Add Alpha encode/decode code.
Add code for Alpha encoding & decoding. The alpha compression is done via backward reference counts encoded with Arithmetic encoder (TCoder). Also provided is lossy Alpha pre-processing option via level-quantizations using kNN heuristic. Change-Id: Ib6b13530c1a4ab6493edcb586ad29fe242bc1766
This commit is contained in:
parent
afc4c5d695
commit
e1947a9299
@ -175,8 +175,11 @@ X_OBJS= \
|
||||
$(DIROBJ)\enc\tree.obj \
|
||||
$(DIROBJ)\enc\webpenc.obj \
|
||||
$(DIROBJ)\mux\mux.obj \
|
||||
$(DIROBJ)\utils\alpha.obj \
|
||||
$(DIROBJ)\utils\bit_reader.obj \
|
||||
$(DIROBJ)\utils\bit_writer.obj \
|
||||
$(DIROBJ)\utils\quant_levels.obj \
|
||||
$(DIROBJ)\utils\tcoder.obj \
|
||||
$(DIROBJ)\utils\thread.obj \
|
||||
$(RESOURCE) \
|
||||
|
||||
|
@ -54,6 +54,8 @@ ARFLAGS = r
|
||||
CC = gcc -Isrc/ -Iexamples/ -Wall
|
||||
CFLAGS = -O3 -DNDEBUG $(EXTRA_FLAGS)
|
||||
INSTALL = install
|
||||
GROFF = /usr/bin/groff
|
||||
COL = /usr/bin/col
|
||||
LDFLAGS = $(EXTRA_LIBS) -lm
|
||||
|
||||
DEC_OBJS = src/dec/frame.o src/dec/webp.o src/dec/quant.o src/dec/tree.o \
|
||||
@ -68,7 +70,8 @@ DSP_OBJS = src/dsp/cpu.o src/dsp/enc.o \
|
||||
src/dsp/enc_sse2.o src/dsp/dec.o src/dsp/dec_sse2.o \
|
||||
src/dsp/dec_neon.o src/dsp/upsampling.o src/dsp/upsampling_sse2.o \
|
||||
src/dsp/yuv.o
|
||||
UTILS_OBJS = src/utils/bit_reader.o src/utils/bit_writer.o src/utils/thread.o
|
||||
UTILS_OBJS = src/utils/alpha.o src/utils/bit_reader.o src/utils/bit_writer.o \
|
||||
src/utils/quant_levels.o src/utils/thread.o src/utils/tcoder.o
|
||||
|
||||
OBJS = $(DEC_OBJS) $(ENC_OBJS) $(DSP_OBJS) $(UTILS_OBJS)
|
||||
|
||||
@ -77,10 +80,13 @@ MUX_OBJS = src/mux/mux.o
|
||||
HDRS = src/webp/encode.h src/enc/vp8enci.h src/enc/cost.h src/webp/mux.h \
|
||||
src/dec/vp8i.h \
|
||||
src/dsp/yuv.h src/dsp/dsp.h \
|
||||
src/utils/bit_writer.h src/utils/bit_reader.h src/utils/thread.h
|
||||
src/utils/alpha.h src/utils/bit_writer.h src/utils/bit_reader.h \
|
||||
src/utils/thread.h src/utils/tcoder.h
|
||||
|
||||
OUTPUT = examples/cwebp examples/dwebp examples/webpmux \
|
||||
src/libwebp.a src/mux/libwebpmux.a
|
||||
OUT_LIBS = src/libwebp.a src/mux/libwebpmux.a
|
||||
OUT_EXAMPLES = examples/cwebp examples/dwebp examples/webpmux
|
||||
|
||||
OUTPUT = $(OUT_LIBS) $(OUT_EXAMPLES)
|
||||
|
||||
all:ex
|
||||
|
||||
@ -93,29 +99,29 @@ src/libwebp.a: $(OBJS)
|
||||
src/mux/libwebpmux.a: $(MUX_OBJS)
|
||||
$(AR) $(ARFLAGS) $@ $^
|
||||
|
||||
ex: examples/cwebp examples/dwebp examples/webpmux
|
||||
ex: $(OUT_EXAMPLES)
|
||||
|
||||
examples/cwebp: examples/cwebp.o src/libwebp.a
|
||||
examples/dwebp: examples/dwebp.o src/libwebp.a
|
||||
examples/webpmux: examples/webpmux.o src/mux/libwebpmux.a src/libwebp.a
|
||||
examples/cwebp examples/dwebp examples/webpmux:
|
||||
|
||||
$(OUT_EXAMPLES):
|
||||
$(CC) -o $@ $^ $(LDFLAGS)
|
||||
|
||||
dist: DESTDIR := dist
|
||||
dist: all
|
||||
$(INSTALL) -m755 -d $(DESTDIR)/include/webp \
|
||||
$(DESTDIR)/doc $(DESTDIR)/lib
|
||||
$(INSTALL) -m755 -s examples/cwebp examples/dwebp examples/webpmux \
|
||||
$(DESTDIR)
|
||||
$(DESTDIR)/doc $(DESTDIR)/lib
|
||||
$(INSTALL) -m755 -s $(OUT_EXAMPLES) $(DESTDIR)
|
||||
$(INSTALL) -m644 src/webp/*.h $(DESTDIR)/include/webp
|
||||
$(INSTALL) -m644 src/libwebp.a $(DESTDIR)/lib
|
||||
umask 022; \
|
||||
for m in man/[cd]webp.1; do \
|
||||
basenam=$$(basename $$m .1); \
|
||||
/usr/bin/groff -t -e -man -T utf8 $$m \
|
||||
| col -bx >$(DESTDIR)/doc/$${basenam}.txt; \
|
||||
/usr/bin/groff -t -e -man -T html $$m \
|
||||
| col -bx >$(DESTDIR)/doc/$${basenam}.html; \
|
||||
$(GROFF) -t -e -man -T utf8 $$m \
|
||||
| $(COL) -bx >$(DESTDIR)/doc/$${basenam}.txt; \
|
||||
$(GROFF) -t -e -man -T html $$m \
|
||||
| $(COL) -bx >$(DESTDIR)/doc/$${basenam}.html; \
|
||||
done
|
||||
|
||||
clean:
|
||||
|
@ -1,10 +1,12 @@
|
||||
AM_CPPFLAGS = -I$(top_srcdir)/src
|
||||
|
||||
libwebputils_la_SOURCES = bit_reader.h bit_reader.c \
|
||||
libwebputils_la_SOURCES = alpha.h alpha.c \
|
||||
bit_reader.h bit_reader.c \
|
||||
bit_writer.h bit_writer.c \
|
||||
quant_levels.c \
|
||||
tcoder.h tcoderi.h tcoder.c \
|
||||
thread.h thread.c
|
||||
libwebputils_la_LDFLAGS = -version-info 0:0:0
|
||||
libwebputils_la_CPPFLAGS = $(USE_EXPERIMENTAL_CODE)
|
||||
libwebputilsinclude_HEADERS = ../webp/types.h
|
||||
libwebputilsincludedir = $(includedir)/webp
|
||||
|
||||
|
432
src/utils/alpha.c
Normal file
432
src/utils/alpha.c
Normal file
@ -0,0 +1,432 @@
|
||||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Alpha plane encoding and decoding library.
