Init()) {
delete sequence;
continue;
}
done_signal_needed = true;
sequence->SignalPortAllocationComplete.connect(
this, &BasicPortAllocatorSession::OnPortAllocationComplete);
if (running_)
sequence->Start();
sequences_.push_back(sequence);
}
}
if (done_signal_needed) {
network_thread_->Post(this, MSG_SEQUENCEOBJECTS_CREATED);
}
}
void BasicPortAllocatorSession::OnNetworksChanged() {
network_manager_started_ = true;
if (allocation_started_)
DoAllocate();
}
void BasicPortAllocatorSession::DisableEquivalentPhases(
talk_base::Network* network, PortConfiguration* config, uint32* flags) {
for (uint32 i = 0; i < sequences_.size() &&
(*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES; ++i) {
sequences_[i]->DisableEquivalentPhases(network, config, flags);
}
}
void BasicPortAllocatorSession::AddAllocatedPort(Port* port,
AllocationSequence * seq,
bool prepare_address) {
if (!port)
return;
LOG(LS_INFO) << "Adding allocated port for " << content_name();
port->set_content_name(content_name());
port->set_component(component_);
port->set_generation(generation());
if (allocator_->proxy().type != talk_base::PROXY_NONE)
port->set_proxy(allocator_->user_agent(), allocator_->proxy());
port->set_send_retransmit_count_attribute((allocator_->flags() &
PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0);
PortData data(port, seq);
ports_.push_back(data);
port->SignalCandidateReady.connect(
this, &BasicPortAllocatorSession::OnCandidateReady);
port->SignalPortComplete.connect(this,
&BasicPortAllocatorSession::OnPortComplete);
port->SignalDestroyed.connect(this,
&BasicPortAllocatorSession::OnPortDestroyed);
port->SignalPortError.connect(
this, &BasicPortAllocatorSession::OnPortError);
LOG_J(LS_INFO, port) << "Added port to allocator";
if (prepare_address)
port->PrepareAddress();
}
void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() {
allocation_sequences_created_ = true;
// Send candidate allocation complete signal if we have no sequences.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnCandidateReady(
Port* port, const Candidate& c) {
ASSERT(talk_base::Thread::Current() == network_thread_);
PortData* data = FindPort(port);
ASSERT(data != NULL);
// Discarding any candidate signal if port allocation status is
// already in completed state.
if (data->complete())
return;
// Send candidates whose protocol is enabled.
std::vector<Candidate> candidates;
ProtocolType pvalue;
if (StringToProto(c.protocol().c_str(), &pvalue) &&
data->sequence()->ProtocolEnabled(pvalue)) {
candidates.push_back(c);
}
if (!candidates.empty()) {
SignalCandidatesReady(this, candidates);
}
// Moving to READY state as we have atleast one candidate from the port.
// Since this port has atleast one candidate we should forward this port
// to listners, to allow connections from this port.
if (!data->ready()) {
data->set_ready();
SignalPortReady(this, port);
}
}
void BasicPortAllocatorSession::OnPortComplete(Port* port) {
ASSERT(talk_base::Thread::Current() == network_thread_);
PortData* data = FindPort(port);
ASSERT(data != NULL);
// Ignore any late signals.
if (data->complete())
return;
// Moving to COMPLETE state.
data->set_complete();
// Send candidate allocation complete signal if this was the last port.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnPortError(Port* port) {
ASSERT(talk_base::Thread::Current() == network_thread_);
PortData* data = FindPort(port);
ASSERT(data != NULL);
// We might have already given up on this port and stopped it.
if (data->complete())
return;
// SignalAddressError is currently sent from StunPort/TurnPort.
// But this signal itself is generic.
data->set_error();
// Send candidate allocation complete signal if this was the last port.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnProtocolEnabled(AllocationSequence* seq,
ProtocolType proto) {
std::vector<Candidate> candidates;
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (it->sequence() != seq)
continue;
const std::vector<Candidate>& potentials = it->port()->Candidates();
for (size_t i = 0; i < potentials.size(); ++i) {
ProtocolType pvalue;
if (!StringToProto(potentials[i].protocol().c_str(), &pvalue))
continue;
if (pvalue == proto) {
candidates.push_back(potentials[i]);
}
}
}
if (!candidates.empty()) {
SignalCandidatesReady(this, candidates);
}
}
void BasicPortAllocatorSession::OnPortAllocationComplete(
AllocationSequence* seq) {
// Send candidate allocation complete signal if all ports are done.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() {
// Send signal only if all required AllocationSequence objects
// are created.
if (!allocation_sequences_created_)
return;
// Check that all port allocation sequences are complete.
for (std::vector<AllocationSequence*>::iterator it = sequences_.begin();
it != sequences_.end(); ++it) {
if ((*it)->state() == AllocationSequence::kRunning)
return;
}
// If all allocated ports are in complete state, session must have got all
// expected candidates. Session will trigger candidates allocation complete
// signal.
