webrtc/system_wrappers/source/cpu_windows.cc

533 lines
16 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "cpu_windows.h"
#define _WIN32_DCOM
#include <assert.h>
#include <iostream>
#include <Wbemidl.h>
#pragma comment(lib, "wbemuuid.lib")
#include "condition_variable_wrapper.h"
#include "critical_section_wrapper.h"
#include "event_wrapper.h"
#include "thread_wrapper.h"
namespace webrtc {
WebRtc_Word32 CpuWindows::CpuUsage()
{
if (!has_initialized_)
{
return -1;
}
// Last element is the average
return cpu_usage_[number_of_objects_ - 1];
}
WebRtc_Word32 CpuWindows::CpuUsageMultiCore(WebRtc_UWord32& num_cores,
WebRtc_UWord32*& cpu_usage)
{
if (!has_initialized_)
{
return -1;
}
num_cores = number_of_objects_ - 1;
cpu_usage = cpu_usage_;
return cpu_usage_[number_of_objects_-1];
}
CpuWindows::CpuWindows()
: cpu_polling_thread(NULL),
initialize_(true),
has_initialized_(false),
terminate_(false),
has_terminated_(false),
cpu_usage_(NULL),
wbem_enum_access_(NULL),
number_of_objects_(0),
cpu_usage_handle_(0),
previous_processor_timestamp_(NULL),
timestamp_sys_100_ns_handle_(0),
previous_100ns_timestamp_(NULL),
wbem_service_(NULL),
wbem_service_proxy_(NULL),
wbem_refresher_(NULL),
wbem_enum_(NULL)
{
// All resources are allocated in PollingCpu().
if (AllocateComplexDataTypes())
{
const bool success = StartPollingCpu();
assert(success);
}
else
{
assert(false);
}
}
CpuWindows::~CpuWindows()
{
// All resources are reclaimed in StopPollingCpu().
const bool success = StopPollingCpu();
assert(success);
DeAllocateComplexDataTypes();
}
bool CpuWindows::AllocateComplexDataTypes()
{
cpu_polling_thread = ThreadWrapper::CreateThread(
CpuWindows::Process,
reinterpret_cast<void*>(this),
kNormalPriority,
"CpuWindows");
init_crit_ = CriticalSectionWrapper::CreateCriticalSection();
init_cond_ = ConditionVariableWrapper::CreateConditionVariable();
terminate_crit_ = CriticalSectionWrapper::CreateCriticalSection();
terminate_cond_ = ConditionVariableWrapper::CreateConditionVariable();
sleep_event = EventWrapper::Create();
return (cpu_polling_thread != NULL) && (init_crit_ != NULL) &&
(init_cond_ != NULL) && (terminate_crit_ != NULL) &&
(terminate_cond_ != NULL) && (sleep_event != NULL);
}
void CpuWindows::DeAllocateComplexDataTypes()
{
if (sleep_event != NULL)
{
delete sleep_event;
sleep_event = NULL;
}
if (terminate_cond_ != NULL)
{
delete terminate_cond_;
terminate_cond_ = NULL;
}
if (terminate_crit_ != NULL)
{
delete terminate_crit_;
terminate_crit_ = NULL;
}
if (init_cond_ != NULL)
{
delete init_cond_;
init_cond_ = NULL;
}
if (init_crit_ != NULL)
{
delete init_crit_;
init_crit_ = NULL;
}
if (cpu_polling_thread != NULL)
{
delete cpu_polling_thread;
cpu_polling_thread = NULL;
}
}
bool CpuWindows::StartPollingCpu()
{
unsigned int dummy_id = 0;
if (!cpu_polling_thread->Start(dummy_id))
{
return false;
}
{
CriticalSectionScoped cs(*init_crit_);
while(initialize_)
{
init_cond_->SleepCS(*init_crit_);
}
}
if (!has_initialized_)
{
cpu_polling_thread->Stop();
return false;
}
return has_initialized_;
}
bool CpuWindows::StopPollingCpu()
{
if (!has_initialized_)
{
return false;
}
CriticalSectionScoped cs(*terminate_crit_);
terminate_ = true;
sleep_event->Set();
while (!has_terminated_)
{
terminate_cond_->SleepCS(*terminate_crit_);
}
cpu_polling_thread->Stop();
delete cpu_polling_thread;
cpu_polling_thread = NULL;
return true;
}
bool CpuWindows::Process(void* thread_object)
{
return reinterpret_cast<CpuWindows*>(thread_object)->ProcessImpl();
}
bool CpuWindows::ProcessImpl()
{
{
CriticalSectionScoped cs(*terminate_crit_);
if (terminate_)
{
const bool success = Terminate();
assert(success);
terminate_cond_->WakeAll();
return false;
}
}
// Initialize on first iteration
if (initialize_)
{
CriticalSectionScoped cs(*init_crit_);
initialize_ = false;
const bool success = Initialize();
init_cond_->WakeAll();
if (!success || !has_initialized_)
{
has_initialized_ = false;
terminate_ = true;
return false;
}
}
// Approximately one seconds sleep for each CPU measurement. Precision is
// not important. 1 second refresh rate is also used by Performance Monitor
// (perfmon).
if(kEventTimeout != sleep_event->Wait(1000))
{
// Terminating. No need to update CPU usage.
assert(terminate_);
return true;
}
// UpdateCpuUsage() returns false if a single (or more) CPU read(s) failed.