|
||||
//
|
||||
// Author: vikasa@google.com (Vikas Arora)
|
||||
|
||||
#include <string.h> // for memcpy()
|
||||
#include "./alpha.h"
|
||||
|
||||
#include "./bit_reader.h"
|
||||
#include "./bit_writer.h"
|
||||
#include "./tcoder.h"
|
||||
|
||||
#define MAX_SYMBOLS 255
|
||||
#define ALPHA_HEADER_LEN 2
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Alpha Encode.
|
||||
|
||||
static int EncodeIdent(const uint8_t* data, int width, int height,
|
||||
uint8_t** output, size_t* output_size) {
|
||||
const size_t data_size = height * width;
|
||||
uint8_t* alpha = NULL;
|
||||
assert((output != NULL) && (output_size != NULL));
|
||||
|
||||
if (data == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
alpha = (uint8_t*)malloc(data_size);
|
||||
if (alpha == NULL) {
|
||||
return 0;
|
||||
}
|
||||
memcpy(alpha, data, data_size);
|
||||
*output_size = data_size;
|
||||
*output = alpha;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Zlib-like encoding using TCoder
|
||||
|
||||
typedef struct {
|
||||
int dist; // backward distance (=0 means: literal)
|
||||
int literal; // literal value (if dist = 0)
|
||||
size_t len; // length of matched string for non-literal
|
||||
} Token;
|
||||
|
||||
#define MIN_LEN 2
|
||||
#define DEFER_SKIP 1 // for deferred evaluation (0 = off)
|
||||
|
||||
#define CACHED_COST(coder, c) ((cost_cache[(c)] == 0.) ? \
|
||||
(cost_cache[(c)] = lit_mode_cost + TCoderSymbolCost((coder), (c))) \
|
||||
: cost_cache[(c)])
|
||||
|
||||
// Record symbol
|
||||
#define RECORD(TOKEN) { \
|
||||
TCoderEncode(coderd, (TOKEN)->dist, NULL); \
|
||||
if ((TOKEN)->dist == 0) { \
|
||||
TCoderEncode(coder, (TOKEN)->literal, NULL); \
|
||||
} else { \
|
||||
TCoderEncode(coderl, (TOKEN)->len - MIN_LEN, NULL); \
|
||||
} \
|
||||
}
|
||||
|
||||
static size_t GetLongestMatch(const uint8_t* const data,
|
||||
const uint8_t* const ref, size_t max_len) {
|
||||
size_t n;
|
||||
for (n = 0; n < max_len && (data[n] == ref[n]); ++n) { /* do nothing */ }
|
||||
return n;
|
||||
}
|
||||
|
||||
static int EncodeZlibTCoder(uint8_t* data, int width, int height,
|
||||
uint8_t** output, size_t* output_size) {
|
||||
int ok = 0;
|
||||
const size_t data_size = width * height;
|
||||
const size_t MAX_DIST = 3 * width;
|
||||
const size_t MAX_LEN = 2 * width;
|
||||
Token* const msg = (Token*)malloc(data_size * sizeof(*msg));
|
||||
int num_tokens;
|
||||
TCoder* const coder = TCoderNew(MAX_SYMBOLS);
|
||||
TCoder* const coderd = TCoderNew(MAX_DIST);
|
||||
TCoder* const coderl = TCoderNew(MAX_LEN - MIN_LEN);
|
||||
|
||||
if (coder == NULL || coderd == NULL || coderl == NULL) {
|
||||
goto End;
|
||||
}
|
||||
if (msg == NULL) {
|
||||
goto End;
|
||||
}
|
||||
|
||||
{
|
||||
int deferred_eval = 0;
|
||||
size_t n = 0;
|
||||
num_tokens = 0;
|
||||
while (n < data_size) {
|
||||
const double lit_mode_cost = TCoderSymbolCost(coderd, 0);
|
||||
double cost_cache[MAX_SYMBOLS + 1] = { 0. };
|
||||
Token best;
|
||||
size_t dist = 0;
|
||||
double best_cost = CACHED_COST(coder, data[n]);
|
||||
size_t max_len = MAX_LEN;
|
||||
if (max_len > data_size - n) {
|
||||
max_len = data_size - n;
|
||||
}
|
||||
best.dist = 0;
|
||||
best.literal = data[n];
|
||||
best.len = 1;
|
||||
for (dist = 1; dist <= MAX_DIST && dist <= n; ++dist) {
|
||||
const int pos = n - dist;
|
||||
const size_t min_len = best.len - 1;
|
||||
size_t len;
|
||||
|
||||
// Early out: we probe at two locations for a quick match check
|
||||
if (data[pos] != data[n] ||
|
||||
data[pos + min_len] != data[n + min_len]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
len = GetLongestMatch(data + pos, data + n, max_len);
|
||||
if (len >= MIN_LEN && len >= best.len) {
|
||||
// This is the cost of the coding proposal
|
||||
const double cost = TCoderSymbolCost(coderl, len - MIN_LEN)
|
||||
+ TCoderSymbolCost(coderd, dist);
|
||||
// We're gaining an extra len-best.len coded message over the last
|
||||
// known best. Compute how this would have cost if coded all literal.
|
||||
// (TODO: we shoud fully re-evaluate at position best.len and not
|
||||
// assume all is going be coded as literals. But it's at least an
|
||||
// upper-bound (worst-case coding). Deferred evaluation usd below
|
||||
// partially addresses this.
|
||||
double lit_cost = 0;
|
||||
size_t i;
|
||||
for (i = best.len; i < len; ++i) {
|
||||
lit_cost += CACHED_COST(coder, data[n + i]);
|
||||
}
|
||||
// So, is it worth ?
|
||||
if (best_cost + lit_cost >= cost) {
|
||||
best_cost = cost;
|
||||
best.len = len;
|
||||
best.dist = dist;
|
||||
}
|
||||
}
|
||||
if (len >= MAX_LEN) {
|
||||
break; // No need to search further. We already got a max-long match
|
||||
}
|
||||
}
|
||||
// Deferred evaluation: before finalizing a choice we try to find
|
||||
// best cost at position n + 1 and see if we get a longer
|
||||
// match then current best. If so, we transform the current match
|
||||
// into a literal, go to position n + 1, and try again.