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (!it->complete())
return;
}
LOG(LS_INFO) << "All candidates gathered for " << content_name_ << ":"
<< component_ << ":" << generation();
SignalCandidatesAllocationDone(this);
}
void BasicPortAllocatorSession::OnPortDestroyed(
PortInterface* port) {
ASSERT(talk_base::Thread::Current() == network_thread_);
for (std::vector<PortData>::iterator iter = ports_.begin();
iter != ports_.end(); ++iter) {
if (port == iter->port()) {
ports_.erase(iter);
LOG_J(LS_INFO, port) << "Removed port from allocator ("
<< static_cast<int>(ports_.size()) << " remaining)";
return;
}
}
ASSERT(false);
}
void BasicPortAllocatorSession::OnShake() {
LOG(INFO) << ">>>>> SHAKE <<<<< >>>>> SHAKE <<<<< >>>>> SHAKE <<<<<";
std::vector<Port*> ports;
std::vector<Connection*> connections;
for (size_t i = 0; i < ports_.size(); ++i) {
if (ports_[i].ready())
ports.push_back(ports_[i].port());
}
for (size_t i = 0; i < ports.size(); ++i) {
Port::AddressMap::const_iterator iter;
for (iter = ports[i]->connections().begin();
iter != ports[i]->connections().end();
++iter) {
connections.push_back(iter->second);
}
}
LOG(INFO) << ">>>>> Destroying " << ports.size() << " ports and "
<< connections.size() << " connections";
for (size_t i = 0; i < connections.size(); ++i)
connections[i]->Destroy();
if (running_ || (ports.size() > 0) || (connections.size() > 0))
network_thread_->PostDelayed(ShakeDelay(), this, MSG_SHAKE);
}
BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort(
Port* port) {
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (it->port() == port) {
return &*it;
}
}
return NULL;
}
// AllocationSequence
AllocationSequence::AllocationSequence(BasicPortAllocatorSession* session,
talk_base::Network* network,
PortConfiguration* config,
uint32 flags)
: session_(session),
network_(network),
ip_(network->ip()),
config_(config),
state_(kInit),
flags_(flags),
udp_socket_(),
udp_port_(NULL),
phase_(0) {
}
bool AllocationSequence::Init() {
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) &&
!IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_UFRAG)) {
LOG(LS_ERROR) << "Shared socket option can't be set without "
<< "shared ufrag.";
ASSERT(false);
return false;
}
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
udp_socket_.reset(session_->socket_factory()->CreateUdpSocket(
talk_base::SocketAddress(ip_, 0), session_->allocator()->min_port(),
session_->allocator()->max_port()));
if (udp_socket_) {
udp_socket_->SignalReadPacket.connect(
this, &AllocationSequence::OnReadPacket);
}
// Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP
// are next available options to setup a communication channel.
}
return true;
}
AllocationSequence::~AllocationSequence() {
session_->network_thread()->Clear(this);
}
void AllocationSequence::DisableEquivalentPhases(talk_base::Network* network,
PortConfiguration* config, uint32* flags) {
if (!((network == network_) && (ip_ == network->ip()))) {
// Different network setup; nothing is equivalent.
return;
}
// Else turn off the stuff that we've already got covered.
// Every config implicitly specifies local, so turn that off right away.
*flags |= PORTALLOCATOR_DISABLE_UDP;
*flags |= PORTALLOCATOR_DISABLE_TCP;
if (config_ && config) {
if (config_->stun_address == config->stun_address) {
// Already got this STUN server covered.
*flags |= PORTALLOCATOR_DISABLE_STUN;
}
if (!config_->relays.empty()) {
// Already got relays covered.
// NOTE: This will even skip a _different_ set of relay servers if we
// were to be given one, but that never happens in our codebase. Should
// probably get rid of the list in PortConfiguration and just keep a
// single relay server in each one.
*flags |= PORTALLOCATOR_DISABLE_RELAY;
}
}
}
void AllocationSequence::Start() {
state_ = kRunning;
session_->network_thread()->Post(this, MSG_ALLOCATION_PHASE);
}
void AllocationSequence::Stop() {
// If the port is completed, don't set it to stopped.
if (state_ == kRunning) {
state_ = kStopped;
session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE);
}
}
void AllocationSequence::OnMessage(talk_base::Message* msg) {
ASSERT(talk_base::Thread::Current() == session_->network_thread());
ASSERT(msg->message_id == MSG_ALLOCATION_PHASE);
const char* const PHASE_NAMES[kNumPhases] = {
"Udp", "Relay", "Tcp", "SslTcp"
};
// Perform all of the phases in the current step.
