// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // WebPPicture utils for colorspace conversion // // Author: Skal (pascal.massimino@gmail.com) #include #include #include #include "./vp8enci.h" #include "../utils/random.h" #include "../dsp/yuv.h" // Uncomment to disable gamma-compression during RGB->U/V averaging #define USE_GAMMA_COMPRESSION static const union { uint32_t argb; uint8_t bytes[4]; } test_endian = { 0xff000000u }; #define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff) static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) { return (0xff000000u | (r << 16) | (g << 8) | b); } //------------------------------------------------------------------------------ // Detection of non-trivial transparency // Returns true if alpha[] has non-0xff values. static int CheckNonOpaque(const uint8_t* alpha, int width, int height, int x_step, int y_step) { if (alpha == NULL) return 0; while (height-- > 0) { int x; for (x = 0; x < width * x_step; x += x_step) { if (alpha[x] != 0xff) return 1; // TODO(skal): check 4/8 bytes at a time. } alpha += y_step; } return 0; } // Checking for the presence of non-opaque alpha. int WebPPictureHasTransparency(const WebPPicture* picture) { if (picture == NULL) return 0; if (!picture->use_argb) { return CheckNonOpaque(picture->a, picture->width, picture->height, 1, picture->a_stride); } else { int x, y; const uint32_t* argb = picture->argb; if (argb == NULL) return 0; for (y = 0; y < picture->height; ++y) { for (x = 0; x < picture->width; ++x) { if (argb[x] < 0xff000000u) return 1; // test any alpha values != 0xff } argb += picture->argb_stride; } } return 0; } //------------------------------------------------------------------------------ // RGB -> YUV conversion static int RGBToY(int r, int g, int b, VP8Random* const rg) { return VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX)); } static int RGBToU(int r, int g, int b, VP8Random* const rg) { return VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); } static int RGBToV(int r, int g, int b, VP8Random* const rg) { return VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); } //------------------------------------------------------------------------------ #if defined(USE_GAMMA_COMPRESSION) // gamma-compensates loss of resolution during chroma subsampling #define kGamma 0.80 #define kGammaFix 12 // fixed-point precision for linear values #define kGammaScale ((1 << kGammaFix) - 1) #define kGammaTabFix 7 // fixed-point fractional bits precision #define kGammaTabScale (1 << kGammaTabFix) #define kGammaTabRounder (kGammaTabScale >> 1) #define kGammaTabSize (1 << (kGammaFix - kGammaTabFix)) static int kLinearToGammaTab[kGammaTabSize + 1]; static uint16_t kGammaToLinearTab[256]; static int kGammaTablesOk = 0; static void InitGammaTables(void) { if (!kGammaTablesOk) { int v; const double scale = 1. / kGammaScale; for (v = 0; v <= 255; ++v) { kGammaToLinearTab[v] = (uint16_t)(pow(v / 255., kGamma) * kGammaScale + .5); } for (v = 0; v <= kGammaTabSize; ++v) { const double x = scale * (v << kGammaTabFix); kLinearToGammaTab[v] = (int)(pow(x, 1. / kGamma) * 255. + .5); } kGammaTablesOk = 1; } } static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return kGammaToLinearTab[v]; } // Convert a linear value 'v' to YUV_FIX+2 fixed-point precision // U/V value, suitable for RGBToU/V calls. static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { const int v = base_value << shift; // final uplifted value const int tab_pos = v >> (kGammaTabFix + 2); // integer part const int x = v & ((kGammaTabScale << 2) - 1); // fractional part const int v0 = kLinearToGammaTab[tab_pos]; const int v1 = kLinearToGammaTab[tab_pos + 1]; const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate return (y + kGammaTabRounder) >> kGammaTabFix; // descale } #else static void InitGammaTables(void) {} static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; } static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { return (int)(base_value << shift); } #endif // USE_GAMMA_COMPRESSION //------------------------------------------------------------------------------ #define SUM4(ptr) LinearToGamma( \ GammaToLinear((ptr)[0]) + \ GammaToLinear((ptr)[step]) + \ GammaToLinear((ptr)[rgb_stride]) + \ GammaToLinear((ptr)[rgb_stride + step]), 0) \ #define SUM2H(ptr) \ LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[step]), 1) #define SUM2V(ptr) \ LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1) #define SUM1(ptr) \ LinearToGamma(GammaToLinear((ptr)[0]), 2) #define RGB_TO_UV(x, y, SUM) { \ const int src = (2 * (step * (x) + (y) * rgb_stride)); \ const int dst = (x) + (y) * picture->uv_stride; \ const int r = SUM(r_ptr + src); \ const int g = SUM(g_ptr + src); \ const int b = SUM(b_ptr + src); \ picture->u[dst] = RGBToU(r, g, b, &rg); \ picture->v[dst] = RGBToV(r, g, b, &rg); \ } static int ImportYUVAFromRGBA(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, const uint8_t* const a_ptr, int step, // bytes per pixel int rgb_stride, // bytes per scanline float dithering, WebPPicture* const picture) { const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK; int x, y; const int width = picture->width; const int height = picture->height; const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride); VP8Random rg; picture->colorspace = uv_csp; picture->use_argb = 0; if (has_alpha) { picture->colorspace |= WEBP_CSP_ALPHA_BIT; } if (!WebPPictureAllocYUVA(picture, width, height)) return 0; VP8InitRandom(&rg, dithering); InitGammaTables(); // Import luma plane for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { const int offset = step * x + y * rgb_stride; picture->y[x + y * picture->y_stride] = RGBToY(r_ptr[offset], g_ptr[offset], b_ptr[offset], &rg); } } // Downsample U/V plane for (y = 0; y < (height >> 1); ++y) { for (x = 0; x < (width >> 1); ++x) { RGB_TO_UV(x, y, SUM4); } if (width & 1) { RGB_TO_UV(x, y, SUM2V); } } if (height & 1) { for (x = 0; x < (width >> 1); ++x) { RGB_TO_UV(x, y, SUM2H); } if (width & 1) { RGB_TO_UV(x, y, SUM1); } } if (has_alpha) { assert(step >= 4); assert(picture->a != NULL); for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { picture->a[x + y * picture->a_stride] = a_ptr[step * x + y * rgb_stride]; } } } return 1; } static int Import(WebPPicture* const picture, const uint8_t* const rgb, int rgb_stride, int step, int swap_rb, int import_alpha) { const uint8_t* const r_ptr = rgb + (swap_rb ? 