|
||||
{
|
||||
Token* cur = &msg[num_tokens];
|
||||
int forget = 0;
|
||||
if (deferred_eval) {
|
||||
--cur;
|
||||
// If the next match isn't longer, keep previous match
|
||||
if (best.len <= cur->len) {
|
||||
deferred_eval = 0;
|
||||
n += cur->len - DEFER_SKIP;
|
||||
forget = 1; // forget the new match
|
||||
RECORD(cur)
|
||||
} else { // else transform previous match into a shorter one
|
||||
cur->len = DEFER_SKIP;
|
||||
if (DEFER_SKIP == 1) {
|
||||
cur->dist = 0; // literal
|
||||
}
|
||||
// TODO(later): RECORD() macro should be changed to take an extra
|
||||
// "is_final" param, so that we could write the bitstream at once.
|
||||
RECORD(cur)
|
||||
++cur;
|
||||
}
|
||||
}
|
||||
if (!forget) {
|
||||
*cur = best;
|
||||
++num_tokens;
|
||||
if (DEFER_SKIP > 0) {
|
||||
deferred_eval = (cur->len > 2) && (cur->len < MAX_LEN / 2);
|
||||
}
|
||||
if (deferred_eval) {
|
||||
// will probe at a later position before finalizing.
|
||||
n += DEFER_SKIP;
|
||||
} else {
|
||||
// Keep the current choice.
|
||||
n += cur->len;
|
||||
RECORD(cur)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Final bitstream assembly.
|
||||
{
|
||||
int n;
|
||||
VP8BitWriter bw;
|
||||
VP8BitWriterInit(&bw, 0);
|
||||
TCoderInit(coder);
|
||||
TCoderInit(coderd);
|
||||
TCoderInit(coderl);
|
||||
for (n = 0; n < num_tokens; ++n) {
|
||||
const Token* const t = &msg[n];
|
||||
const int is_literal = (t->dist == 0);
|
||||
TCoderEncode(coderd, t->dist, &bw);
|
||||
if (is_literal) { // literal
|
||||
TCoderEncode(coder, t->literal, &bw);
|
||||
} else {
|
||||
TCoderEncode(coderl, t->len - MIN_LEN, &bw);
|
||||
}
|
||||
}
|
||||
|
||||
// clean up
|
||||
VP8BitWriterFinish(&bw);
|
||||
*output = VP8BitWriterBuf(&bw);
|
||||
*output_size = VP8BitWriterSize(&bw);
|
||||
ok = 1;
|
||||
}
|
||||
|
||||
End:
|
||||
if (coder) TCoderDelete(coder);
|
||||
if (coderl) TCoderDelete(coderl);
|
||||
if (coderd) TCoderDelete(coderd);
|
||||
free(msg);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
int EncodeAlpha(const uint8_t* data, int width, int height, int stride,
|
||||
int quality, int method,
|
||||
uint8_t** output, size_t* output_size) {
|
||||
const int kMaxImageDim = (1 << 14) - 1;
|
||||
uint8_t* compressed_alpha = NULL;
|
||||
uint8_t* quant_alpha = NULL;
|
||||
uint8_t* out = NULL;
|
||||
size_t compressed_size = 0;
|
||||
size_t data_size = height * width;
|
||||
float mse = 0.0;
|
||||
int ok = 0;
|
||||
int h;
|
||||
|
||||
if ((data == NULL) || (output == NULL) || (output_size == NULL)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (width <= 0 || width > kMaxImageDim ||
|
||||
height <= 0 || height > kMaxImageDim || stride < width) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (quality < 0 || quality > 100) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (method < 0 || method > 1) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
quant_alpha = (uint8_t*)malloc(data_size);
|
||||
if (quant_alpha == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Extract the alpha data (WidthXHeight) from raw_data (StrideXHeight).
|
||||
for (h = 0; h < height; ++h) {
|
||||
memcpy(quant_alpha + h * width, data + h * stride, width * sizeof(*data));
|
||||
}
|
||||
|
||||
if (quality < 100) { // No Quantization required for 'quality = 100'.
|
||||
// 16 Alpha levels gives quite a low MSE w.r.t Original Alpha plane hence
|
||||
// mapped to moderate quality 70. Hence Quality:[0, 70] -> Levels:[2, 16]
|
||||
// and Quality:]70, 100] -> Levels:]16, 256].
|
||||
const int alpha_levels = (quality <= 70) ?
|
||||
2 + quality / 5 :
|
||||
16 + (quality - 70) * 8;
|
||||
|
||||
ok = QuantizeLevels(quant_alpha, width, height, alpha_levels, &mse);
|
||||
if (!ok) {
|
||||
free(quant_alpha);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (method == 0) {
|
||||
ok = EncodeIdent(quant_alpha, width, height,
|
||||
&compressed_alpha, &compressed_size);
|
||||
} else if (method == 1) {
|
||||
ok = EncodeZlibTCoder(quant_alpha, width, height,
|
||||
&compressed_alpha, &compressed_size);
|
||||
}
|
||||
|
||||
free(quant_alpha);
|
||||
if (!ok) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
out = (uint8_t*)malloc(compressed_size + ALPHA_HEADER_LEN);
|
||||
if (out == NULL) {
|
||||
free(compressed_alpha);
|
||||
return 0;
|
||||
} else {
|
||||
*output = out;
|
||||
}
|
||||
|
||||
// Alpha bit-stream Header:
|
||||
// Byte0: Compression Method.
|
||||
// Byte1: Reserved for later extension.
|
||||
out[0] = method & 0xff;
|
||||
out[1] = 0; // Reserved Byte.
|
||||
out += ALPHA_HEADER_LEN;
|
||||
memcpy(out, compressed_alpha, compressed_size);
|
||||
free(compressed_alpha);
|
||||
out += compressed_size;
|
||||
|
||||
*output_size = out - *output;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Alpha Decode.