// Not a major problem if it happens but make sure it doesnt trigger in
// debug.
const bool success = UpdateCpuUsage();
assert(success);
return true;
}
bool CpuWindows::CreateWmiConnection()
{
IWbemLocator* service_locator = NULL;
HRESULT hr = CoCreateInstance(CLSID_WbemLocator, NULL,
CLSCTX_INPROC_SERVER, IID_IWbemLocator,
reinterpret_cast<void**> (&service_locator));
if (FAILED(hr))
{
return false;
}
// To get the WMI service specify the WMI namespace.
BSTR wmi_namespace = SysAllocString(L"\\\\.\\root\\cimv2");
if (wmi_namespace == NULL)
{
// This type of failure signifies running out of memory.
service_locator->Release();
return false;
}
hr = service_locator->ConnectServer(wmi_namespace, NULL, NULL, NULL, 0L,
NULL, NULL, &wbem_service_);
SysFreeString(wmi_namespace);
service_locator->Release();
return !FAILED(hr);
}
// Sets up WMI refresher and enum
bool CpuWindows::CreatePerfOsRefresher()
{
// Create refresher.
HRESULT hr = CoCreateInstance(CLSID_WbemRefresher, NULL,
CLSCTX_INPROC_SERVER, IID_IWbemRefresher,
reinterpret_cast<void**> (&wbem_refresher_));
if (FAILED(hr))
{
return false;
}
// Create PerfOS_Processor enum.
IWbemConfigureRefresher* wbem_refresher_config = NULL;
hr = wbem_refresher_->QueryInterface(
IID_IWbemConfigureRefresher,
reinterpret_cast<void**> (&wbem_refresher_config));
if (FAILED(hr))
{
return false;
}
// Create a proxy to the IWbemServices so that a local authentication
// can be set up (this is needed to be able to successfully call
// IWbemConfigureRefresher::AddEnum). Setting authentication with
// CoInitializeSecurity is process-wide (which is too intrusive).
hr = CoCopyProxy(static_cast<IUnknown*> (wbem_service_),
reinterpret_cast<IUnknown**> (&wbem_service_proxy_));
if(FAILED(hr))
{
return false;
}
// Set local authentication.
// RPC_C_AUTHN_WINNT means using NTLM instead of Kerberos which is default.
hr = CoSetProxyBlanket(static_cast<IUnknown*> (wbem_service_proxy_),
RPC_C_AUTHN_WINNT, RPC_C_AUTHZ_NONE, NULL,
RPC_C_AUTHN_LEVEL_DEFAULT,
RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE);
if(FAILED(hr))
{
return false;
}
// Don't care about the particular id for the enum.
long enum_id = 0;
hr = wbem_refresher_config->AddEnum(wbem_service_proxy_,
L"Win32_PerfRawData_PerfOS_Processor",
0, NULL, &wbem_enum_, &enum_id);
wbem_refresher_config->Release();
wbem_refresher_config = NULL;
return !FAILED(hr);
}
// Have to pull the first round of data to be able set the handles.
bool CpuWindows::CreatePerfOsCpuHandles()
{
// Update the refresher so that there is data available in wbem_enum_.
wbem_refresher_->Refresh(0L);
// The number of enumerators is the number of processor + 1 (the total).
// This is unknown at this point.
DWORD number_returned = 0;
HRESULT hr = wbem_enum_->GetObjects(0L, number_of_objects_,
wbem_enum_access_, &number_returned);
// number_returned indicates the number of enumerators that are needed.
if (hr == WBEM_E_BUFFER_TOO_SMALL &&
number_returned > number_of_objects_)
{
// Allocate the number IWbemObjectAccess asked for by the
// GetObjects(..) function.
wbem_enum_access_ = new IWbemObjectAccess*[number_returned];
cpu_usage_ = new WebRtc_UWord32[number_returned];
previous_processor_timestamp_ = new unsigned __int64[number_returned];
previous_100ns_timestamp_ = new unsigned __int64[number_returned];
if ((wbem_enum_access_ == NULL) || (cpu_usage_ == NULL) ||
(previous_processor_timestamp_ == NULL) ||
(previous_100ns_timestamp_ == NULL))
{
// Out of memory.
return false;
}
SecureZeroMemory(wbem_enum_access_, number_returned *
sizeof(IWbemObjectAccess*));
memset(cpu_usage_, 0, sizeof(int) * number_returned);
memset(previous_processor_timestamp_, 0, sizeof(unsigned __int64) *
number_returned);
memset(previous_100ns_timestamp_, 0, sizeof(unsigned __int64) *
number_returned);
number_of_objects_ = number_returned;
// Read should be successfull now that memory has been allocated.
hr = wbem_enum_->GetObjects(0L, number_of_objects_, wbem_enum_access_,
&number_returned);
if (FAILED(hr))
{
return false;
}
}
else
{
// 0 enumerators should not be enough. Something has gone wrong here.
return false;
}
// Get the enumerator handles that are needed for calculating CPU usage.
