webp/extras/get_disto.c
Pascal Massimino 31b1e34342 fix SSIM metric ... by ignoring too-dark area
Roughly, if both the source and the reference areas are
darker too dark (R/G/B <= ~6), they are ignored.

One caveat: SSIM calculation won't work for U/V planes,
which are 128-centered and not related to luminance.
But WebPPlaneDistortion() enforces the conversion to RGB,
if needed.

Change-Id: I586c2579c475583b8c90c5baefd766b1d5aea591
2016-10-20 15:17:55 +02:00

340 lines
11 KiB
C

// Copyright 2016 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Simple tool to load two webp/png/jpg/tiff files and compute PSNR/SSIM.
// This is mostly a wrapper around WebPPictureDistortion().
//
/*
gcc -o get_disto get_disto.c -O3 -I../ -L../examples -L../imageio \
-lexample_util -limageio_util -limagedec -lwebp -L/opt/local/lib \
-lpng -lz -ljpeg -ltiff -lm -lpthread
*/
//
// Author: Skal (pascal.massimino@gmail.com)
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "webp/encode.h"
#include "../imageio/image_dec.h"
#include "../imageio/imageio_util.h"
static size_t ReadPicture(const char* const filename, WebPPicture* const pic,
int keep_alpha) {
const uint8_t* data = NULL;
size_t data_size = 0;
WebPImageReader reader = NULL;
int ok = ImgIoUtilReadFile(filename, &data, &data_size);
if (!ok) goto Error;
pic->use_argb = 1; // force ARGB
reader = WebPGuessImageReader(data, data_size);
ok = (reader != NULL) && reader(data, data_size, pic, keep_alpha, NULL);
Error:
if (!ok) {
fprintf(stderr, "Error! Could not process file %s\n", filename);
}
free((void*)data);
return ok ? data_size : 0;
}
static void RescalePlane(uint8_t* plane, int width, int height,
int x_stride, int y_stride, int max) {
const uint32_t factor = (max > 0) ? (255u << 16) / max : 0;
int x, y;
for (y = 0; y < height; ++y) {
uint8_t* const ptr = plane + y * y_stride;
for (x = 0; x < width * x_stride; x += x_stride) {
const uint32_t diff = (ptr[x] * factor + (1 << 15)) >> 16;
ptr[x] = diff;
}
}
}
// Return the max absolute difference.
static int DiffScaleChannel(uint8_t* src1, int stride1,
const uint8_t* src2, int stride2,
int x_stride, int w, int h, int do_scaling) {
int x, y;
int max = 0;
for (y = 0; y < h; ++y) {
uint8_t* const ptr1 = src1 + y * stride1;
const uint8_t* const ptr2 = src2 + y * stride2;
for (x = 0; x < w * x_stride; x += x_stride) {
const int diff = abs(ptr1[x] - ptr2[x]);
if (diff > max) max = diff;
ptr1[x] = diff;
}
}
if (do_scaling) RescalePlane(src1, w, h, x_stride, stride1, max);
return max;
}
//------------------------------------------------------------------------------
// SSIM calculation. We re-implement these functions here, out of dsp/, to avoid
// breaking the library's hidden visibility. This code duplication avoids the
// bigger annoyance of having to open up internal details of libdsp...
#define SSIM_KERNEL 3 // total size of the kernel: 2 * SSIM_KERNEL + 1
// struct for accumulating statistical moments
typedef struct {
uint32_t w; // sum(w_i) : sum of weights
uint32_t xm, ym; // sum(w_i * x_i), sum(w_i * y_i)
uint32_t xxm, xym, yym; // sum(w_i * x_i * x_i), etc.
} DistoStats;
// hat-shaped filter. Sum of coefficients is equal to 16.
static const uint32_t kWeight[2 * SSIM_KERNEL + 1] = { 1, 2, 3, 4, 3, 2, 1 };
static WEBP_INLINE double SSIMCalculation(const DistoStats* const stats) {
const uint32_t N = stats->w;
const uint32_t w2 = N * N;
const uint32_t C1 = 20 * w2;
const uint32_t C2 = 60 * w2;
const uint32_t C3 = 8 * 8 * w2; // 'dark' limit ~= 6
const uint64_t xmxm = (uint64_t)stats->xm * stats->xm;
const uint64_t ymym = (uint64_t)stats->ym * stats->ym;
if (xmxm + ymym >= C3) {
const int64_t xmym = (int64_t)stats->xm * stats->ym;
const int64_t sxy = (int64_t)stats->xym * N - xmym; // can be negative
const uint64_t sxx = (uint64_t)stats->xxm * N - xmxm;
const uint64_t syy = (uint64_t)stats->yym * N - ymym;
// we descale by 8 to prevent overflow during the fnum/fden multiply.