|
||||
|
||||
static int DecodeIdent(const uint8_t* data, size_t data_size,
|
||||
uint8_t* output) {
|
||||
assert((data != NULL) && (output != NULL));
|
||||
memcpy(output, data, data_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int DecompressZlibTCoder(const uint8_t* data, size_t data_size,
|
||||
int width, int height,
|
||||
uint8_t* output, size_t output_size) {
|
||||
int ok = 1;
|
||||
const size_t MAX_DIST = 3 * width;
|
||||
const size_t MAX_LEN = 2 * width;
|
||||
TCoder* const coder = TCoderNew(MAX_SYMBOLS);
|
||||
TCoder* const coderd = TCoderNew(MAX_DIST);
|
||||
TCoder* const coderl = TCoderNew(MAX_LEN - MIN_LEN);
|
||||
|
||||
if (coder == NULL || coderd == NULL || coderl == NULL) {
|
||||
goto End;
|
||||
}
|
||||
(void)height; // unused parameter
|
||||
|
||||
{
|
||||
size_t pos = 0;
|
||||
VP8BitReader br;
|
||||
VP8InitBitReader(&br, data, data + data_size);
|
||||
while (pos < output_size) {
|
||||
const int dist = TCoderDecode(coderd, &br);
|
||||
if (dist == 0) {
|
||||
const int literal = TCoderDecode(coder, &br);
|
||||
output[pos] = literal;
|
||||
++pos;
|
||||
} else {
|
||||
const int len = MIN_LEN + TCoderDecode(coderl, &br);
|
||||
int k;
|
||||
if (pos + len > output_size) goto End;
|
||||
for (k = 0; k < len; ++k) {
|
||||
output[pos + k] = output[pos + k - dist];
|
||||
}
|
||||
pos += len;
|
||||
}
|
||||
}
|
||||
}
|
||||
ok = 1;
|
||||
|
||||
End:
|
||||
if (coder) TCoderDelete(coder);
|
||||
if (coderl) TCoderDelete(coderl);
|
||||
if (coderd) TCoderDelete(coderd);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
int DecodeAlpha(const uint8_t* data, size_t data_size,
|
||||
int width, int height, int stride,
|
||||
uint8_t* output) {
|
||||
uint8_t* decoded_data = NULL;
|
||||
int ok = 0;
|
||||
int method;
|
||||
size_t decoded_size = height * width;
|
||||
|
||||
if (data == NULL || output == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (data_size <= ALPHA_HEADER_LEN) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (width <= 0 || height <= 0 || stride < width) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
method = data[0];
|
||||
if (method < 0 || method > 1) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
decoded_data = (uint8_t*)malloc(decoded_size);
|
||||
if (decoded_data == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
data_size -= ALPHA_HEADER_LEN;
|
||||
data += ALPHA_HEADER_LEN;
|
||||
|
||||
if (method == 0) {
|
||||
ok = DecodeIdent(data, data_size, decoded_data);
|
||||
} else if (method == 1) {
|
||||
ok = DecompressZlibTCoder(data, data_size, width, height,
|
||||
decoded_data, decoded_size);
|
||||
}
|
||||
|
||||
if (ok) {
|
||||
// Construct raw_data (HeightXStride) from the alpha data (HeightXWidth).
|
||||
int h;
|
||||
for (h = 0; h < height; ++h) {
|
||||
memcpy(output + h * stride, decoded_data + h * width,
|
||||
width * sizeof(*data));
|
||||
}
|
||||
}
|
||||
free(decoded_data);
|
||||
|
||||
return ok;
|
||||
}
|
68
src/utils/alpha.h
Normal file
68
src/utils/alpha.h
Normal file
@ -0,0 +1,68 @@
|
||||
// Copyright 2011 Google Inc.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Alpha plane encoding and decoding library.
|
||||
//
|
||||
// Author: vikasa@google.com (Vikas Arora)
|
||||
|
||||
#ifndef WEBP_UTILS_ALPHA_H_
|
||||
#define WEBP_UTILS_ALPHA_H_
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "../webp/types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Encodes the given Alpha data 'data' of size 'stride'x'height' via specified
|
||||
// compression method 'method'. The pre-processing (Quantization) is
|
||||
// performed if 'quality' is less than 100. For such cases, the encoding is
|
||||
// lossy. Valid ranges for 'quality' is [0, 100] and 'method' is [0, 2]:
|
||||
// 'method = 0' - No compression;
|
||||
// 'method = 1' - zlib;
|
||||
// 'output' corresponds to the buffer containing compressed Alpha data.
|
||||
// This buffer is allocated by this method and caller should call
|
||||
// free(*output) when done.
|
||||
// 'output_size' corresponds to size of this compressed Alpha buffer.
|
||||
//
|
||||
// Returns 1 on successfully encoding the Alpha and
|
||||
// 0 if either:
|
||||
// data, output or output_size is NULL, or
|
||||
// inappropriate width, height or stride, or
|
||||
// invalid quality or method, or
|
||||
// Memory allocation for the compressed data fails.
|
||||
|
||||
int EncodeAlpha(const uint8_t* data, int width, int height, int stride,
|
||||
int quality, int method,
|
||||
uint8_t** output, size_t* output_size);
|
||||
|
||||
// Decodes the compressed data 'data' of size 'data_size' into the 'output'.
|
||||
// The 'output' buffer should be pre-alloacated and must be of the same
|
||||
// dimension 'height'x'stride', as that of the image.
|
||||
//
|
||||
// Returns 1 on successfully decoding the compressed Alpha and
|
||||
// 0 if either:
|
||||
// data or output is NULL, or
|
||||
// Error in bit-stream header (invalid compression mode or qbits), or
|
||||
// Error returned by approppriate compression method.
|
||||
int DecodeAlpha(const uint8_t* data, size_t data_size,
|
||||
int width, int height, int stride, uint8_t* output);
|
||||
|
||||
// Replace the input 'data' of size 'width'x'height' with 'num-levels'
|
||||
// quantized values. If not NULL, 'mse' will contain the mean-squared error.
|
||||
// Valid range for 'num_levels' is [2, 256].
|
||||
// Returns false in case of error (data is NULL, or parameters are invalid).
|
||||
int QuantizeLevels(uint8_t* data, int width, int height, int num_levels,
|
||||
float* mse);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_UTILS_ALPHA_H_ */
|
143
src/utils/quant_levels.c
Normal file
143
src/utils/quant_levels.c
Normal file
@ -0,0 +1,143 @@
|
||||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Quantize levels for specified number of quantization-levels ([2, 256]).
|
||||
// Min and max values are preserved (usual 0 and 255 for alpha plane).
|
||||
//
|
||||
// Author: skal@google.com (Pascal Massimino)
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h> // for sqrt()
|
||||
|
||||
#include "./alpha.h"
|
||||
|
||||
#define NUM_SYMBOLS 256
|
||||
|
||||
#define MAX_ITER 6 // Maximum number of convergence steps.
|
||||
#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion.
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Quantize levels.
|
||||
|
||||
int QuantizeLevels(uint8_t* data, int width, int height,
|
||||
int num_levels, float* mse) {
|
||||
int freq[NUM_SYMBOLS] = { 0 };
|
||||
int q_level[NUM_SYMBOLS] = { 0 };
|
||||
double inv_q_level[NUM_SYMBOLS] = { 0 };
|
||||
int min_s = 255, max_s = 0;
|
||||
const size_t data_size = height * width;
|
||||
size_t n = 0;
|
||||
int s, num_levels_in, iter;
|
||||
double last_err = 1.e38, err = 0.;
|
||||
|
||||
if (data == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (width <= 0 || height <= 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (num_levels < 2 || num_levels > 256) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
num_levels_in = 0;
|
||||
for (n = 0; n < data_size; ++n) {
|
||||
num_levels_in += (freq[data[n]] == 0);
|
||||
if (min_s > data[n]) min_s = data[n];
|
||||
if (max_s < data[n]) max_s = data[n];
|
||||
++freq[data[n]];
|
||||
}
|
||||
|
||||
if (num_levels_in <= num_levels) {
|
||||
if (mse) *mse = 0.;
|
||||
return 1; // nothing to do !