LOG_J(LS_INFO, network_) << "Allocation Phase="
<< PHASE_NAMES[phase_];
switch (phase_) {
case PHASE_UDP:
CreateUDPPorts();
CreateStunPorts();
EnableProtocol(PROTO_UDP);
break;
case PHASE_RELAY:
CreateRelayPorts();
break;
case PHASE_TCP:
CreateTCPPorts();
EnableProtocol(PROTO_TCP);
break;
case PHASE_SSLTCP:
state_ = kCompleted;
EnableProtocol(PROTO_SSLTCP);
break;
default:
ASSERT(false);
}
if (state() == kRunning) {
++phase_;
session_->network_thread()->PostDelayed(
session_->allocator()->step_delay(),
this, MSG_ALLOCATION_PHASE);
} else {
// If all phases in AllocationSequence are completed, no allocation
// steps needed further. Canceling pending signal.
session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE);
SignalPortAllocationComplete(this);
}
}
void AllocationSequence::EnableProtocol(ProtocolType proto) {
if (!ProtocolEnabled(proto)) {
protocols_.push_back(proto);
session_->OnProtocolEnabled(this, proto);
}
}
bool AllocationSequence::ProtocolEnabled(ProtocolType proto) const {
for (ProtocolList::const_iterator it = protocols_.begin();
it != protocols_.end(); ++it) {
if (*it == proto)
return true;
}
return false;
}
void AllocationSequence::CreateUDPPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) {
LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping.";
return;
}
// TODO(mallinath) - Remove UDPPort creating socket after shared socket
// is enabled completely.
UDPPort* port = NULL;
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) {
port = UDPPort::Create(session_->network_thread(),
session_->socket_factory(), network_,
udp_socket_.get(),
session_->username(), session_->password());
} else {
port = UDPPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(), session_->password());
}
if (port) {
// If shared socket is enabled, STUN candidate will be allocated by the
// UDPPort.
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
udp_port_ = port;
// If STUN is not disabled, setting stun server address to port.
if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
// If there is a TURN UDP server available, then we will use TURN port
// to get stun address, otherwise by UDP port.
// Shared socket mode is not used in GTURN mode.
if (config_ &&
!config_->SupportsProtocol(RELAY_TURN, PROTO_UDP) &&
!config_->stun_address.IsNil()) {
port->set_server_addr(config_->stun_address);
}
}
}
session_->AddAllocatedPort(port, this, true);
port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed);
}
}
void AllocationSequence::CreateTCPPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) {
LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping.";
return;
}
Port* port = TCPPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(), session_->password(),
session_->allocator()->allow_tcp_listen());
if (port) {
session_->AddAllocatedPort(port, this, true);
// Since TCPPort is not created using shared socket, |port| will not be
// added to the dequeue.
}
}
void AllocationSequence::CreateStunPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping.";
return;
}
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
LOG(LS_INFO) << "AllocationSequence: "
<< "UDPPort will be handling the STUN candidate generation.";
return;
}
// If BasicPortAllocatorSession::OnAllocate left STUN ports enabled then we
// ought to have an address for them here.
ASSERT(config_ && !config_->stun_address.IsNil());
if (!(config_ && !config_->stun_address.IsNil())) {
LOG(LS_WARNING)
<< "AllocationSequence: No STUN server configured, skipping.";
return;
}
StunPort* port = StunPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(), session_->password(),
config_->stun_address);
if (port) {
session_->AddAllocatedPort(port, this, true);
// Since StunPort is not created using shared socket, |port| will not be
// added to the dequeue.
}
}
void AllocationSequence::CreateRelayPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) {
LOG(LS_VERBOSE) << "AllocationSequence: Relay ports disabled, skipping.";
return;
}
// If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we
// ought to have a relay list for them here.
ASSERT(config_ && !config_->relays.empty());
if (!(config_ && !config_->relays.empty())) {
LOG(LS_WARNING)
<< "AllocationSequence: No relay server configured, skipping.";
return;
}
PortConfiguration::RelayList::const_iterator relay;
for (relay = config_->relays.begin();
relay != config_->relays.end(); ++relay) {
if (relay->type == RELAY_GTURN) {
CreateGturnPort(*relay);
} else if (relay->type == RELAY_TURN) {
CreateTurnPort(*relay);
} else {
ASSERT(false);
}
}
}
void AllocationSequence::CreateGturnPort(const RelayServerConfig& config) {
// TODO(mallinath) - Rename RelayPort to GTurnPort.
RelayPort* port = RelayPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
config_->username, config_->password);
if (port) {
// Since RelayPort is not created using shared socket, |port| will not be
// added to the dequeue.