const uint64_t num_S = (2 * (uint64_t)(sxy < 0 ? 0 : sxy) + C2) >> 8;
const uint64_t den_S = (sxx + syy + C2) >> 8;
const uint64_t fnum = (2 * xmym + C1) * num_S;
const uint64_t fden = (xmxm + ymym + C1) * den_S;
const double r = (double)fnum / fden;
assert(r >= 0. && r <= 1.0);
return r;
}
return 1.; // area is too dark to contribute meaningfully
}
static double SSIMGetClipped(const uint8_t* src1, int stride1,
const uint8_t* src2, int stride2,
int xo, int yo, int W, int H) {
DistoStats stats = { 0, 0, 0, 0, 0, 0 };
const int ymin = (yo - SSIM_KERNEL < 0) ? 0 : yo - SSIM_KERNEL;
const int ymax = (yo + SSIM_KERNEL > H - 1) ? H - 1 : yo + SSIM_KERNEL;
const int xmin = (xo - SSIM_KERNEL < 0) ? 0 : xo - SSIM_KERNEL;
const int xmax = (xo + SSIM_KERNEL > W - 1) ? W - 1 : xo + SSIM_KERNEL;
int x, y;
src1 += ymin * stride1;
src2 += ymin * stride2;
for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) {
for (x = xmin; x <= xmax; ++x) {
const uint32_t w = kWeight[SSIM_KERNEL + x - xo]
* kWeight[SSIM_KERNEL + y - yo];
const uint32_t s1 = src1[x];
const uint32_t s2 = src2[x];
stats.w += w;
stats.xm += w * s1;
stats.ym += w * s2;
stats.xxm += w * s1 * s1;
stats.xym += w * s1 * s2;
stats.yym += w * s2 * s2;
}
}
return SSIMCalculation(&stats);
}
// Compute SSIM-score map. Return -1 in case of error, max diff otherwise.
static int SSIMScaleChannel(uint8_t* src1, int stride1,
const uint8_t* src2, int stride2,
int x_stride, int w, int h, int do_scaling) {
int x, y;
int max = 0;
uint8_t* const plane1 = (uint8_t*)malloc(2 * w * h * sizeof(*plane1));
uint8_t* const plane2 = plane1 + w * h;
if (plane1 == NULL) return -1;
// extract plane
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
plane1[x + y * w] = src1[x * x_stride + y * stride1];
plane2[x + y * w] = src2[x * x_stride + y * stride2];
}
}
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
const double ssim = SSIMGetClipped(plane1, w, plane2, w, x, y, w, h);
int diff = (int)(255 * (1. - ssim));
if (diff < 0) {
diff = 0;
} else if (diff > max) {
max = diff;
}
src1[x * x_stride + y * stride1] = (diff > 255) ? 255u : (uint8_t)diff;
}
}
free(plane1);
if (do_scaling) RescalePlane(src1, w, h, x_stride, stride1, max);
return max;
}
// Convert an argb picture to luminance.
static void ConvertToGray(WebPPicture* const pic) {
int x, y;
assert(pic != NULL);
assert(pic->use_argb);
for (y = 0; y < pic->height; ++y) {
uint32_t* const row = &pic->argb[y * pic->argb_stride];
for (x = 0; x < pic->width; ++x) {
const uint32_t argb = row[x];
const uint32_t r = (argb >> 16) & 0xff;
const uint32_t g = (argb >> 8) & 0xff;
const uint32_t b = (argb >> 0) & 0xff;
// We use BT.709 for converting to luminance.