2 : 0); const uint8_t* const g_ptr = rgb + 1; const uint8_t* const b_ptr = rgb + (swap_rb ? 0 : 2); const uint8_t* const a_ptr = import_alpha ? rgb + 3 : NULL; const int width = picture->width; const int height = picture->height; if (!picture->use_argb) { return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, 0.f /* no dithering */, picture); } if (import_alpha) { picture->colorspace |= WEBP_CSP_ALPHA_BIT; } else { picture->colorspace &= ~WEBP_CSP_ALPHA_BIT; } if (!WebPPictureAlloc(picture)) return 0; if (!import_alpha) { int x, y; for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { const int offset = step * x + y * rgb_stride; const uint32_t argb = MakeARGB32(r_ptr[offset], g_ptr[offset], b_ptr[offset]); picture->argb[x + y * picture->argb_stride] = argb; } } } else { int x, y; assert(step >= 4); for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { const int offset = step * x + y * rgb_stride; const uint32_t argb = ((uint32_t)a_ptr[offset] << 24) | (r_ptr[offset] << 16) | (g_ptr[offset] << 8) | (b_ptr[offset]); picture->argb[x + y * picture->argb_stride] = argb; } } } return 1; } #undef SUM4 #undef SUM2V #undef SUM2H #undef SUM1 #undef RGB_TO_UV //------------------------------------------------------------------------------ int WebPPictureImportRGB(WebPPicture* picture, const uint8_t* rgb, int rgb_stride) { return Import(picture, rgb, rgb_stride, 3, 0, 0); } int WebPPictureImportBGR(WebPPicture* picture, const uint8_t* rgb, int rgb_stride) { return Import(picture, rgb, rgb_stride, 3, 1, 0); } int WebPPictureImportRGBA(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return Import(picture, rgba, rgba_stride, 4, 0, 1); } int WebPPictureImportBGRA(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return Import(picture, rgba, rgba_stride, 4, 1, 1); } int WebPPictureImportRGBX(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return Import(picture, rgba, rgba_stride, 4, 0, 0); } int WebPPictureImportBGRX(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return Import(picture, rgba, rgba_stride, 4, 1, 0); } //------------------------------------------------------------------------------ // Automatic YUV <-> ARGB conversions. int WebPPictureYUVAToARGB(WebPPicture* picture) { if (picture == NULL) return 0; if (picture->y == NULL || picture->u == NULL || picture->v == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); } // Allocate a new argb buffer (discarding the previous one). if (!WebPPictureAllocARGB(picture, picture->width, picture->height)) return 0; picture->use_argb = 1; // Convert { int y; const int width = picture->width; const int height = picture->height; const int argb_stride = 4 * picture->argb_stride; uint8_t* dst = (uint8_t*)picture->argb; const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y; WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST); // First row, with replicated top samples. upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); cur_y += picture->y_stride; dst += argb_stride; // Center rows. for (y = 1; y + 1 < height; y += 2) { const uint8_t* const top_u = cur_u; const uint8_t* const top_v = cur_v; cur_u += picture->uv_stride; cur_v += picture->uv_stride; upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v, dst, dst + argb_stride, width); cur_y += 2 * picture->y_stride; dst += 2 * argb_stride; } // Last row (if needed), with replicated bottom samples. if (height > 1 && !(height & 1)) { upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); } // Insert alpha values if needed, in replacement for the default 0xff ones. if (picture->colorspace & WEBP_CSP_ALPHA_BIT) { for (y = 0; y < height; ++y) { uint32_t* const argb_dst = picture->argb + y * picture->argb_stride; const uint8_t* const src = picture->a + y * picture->a_stride; int x; for (x = 0; x < width; ++x) { argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24); } } } } return 1; } int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace, float dithering) { if (picture == NULL) return 0; if (picture->argb == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } else { const uint8_t* const argb = (const uint8_t*)picture->argb; const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1; const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2; const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3; const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0; picture->colorspace = colorspace; if (!ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, dithering, picture)) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); } } return 1; } int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) { return WebPPictureARGBToYUVADithered(picture, colorspace, 0.f); } //------------------------------------------------------------------------------