|
||||
}
|
||||
|
||||
// Start with uniformly spread centroids.
|
||||
for (s = 0; s < num_levels; ++s) {
|
||||
inv_q_level[s] = min_s + (double)(max_s - min_s) * s / (num_levels - 1);
|
||||
}
|
||||
|
||||
// Fixed values. Won't be changed.
|
||||
q_level[min_s] = 0;
|
||||
q_level[max_s] = num_levels - 1;
|
||||
assert(inv_q_level[0] == min_s);
|
||||
assert(inv_q_level[num_levels - 1] == max_s);
|
||||
|
||||
// k-Means iterations.
|
||||
for (iter = 0; iter < MAX_ITER; ++iter) {
|
||||
double err_count;
|
||||
double q_sum[NUM_SYMBOLS] = { 0 };
|
||||
double q_count[NUM_SYMBOLS] = { 0 };
|
||||
int slot = 0;
|
||||
|
||||
// Assign classes to representatives.
|
||||
for (s = min_s; s <= max_s; ++s) {
|
||||
// Keep track of the nearest neighbour 'slot'
|
||||
while (slot < num_levels - 1 &&
|
||||
2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
|
||||
++slot;
|
||||
}
|
||||
if (freq[s] > 0) {
|
||||
q_sum[slot] += s * freq[s];
|
||||
q_count[slot] += freq[s];
|
||||
}
|
||||
q_level[s] = slot;
|
||||
}
|
||||
|
||||
// Assign new representatives to classes.
|
||||
if (num_levels > 2) {
|
||||
for (slot = 1; slot < num_levels - 1; ++slot) {
|
||||
const double count = q_count[slot];
|
||||
if (count > 0.) {
|
||||
inv_q_level[slot] = q_sum[slot] / count;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute convergence error.
|
||||
err = 0.;
|
||||
err_count = 0.;
|
||||
for (s = min_s; s <= max_s; ++s) {
|
||||
const double error = s - inv_q_level[q_level[s]];
|
||||
err += freq[s] * error * error;
|
||||
err_count += freq[s];
|
||||
}
|
||||
if (err_count > 0.) err /= err_count;
|
||||
|
||||
// Check for convergence: we stop as soon as the error is no
|
||||
// longer improving.
|
||||
if (last_err - err < ERROR_THRESHOLD) break;
|
||||
last_err = err;
|
||||
}
|
||||
|
||||
// Remap the alpha plane to quantized values.
|
||||
{
|
||||
// double->int rounding operation can be costly, so we do it
|
||||
// once for all before remaping. We also perform the data[] -> slot
|
||||
// mapping, while at it (avoid one indirection in the final loop).
|
||||
uint8_t map[NUM_SYMBOLS];
|
||||
int s;
|
||||
for (s = min_s; s <= max_s; ++s) {
|
||||
const int slot = q_level[s];
|
||||
map[s] = (uint8_t)(inv_q_level[slot] + .5);
|
||||
}
|
||||
// Final pass.
|
||||
for (n = 0; n < data_size; ++n) {
|
||||
data[n] = map[data[n]];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute final mean squared error if needed.
|
||||
if (mse) {
|
||||
*mse = sqrt(err);
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
460
src/utils/tcoder.c
Normal file
460
src/utils/tcoder.c
Normal file
@ -0,0 +1,460 @@
|
||||
// Copyright 2011 Google Inc.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Tree-coder using VP8's boolean coder
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
//
|
||||
// Rationale:
|
||||
// We extend the boolean (binary) coder to handle arbitrary-sized alphabets,
|
||||
// and not just binary ones.
|
||||
// We dynamically maintain the population count and use the locally-optimal
|
||||
// probability distribution for coding every symbol. Every symbol can be
|
||||
// coded using _any_ binary tree. The boolean coder would traverse it and
|
||||
// branch each nodes left and right with the accumulated probability.
|
||||
//
|
||||
// E.g. with 3 symbols A, B, C already coded 30, 50 and 120 times respectively:
|
||||
//
|
||||
/* Root Node #0 (count=30+50+120=200)
|
||||
| \
|
||||
| A (count=30)
|
||||
Inner-Node #1 (count=50+120=170)
|
||||
| \
|
||||
| C (count=120)
|
||||
B (count=50)
|
||||
*/
|
||||
// If the next symbol to code is "C", we'll first code '0' with probability
|
||||
// p0 = 170/200 (which is the probability of taking the left branch at the
|
||||
// Root Node #0) and then code '1' with a probability p1 = 120/170 (which
|
||||
// is the probability of taking the right branch at the Inner-Node #1). The
|
||||
// total probability p0 * p1 = 120 / 200 is the correct one for symbol 'C'
|
||||
// (up to small rounding differences in the boolean coder).
|
||||
// The alphabet could be coded with _any_ tree, provided the count at the
|
||||
// inner nodes are updated appropriately. Put otherwise, the binary tree
|
||||
// is only used to efficiently update the frequency counts in O(ln(N)) time
|
||||
// instead of O(N).
|
||||
// For instance, we could use the equivalent tree:
|
||||
/* Root (count=200)
|
||||
| \
|
||||
| C (count=120)
|
||||
Inner (count=50+30=80)
|
||||
| \
|
||||
| B (count=50)
|
||||
A (count=30)
|
||||
*/
|
||||
// The frequency distribution would still be respected when coding the symbols.
|
||||
// But! There's a noticeable difference: it only takes _one_ call to VP8PutBit()
|
||||
// when coding the letter 'C' (with probability 120/200), which is the most
|
||||
// frequent symbol. This has an impact on speed, considering that each call
|
||||
// to VP8PutBit/VP8GetBit is costly. Hence, in order to minimize the number
|
||||
// of binary coding, the frequent symbol should be up in the tree.
|
||||
// Using Huffman tree is a solution, but the management and updating can be
|
||||
// quite complicated. Here we opt for a simpler option: we use _ternary_
|
||||
// tree instead, where each inner node can be associated with a symbol, in
|
||||
// addition to the regular left/right branches. When we traverse down
|
||||
// the tree, a stop bit is used to signal whether the traversal is finished
|
||||
// or not. Its probability is proportional to the frequency with which the
|
||||
// node's symbol has been seen (see probaS_). If the traversal is not
|
||||
// finished, we keep branching right or left according with a probability
|
||||
// proportional to each branch's use count (see probaL_).
|
||||
// When a symbol is seen more frequently than its parent, we simply
|
||||
// exchange the two symbols without changing the tree structure or the
|
||||
// left/right branches.
|
||||
// Hence, both tree examples above can be coded using this ternary tree:
|
||||
/* Root #0 (count=200)
|
||||
/ | \
|
||||
/ C \
|
||||
Node #1 Node #2
|
||||
/ | \ / | \
|
||||
x A x x B x <- where 'x' means un-assigned branches.