const uint32_t Y = (uint32_t)(0.2126 * r + 0.7152 * g + 0.0722 * b + .5);
row[x] = (argb & 0xff000000u) | (Y * 0x010101u);
}
}
}
static void Help(void) {
fprintf(stderr,
"Usage: get_disto [-ssim][-psnr][-alpha] compressed.webp orig.webp\n"
" -ssim ..... print SSIM distortion\n"
" -psnr ..... print PSNR distortion (default)\n"
" -alpha .... preserve alpha plane\n"
" -h ........ this message\n"
" -o <file> . save the diff map as a WebP lossless file\n"
" -scale .... scale the difference map to fit [0..255] range\n"
" -gray ..... use grayscale for difference map (-scale)\n"
" Also handles PNG, JPG and TIFF files, in addition to WebP.\n");
}
int main(int argc, const char *argv[]) {
WebPPicture pic1, pic2;
int ret = 1;
float disto[5];
size_t size1 = 0, size2 = 0;
int type = 0;
int c;
int help = 0;
int keep_alpha = 0;
int scale = 0;
int use_gray = 0;
const char* name1 = NULL;
const char* name2 = NULL;
const char* output = NULL;
if (!WebPPictureInit(&pic1) || !WebPPictureInit(&pic2)) {
fprintf(stderr, "Can't init pictures\n");
return 1;
}
for (c = 1; c < argc; ++c) {
if (!strcmp(argv[c], "-ssim")) {
type = 1;
} else if (!strcmp(argv[c], "-psnr")) {
type = 0;
} else if (!strcmp(argv[c], "-alpha")) {
keep_alpha = 1;
} else if (!strcmp(argv[c], "-scale")) {
scale = 1;
} else if (!strcmp(argv[c], "-gray")) {
use_gray = 1;
} else if (!strcmp(argv[c], "-h")) {
help = 1;
ret = 0;
} else if (!strcmp(argv[c], "-o")) {
if (++c == argc) {
fprintf(stderr, "missing file name after %s option.\n", argv[c - 1]);
goto End;
}
output = argv[c];
} else if (name1 == NULL) {
name1 = argv[c];
} else {
name2 = argv[c];
}
}
if (help || name1 == NULL || name2 == NULL) {
if (!help) {
fprintf(stderr, "Error: missing arguments.\n");
}
Help();
goto End;
}
if ((size1 = ReadPicture(name1, &pic1, 1)) == 0) {
goto End;
}
if ((size2 = ReadPicture(name2, &pic2, 1)) == 0) {
goto End;
}
if (!keep_alpha) {
WebPBlendAlpha(&pic1, 0x00000000);
WebPBlendAlpha(&pic2, 0x00000000);
}
if (!WebPPictureDistortion(&pic1, &pic2, type, disto)) {
fprintf(stderr, "Error while computing the distortion.\n");
goto End;
}
printf("%u %.2f %.2f %.2f %.2f %.2f\n",
(unsigned int)size1, disto[4],
disto[0], disto[1], disto[2], disto[3]);
if (output != NULL) {
uint8_t* data = NULL;
size_t data_size = 0;
if (pic1.use_argb != pic2.use_argb) {
fprintf(stderr, "Pictures are not in the same argb format. "
"Can't save the difference map.\n");
goto End;
}
if (pic1.use_argb) {
int n;
fprintf(stderr, "max differences per channel: ");
for (n = 0; n < 3; ++n) { // skip the alpha channel
const int range = (type == 1) ?
SSIMScaleChannel((uint8_t*)pic1.argb + n, pic1.argb_stride * 4,
(const uint8_t*)pic2.argb + n, pic2.argb_stride * 4,
4, pic1.width, pic1.height, scale) :
DiffScaleChannel((uint8_t*)pic1.argb + n, pic1.argb_stride * 4,
(const uint8_t*)pic2.argb + n, pic2.argb_stride * 4,
4, pic1.width, pic1.height, scale);
if (range < 0) fprintf(stderr, "\nError computing diff map\n");
fprintf(stderr, "[%d]", range);
}
fprintf(stderr, "\n");
if (use_gray) ConvertToGray(&pic1);
} else {
fprintf(stderr, "Can only compute the difference map in ARGB format.\n");
goto End;
}
data_size = WebPEncodeLosslessBGRA((const uint8_t*)pic1.argb,
pic1.width, pic1.height,
pic1.argb_stride * 4,
&data);
if (data_size == 0) {
fprintf(stderr, "Error during lossless encoding.\n");
goto End;
}
ret = ImgIoUtilWriteFile(output, data, data_size) ? 0 : 1;
WebPFree(data);
if (ret) goto End;
}
ret = 0;
End:
WebPPictureFree(&pic1);
WebPPictureFree(&pic2);
return ret;
}