// Note: We must add the allocated port before we add addresses because
// the latter will create candidates that need name and preference
// settings. However, we also can't prepare the address (normally
// done by AddAllocatedPort) until we have these addresses. So we
// wait to do that until below.
session_->AddAllocatedPort(port, this, false);
// Add the addresses of this protocol.
PortList::const_iterator relay_port;
for (relay_port = config.ports.begin();
relay_port != config.ports.end();
++relay_port) {
port->AddServerAddress(*relay_port);
port->AddExternalAddress(*relay_port);
}
// Start fetching an address for this port.
port->PrepareAddress();
}
}
void AllocationSequence::CreateTurnPort(const RelayServerConfig& config) {
PortList::const_iterator relay_port;
for (relay_port = config.ports.begin();
relay_port != config.ports.end(); ++relay_port) {
TurnPort* port = NULL;
// Shared socket mode must be enabled only for UDP based ports. Hence
// don't pass shared socket for ports which will create TCP sockets.
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) &&
relay_port->proto == PROTO_UDP) {
port = TurnPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, udp_socket_.get(),
session_->username(), session_->password(),
*relay_port, config.credentials);
// If we are using shared socket for TURN and udp ports, we need to
// find a way to demux the packets to the correct port when received.
// Mapping against server_address is one way of doing this. When packet
// is received the remote_address will be checked against the map.
// If server address is not resolved, a signal will be sent from the port
// after the address is resolved. The map entry will updated with the
// resolved address when the signal is received from the port.
if ((*relay_port).address.IsUnresolved()) {
// If server address is not resolved then listen for signal from port.
port->SignalResolvedServerAddress.connect(
this, &AllocationSequence::OnResolvedTurnServerAddress);
}
turn_ports_[(*relay_port).address] = port;
} else {
port = TurnPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(),
session_->password(),
*relay_port, config.credentials);
}
ASSERT(port != NULL);
session_->AddAllocatedPort(port, this, true);
}
}
void AllocationSequence::OnReadPacket(
talk_base::AsyncPacketSocket* socket, const char* data, size_t size,
const talk_base::SocketAddress& remote_addr,
const talk_base::PacketTime& packet_time) {
ASSERT(socket == udp_socket_.get());
// If the packet is received from one of the TURN server in the config, then
// pass down the packet to that port, otherwise it will be handed down to
// the local udp port.
Port* port = NULL;
std::map<talk_base::SocketAddress, Port*>::iterator iter =
turn_ports_.find(remote_addr);
if (iter != turn_ports_.end()) {
port = iter->second;
} else if (udp_port_) {
port = udp_port_;
}
ASSERT(port != NULL);
if (port) {
port->HandleIncomingPacket(socket, data, size, remote_addr, packet_time);
}
}
void AllocationSequence::OnPortDestroyed(PortInterface* port) {
if (udp_port_ == port) {
udp_port_ = NULL;
} else {
std::map<talk_base::SocketAddress, Port*>::iterator iter;
for (iter = turn_ports_.begin(); iter != turn_ports_.end(); ++iter) {
if (iter->second == port) {
turn_ports_.erase(iter);
break;
}
}
}
}
void AllocationSequence::OnResolvedTurnServerAddress(
TurnPort* port, const talk_base::SocketAddress& server_address,
const talk_base::SocketAddress& resolved_server_address) {
std::map<talk_base::SocketAddress, Port*>::iterator iter;
iter = turn_ports_.find(server_address);
if (iter == turn_ports_.end()) {
LOG(LS_INFO) << "TurnPort entry is not found in the map.";
return;
}
ASSERT(iter->second == port);
// Remove old entry and then insert using the resolved address as key.
turn_ports_.erase(iter);
turn_ports_[resolved_server_address] = port;
}
// PortConfiguration
PortConfiguration::PortConfiguration(
const talk_base::SocketAddress& stun_address,
const std::string& username,
const std::string& password)
: stun_address(stun_address),
username(username),
password(password) {
}
void PortConfiguration::AddRelay(const RelayServerConfig& config) {
relays.push_back(config);
}
bool PortConfiguration::SupportsProtocol(
const RelayServerConfig& relay, ProtocolType type) const {
PortList::const_iterator relay_port;
for (relay_port = relay.ports.begin();
relay_port != relay.ports.end();
++relay_port) {
if (relay_port->proto == type)
return true;
}
return false;
}
bool PortConfiguration::SupportsProtocol(const RelayType turn_type,
ProtocolType type) const {
for (size_t i = 0; i < relays.size(); ++i) {
if (relays[i].type == turn_type &&
SupportsProtocol(relays[i], type))
return true;
}
return false;
}
} // namespace cricket