|
||||
*/
|
||||
// Here, if the symbol 'A' becomes more frequent afterward, we'll just swap it
|
||||
// with 'C' (cf ExchangeSymbol()) without reorganizing the tree.
|
||||
//
|
||||
// Using this simple maintainance, we obverved a typical 10-20% reduction
|
||||
// in the number of calls to VP8PutBit(), leading to 3-5% speed gain.
|
||||
//
|
||||
|
||||
#include "./tcoderi.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
static double log2(double d) {
|
||||
const double kLog2Reciprocal = 1.442695040888963;
|
||||
return log(d) * kLog2Reciprocal;
|
||||
}
|
||||
#endif
|
||||
|
||||
// For code=00001xxx..., returns the position of the leftmost leading '1' bit.
|
||||
static WEBP_INLINE int CodeLength(int code) {
|
||||
int length = 0;
|
||||
if (code > 0) {
|
||||
while ((code >> length) != 1) ++length;
|
||||
}
|
||||
return length;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
TCoder* TCoderNew(int max_symbol) {
|
||||
const int num_nodes = max_symbol + 1;
|
||||
TCoder* c;
|
||||
uint8_t* memory;
|
||||
const int size = sizeof(*c)
|
||||
+ num_nodes * sizeof(*c->nodes_)
|
||||
+ num_nodes * sizeof(*c->symbols_);
|
||||
if (max_symbol < 0) return NULL;
|
||||
memory = (uint8_t*)malloc(size);
|
||||
if (memory == NULL) return NULL;
|
||||
|
||||
c = (TCoder*)memory;
|
||||
memory += sizeof(*c);
|
||||
c->nodes_ = (Node*)memory - 1;
|
||||
memory += num_nodes * sizeof(*c->nodes_);
|
||||
c->symbols_ = (int*)memory;
|
||||
|
||||
c->num_nodes_ = num_nodes;
|
||||
c->frozen_ = 0;
|
||||
|
||||
TCoderInit(c);
|
||||
return c;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void ResetNode(Node* const node, Symbol_t symbol) {
|
||||
assert(node);
|
||||
node->countS_ = (Count_t)0;
|
||||
node->count_ = (Count_t)0;
|
||||
node->probaS_ = HALF_PROBA;
|
||||
node->probaL_ = HALF_PROBA;
|
||||
node->symbol_ = symbol;
|
||||
}
|
||||
|
||||
// Wipe the tree clean.
|
||||
static void ResetTree(TCoder* const c) {
|
||||
int pos;
|
||||
assert(c);
|
||||
c->num_symbols_ = 0;
|
||||
c->total_coded_ = 0;
|
||||
c->probaN_ = HALF_PROBA;
|
||||
for (pos = 1; pos <= c->num_nodes_; ++pos) {
|
||||
ResetNode(&c->nodes_[pos], INVALID_SYMBOL);
|
||||
}
|
||||
c->fixed_symbols_ = 0;
|
||||
c->symbol_bit_cost_ = 5 + CodeLength(c->num_nodes_);
|
||||
}
|
||||
|
||||
static void ResetSymbolMap(TCoder* const c) {
|
||||
Symbol_t s;
|
||||
assert(c);
|
||||
c->num_symbols_ = 0;
|
||||
c->probaN_ = HALF_PROBA;
|
||||
for (s = 0; s < c->num_nodes_; ++s) {
|
||||
c->symbols_[s] = INVALID_POS;
|
||||
}
|
||||
}
|
||||
|
||||
void TCoderInit(TCoder* const c) {
|
||||
assert(c);
|
||||
if (!c->frozen_) { // Reset counters
|
||||
ResetTree(c);
|
||||
ResetSymbolMap(c);
|
||||
}
|
||||
}
|
||||
|
||||
void TCoderDelete(TCoder* const c) {
|
||||
free(c);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Tree utils around nodes
|
||||
|
||||
// Total number of visits on this nodes
|
||||
static WEBP_INLINE Count_t TotalCount(const Node* const n) {
|
||||
return n->countS_ + n->count_;
|
||||
}
|
||||
|
||||
// Returns true if node has no child.
|
||||
static WEBP_INLINE int IsLeaf(const TCoder* const c, int pos) {
|
||||
return (2 * pos > c->num_symbols_);
|
||||
}
|
||||
|
||||
// Returns true if node has no child.
|
||||
static WEBP_INLINE int HasOnlyRightChild(const TCoder* const c, int pos) {
|
||||
return (2 * pos == c->num_symbols_);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Node management
|
||||
|
||||
static int NewNode(TCoder* const c, int s) {
|
||||
// For an initial new symbol position, we pick the slot that is the
|
||||
// closest to the top of the tree. It shortens the paths' length.
|
||||
const int pos = 1 + c->num_symbols_;
|
||||
assert(c);
|
||||
assert(c->num_symbols_ < c->num_nodes_);
|
||||
c->symbols_[s] = pos;
|
||||
ResetNode(&c->nodes_[pos], s);
|
||||
++c->num_symbols_;
|
||||
return pos;
|
||||
}
|
||||
|
||||
// trivial method, mainly for debug
|
||||
static WEBP_INLINE int SymbolToNode(const TCoder* const c, int s) {
|
||||
const int pos = c->symbols_[s];
|
||||
assert(s >= 0 && s < c->num_nodes_ && s != INVALID_SYMBOL);
|
||||
assert(pos != INVALID_POS);
|
||||
assert(c->nodes_[pos].symbol_ == s);
|
||||
return pos;
|
||||
}
|
||||
|
||||
#define SWAP(T, a, b) do { \
|
||||
const T tmp = (a); \
|
||||
(a) = (b); \
|
||||
(b) = tmp; \
|
||||
} while (0)
|
||||
|
||||
// Make child symbol bubble up one level
|
||||
static void ExchangeSymbol(const TCoder* const c, const int pos) {
|
||||
const int parent = pos >> 1;
|
||||
Node* const node0 = &c->nodes_[parent]; // parent node
|
||||
Node* const node1 = &c->nodes_[pos]; // child node
|
||||
const Symbol_t S0 = node0->symbol_;
|
||||
const Symbol_t S1 = node1->symbol_;
|
||||
c->symbols_[S1] = parent;
|
||||
c->symbols_[S0] = pos;
|
||||
assert(node1->countS_ >= node0->countS_);
|
||||
node0->count_ -= (node1->countS_ - node0->countS_);
|
||||
assert(node0->count_ > 0);
|
||||
SWAP(Count_t, node0->countS_, node1->countS_);
|
||||
SWAP(Symbol_t, node0->symbol_, node1->symbol_);
|
||||
// Note: probaL_ and probaS_ are recomputed. No need to SWAP them.