CIMTYPE cpu_usage_type;
hr = wbem_enum_access_[0]->GetPropertyHandle(L"PercentProcessorTime",
&cpu_usage_type,
&cpu_usage_handle_);
if (FAILED(hr))
{
return false;
}
CIMTYPE timestamp_sys_100_ns_type;
hr = wbem_enum_access_[0]->GetPropertyHandle(L"TimeStamp_Sys100NS",
&timestamp_sys_100_ns_type,
&timestamp_sys_100_ns_handle_);
return !FAILED(hr);
}
bool CpuWindows::Initialize()
{
if (terminate_)
{
return false;
}
// Initialize COM library.
HRESULT hr = CoInitializeEx(NULL,COINIT_MULTITHREADED);
if (FAILED(hr))
{
return false;
}
if (FAILED(hr))
{
return false;
}
if (!CreateWmiConnection())
{
return false;
}
if (!CreatePerfOsRefresher())
{
return false;
}
if (!CreatePerfOsCpuHandles())
{
return false;
}
has_initialized_ = true;
return true;
}
bool CpuWindows::Terminate()
{
if (has_terminated_)
{
return false;
}
// Reverse order of Initialize().
// Some compilers complain about deleting NULL though it's well defined
if (previous_100ns_timestamp_ != NULL)
{
delete[] previous_100ns_timestamp_;
previous_100ns_timestamp_ = NULL;
}
if (previous_processor_timestamp_ != NULL)
{
delete[] previous_processor_timestamp_;
previous_processor_timestamp_ = NULL;
}
if (cpu_usage_ != NULL)
{
delete[] cpu_usage_;
cpu_usage_ = NULL;
}
if (wbem_enum_access_ != NULL)
{
for (DWORD i = 0; i < number_of_objects_; i++)
{
if(wbem_enum_access_[i] != NULL)
{
wbem_enum_access_[i]->Release();
}
}
delete[] wbem_enum_access_;
wbem_enum_access_ = NULL;
}
if (wbem_enum_ != NULL)
{
wbem_enum_->Release();
wbem_enum_ = NULL;
}
if (wbem_refresher_ != NULL)
{
wbem_refresher_->Release();
wbem_refresher_ = NULL;
}
if (wbem_service_proxy_ != NULL)
{
wbem_service_proxy_->Release();
wbem_service_proxy_ = NULL;
}
if (wbem_service_ != NULL)
{
wbem_service_->Release();
wbem_service_ = NULL;
}
// CoUninitialized should be called once for every CoInitializeEx.
// Regardless if it failed or not.
CoUninitialize();
has_terminated_ = true;
return true;
}
bool CpuWindows::UpdateCpuUsage()
{
wbem_refresher_->Refresh(0L);
DWORD number_returned = 0;
HRESULT hr = wbem_enum_->GetObjects(0L, number_of_objects_,
wbem_enum_access_,&number_returned);
if (FAILED(hr))
{
// wbem_enum_access_ has already been allocated. Unless the number of
// CPUs change runtime this should not happen.
return false;
}
unsigned __int64 cpu_usage = 0;
unsigned __int64 timestamp_100ns = 0;
bool returnValue = true;
for (DWORD i = 0; i < number_returned; i++)
{
hr = wbem_enum_access_[i]->ReadQWORD(cpu_usage_handle_,&cpu_usage);
if (FAILED(hr))
{
returnValue = false;
}
hr = wbem_enum_access_[i]->ReadQWORD(timestamp_sys_100_ns_handle_,
&timestamp_100ns);
if (FAILED(hr))
{
returnValue = false;
}
wbem_enum_access_[i]->Release();
wbem_enum_access_[i] = NULL;
const bool wrapparound =
(previous_processor_timestamp_[i] > cpu_usage) ||
(previous_100ns_timestamp_[i] > timestamp_100ns);
const bool first_time = (previous_processor_timestamp_[i] == 0) ||
(previous_100ns_timestamp_[i] == 0);
if (wrapparound || first_time)
{
previous_processor_timestamp_[i] = cpu_usage;
previous_100ns_timestamp_[i] = timestamp_100ns;
continue;
}
const unsigned __int64 processor_timestamp_delta =
cpu_usage - previous_processor_timestamp_[i];
const unsigned __int64 timestamp_100ns_delta =
timestamp_100ns - previous_100ns_timestamp_[i];
if (processor_timestamp_delta >= timestamp_100ns_delta)
{
cpu_usage_[i] = 0;
} else {
// Quotient must be float since the division is guaranteed to yield
// a value between 0 and 1 which is 0 in integer division.
const float delta_quotient =
static_cast<float>(processor_timestamp_delta) /
static_cast<float>(timestamp_100ns_delta);
cpu_usage_[i] = 100 - static_cast<WebRtc_UWord32>(delta_quotient *
100);
}
previous_processor_timestamp_[i] = cpu_usage;
previous_100ns_timestamp_[i] = timestamp_100ns;
}
return returnValue;
}
} // namespace webrtc