|
||||
}
|
||||
#undef SWAP
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// probability computation
|
||||
|
||||
static WEBP_INLINE int CalcProba(Count_t num, Count_t total,
|
||||
int max_proba, int round) {
|
||||
int p;
|
||||
assert(total > 0);
|
||||
p = (num * max_proba + round) / total;
|
||||
assert(p >= 0 && p <= MAX_PROBA);
|
||||
return MAX_PROBA - p;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void UpdateNodeProbas(TCoder* const c, int pos) {
|
||||
Node* const node = &c->nodes_[pos];
|
||||
const Count_t total = TotalCount(node);
|
||||
node->probaS_ = CalcProba(node->countS_, total, MAX_PROBA, 0);
|
||||
if (!IsLeaf(c, pos)) {
|
||||
const Count_t total_count = node->count_;
|
||||
const Count_t left_count = TotalCount(&c->nodes_[2 * pos]);
|
||||
node->probaL_ =
|
||||
MAX_PROBA - CalcProba(left_count, total_count, MAX_PROBA, 0);
|
||||
}
|
||||
}
|
||||
|
||||
static void UpdateProbas(TCoder* const c, int pos) {
|
||||
for ( ; pos >= 1; pos >>= 1) {
|
||||
UpdateNodeProbas(c, pos);
|
||||
}
|
||||
c->probaN_ = CalcProba(c->num_symbols_, c->total_coded_, HALF_PROBA - 1, 0);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
static void UpdateTree(TCoder* const c, int pos, Count_t incr) {
|
||||
Node* node = &c->nodes_[pos];
|
||||
const int is_fresh_new_symbol = (node->countS_ == 0);
|
||||
assert(c);
|
||||
assert(pos >= 1 && pos <= c->num_nodes_);
|
||||
assert(node->symbol_ != INVALID_SYMBOL);
|
||||
if (!c->frozen_ || is_fresh_new_symbol) {
|
||||
const int starting_pos = pos; // save for later
|
||||
// Update the counters up the tree, possibly exchanging some nodes
|
||||
node->countS_ += incr;
|
||||
while (pos > 1) {
|
||||
Node* const parent = &c->nodes_[pos >> 1];
|
||||
parent->count_ += incr;
|
||||
if (parent->countS_ < node->countS_) {
|
||||
ExchangeSymbol(c, pos);
|
||||
}
|
||||
pos >>= 1;
|
||||
node = parent;
|
||||
}
|
||||
c->total_coded_ += incr;
|
||||
UpdateProbas(c, starting_pos); // Update the probas along the modified path
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Fixed-length symbol coding
|
||||
// Note: the symbol will be coded exactly once at most, so using a fixed length
|
||||
// code is better than Golomb-code (e.g.) on average.
|
||||
|
||||
// We use the exact bit-distribution probability considering the upper-bound
|
||||
// supplied:
|
||||
// Written in binary, a symbol 's' has a probability of having its k-th bit
|
||||
// set to 1 which is given by:
|
||||
// If the k-th bit of max_value is 0:
|
||||
// P0(k) = [(max_value >> (k + 1)) << k] / max_value
|
||||
// If the k-th bit of max_value is 1:
|
||||
// P1(k) = P0(k) + [max_value & ((1 << k) - 1)] / max_value
|
||||
|
||||
static WEBP_INLINE void CodeSymbol(VP8BitWriter* const bw, int s,
|
||||
int max_value) {
|
||||
int i, up = 1;
|
||||
assert(bw);
|
||||
for (i = 0; up < max_value; up <<= 1, ++i) {
|
||||
int den = (max_value >> 1) & ~(up - 1);
|
||||
if (max_value & up) den |= max_value & (up - 1);
|
||||
VP8PutBit(bw, (s >> i) & 1, MAX_PROBA - MAX_PROBA * den / max_value);
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE int DecodeSymbol(VP8BitReader* const br, int max_value) {
|
||||
int i, up = 1, v = 0;
|
||||
assert(br);
|
||||
for (i = 0; up < max_value; ++i) {
|
||||
int den = (max_value >> 1) & ~(up - 1);
|
||||
if (max_value & up) den |= max_value & (up - 1);
|
||||
v |= VP8GetBit(br, MAX_PROBA - MAX_PROBA * den / max_value) << i;
|
||||
up <<= 1;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Encoding
|
||||
|
||||
void TCoderEncode(TCoder* const c, int s, VP8BitWriter* const bw) {
|
||||
int pos;
|
||||
const int is_new_symbol = (c->symbols_[s] == INVALID_POS);
|
||||
assert(c);
|
||||
if (!c->fixed_symbols_ && c->num_symbols_ < c->num_nodes_) {
|
||||
if (c->num_symbols_ > 0) {
|
||||
if (bw != NULL) {
|
||||
VP8PutBit(bw, is_new_symbol, c->probaN_);
|
||||
}
|
||||
} else {
|
||||
assert(is_new_symbol);
|
||||
}
|
||||
} else {
|
||||
assert(!is_new_symbol);
|
||||
}
|
||||
if (is_new_symbol) {
|
||||
if (bw != NULL) {
|
||||
CodeSymbol(bw, s, c->num_nodes_);
|
||||
}
|
||||
pos = NewNode(c, s);
|
||||
} else {
|
||||
pos = SymbolToNode(c, s);
|
||||
if (bw != NULL) {
|
||||
const int length = CodeLength(pos);
|
||||
int parent = 1;
|
||||
int i;
|
||||
for (i = 0; !IsLeaf(c, parent); ++i) {
|
||||
const Node* const node = &c->nodes_[parent];
|
||||
const int symbol_proba = node->probaS_;
|
||||
const int is_stop = (i == length);
|
||||
if (VP8PutBit(bw, is_stop, symbol_proba)) {
|
||||
break;
|
||||
} else if (!HasOnlyRightChild(c, parent)) {
|
||||
const int left_proba = node->probaL_;
|
||||
const int is_right = (pos >> (length - 1 - i)) & 1; // extract bits #i
|
||||
VP8PutBit(bw, is_right, left_proba);
|
||||
parent = (parent << 1) | is_right;
|
||||
} else {
|
||||
parent <<= 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(parent == pos);
|
||||
}
|
||||
}
|
||||
UpdateTree(c, pos, 1);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Decoding
|
||||
|
||||
int TCoderDecode(TCoder* const c, VP8BitReader* const br) {
|
||||
int s;
|
||||
int pos;
|
||||
int is_new_symbol = 0;
|
||||
assert(c);
|
||||
assert(br);
|
||||
// Check if we need to transmit the new symbol's value
|
||||
if (!c->fixed_symbols_ && c->num_symbols_ < c->num_nodes_) {
|
||||
if (c->num_symbols_ > 0) {
|
||||
is_new_symbol = VP8GetBit(br, c->probaN_);
|
||||
} else {
|
||||
is_new_symbol = 1;
|
||||
}
|
||||
}
|
||||
// Code either the raw value, or the path downward to its node.
|
||||
if (is_new_symbol) {
|
||||
s = DecodeSymbol(br, c->num_nodes_);
|
||||
pos = NewNode(c, s);
|
||||
} else {
|
||||
pos = 1;
|
||||
while (!IsLeaf(c, pos)) {
|
||||
const Node* const node = &c->nodes_[pos];
|
||||
// Did we reach the stopping node?
|
||||
const int symbol_proba = node->probaS_;
|
||||
const int is_stop = VP8GetBit(br, symbol_proba);
|
||||
if (is_stop) {
|
||||
break; // reached the stopping node for the coded symbol.
|
||||
} else {
|
||||
// Not yet done, keep traversing and branching.
|
||||
if (!HasOnlyRightChild(c, pos)) {
|
||||
const int left_proba = node->probaL_;
|
||||
const int is_right = VP8GetBit(br, left_proba);
|
||||
pos = (pos << 1) | is_right;
|
||||
} else {
|
||||
pos <<= 1;
|
||||
break;
|
||||
}
|
||||
assert(pos <= c->num_nodes_);
|
||||
}
|
||||
}
|
||||
s = c->nodes_[pos].symbol_;
|
||||
assert(pos == SymbolToNode(c, s));
|
||||
}
|
||||
assert(pos <= c->num_nodes_);
|
||||
UpdateTree(c, pos, 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
double TCoderSymbolCost(const TCoder* const c, int symbol) {
|
||||
const int pos = c->symbols_[symbol];
|
||||
assert(c);
|
||||
assert(symbol >= 0 && symbol < c->num_nodes_);
|
||||
if (pos != INVALID_POS) {
|
||||
const Node* const node = &c->nodes_[pos];
|
||||
const Count_t count = node->countS_;
|
||||
assert(count > 0);
|
||||
assert(c->total_coded_ > 0);
|
||||
// Note: we use 1 + total_coded_ as denominator because we most probably
|
||||
// intend to code an extra symbol afterward.
|
||||
// TODO(skal): is log2() too slow ?
|
||||
return -log2(count / (1. + c->total_coded_));
|
||||
}
|
||||
return c->symbol_bit_cost_;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
84
src/utils/tcoder.h
Normal file
84
src/utils/tcoder.h
Normal file
@ -0,0 +1,84 @@
|
||||
// Copyright 2011 Google Inc.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Tree-coder using VP8's boolean coder
|
||||
//
|
||||
// Symbols are stored as nodes of a tree that records their frequencies and
|
||||
// is dynamically updated.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
//
|
||||
// Encoding example:
|
||||
/*
|
||||
static int Compress(const uint8_t* src, int src_length,
|
||||
uint8_t** output, size_t* output_size) {
|
||||
int i;
|
||||
TCoder* coder = TCoderNew(255);
|
||||
VP8BitWriter bw;
|
||||
|
||||
VP8BitWriterInit(&bw, 0);
|
||||
for (i = 0; i < src_length; ++i)
|
||||
TCoderEncode(coder, src[i], &bw);
|
||||
TCoderDelete(coder);
|
||||
VP8BitWriterFinish(&bw);
|
||||
|
||||
*output = VP8BitWriterBuf(&bw);
|
||||
*output_size = VP8BitWriterSize(&bw);
|
||||
return !bw.error_;
|
||||
}
|
||||
*/
|
||||
//
|
||||
// Decoding example:
|
||||
/*
|
||||
static int Decompress(const uint8_t* src, size_t src_size,
|
||||
uint8_t* dst, int dst_length) {
|
||||
int i;
|
||||
TCoder* coder = TCoderNew(255);
|
||||
VP8BitReader br;
|
||||
|
||||
VP8InitBitReader(&br, src, src + src_size);
|
||||
for (i = 0; i < dst_length; ++i)
|
||||
dst[i] = TCoderDecode(coder, &br);
|
||||
TCoderDelete(coder);
|
||||
return !br.eof_;
|
||||
}
|
||||
*/
|
||||
|
||||
#ifndef WEBP_UTILS_TCODER_H_
|
||||
#define WEBP_UTILS_TCODER_H_
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct VP8BitReader;
|
||||
struct VP8BitWriter;
|
||||
typedef struct TCoder TCoder;
|
||||
|
||||
// Creates a tree-coder capable of coding symbols in
|
||||
// the [0, max_symbol] range. Returns NULL in case of memory error.
|
||||
TCoder* TCoderNew(int max_symbol);
|
||||
// Re-initialize an existing object, make it ready for a new encoding or
|
||||
// decoding cycle.
|
||||
void TCoderInit(TCoder* const c);
|
||||
// destroys the tree-ocder object and frees memory.
|
||||
void TCoderDelete(TCoder* const c);
|
||||
|
||||
// Code next symbol 's'. If the bit-writer 'bw' is NULL, the function will
|
||||
// just record the symbol, and update the internal frequency counters.
|
||||
void TCoderEncode(TCoder* const c, int s, struct VP8BitWriter* const bw);
|
||||
// Decode and return next symbol.
|
||||
int TCoderDecode(TCoder* const c, struct VP8BitReader* const br);
|
||||
|
||||
// Theoretical number of bits needed to code 'symbol' in the current state.
|
||||
double TCoderSymbolCost(const TCoder* const c, int symbol);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_UTILS_TCODER_H_
|
71
src/utils/tcoderi.h
Normal file
71
src/utils/tcoderi.h
Normal file
@ -0,0 +1,71 @@
|
||||
// Copyright 2011 Google Inc.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Internal header for tree-coder
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
//
|
||||
|
||||
#ifndef WEBP_UTILS_TCODERI_H_
|
||||
#define WEBP_UTILS_TCODERI_H_
|
||||
|
||||
#include "./tcoder.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "../utils/bit_reader.h"
|
||||
#include "../utils/bit_writer.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef int Symbol_t;
|
||||
typedef uint32_t Count_t; // TODO(skal): check overflow during coding.
|
||||
|
||||
#define INVALID_SYMBOL ((Symbol_t)(-1))
|
||||
#define INVALID_POS 0
|
||||
|
||||
#define MAX_PROBA 255
|
||||
#define HALF_PROBA 128
|
||||
|
||||
typedef struct { // ternary node.
|
||||
Symbol_t symbol_;
|
||||
// Note: theoretically, one of this three field is redundant and could be
|
||||
// omitted, but it'd make the code quite complicated (having to look-up the
|
||||
// parent's total count in order to deduce the missing field). Better not.
|
||||
Count_t countS_; // count for symbol
|
||||
Count_t count_; // count for non-symbol (derived from sub-tree)
|
||||
int probaL_; // cached left proba = TotalCount(left) / count_
|
||||
int probaS_; // cached approximate proba = countS_ / TotalCount
|
||||
} Node;
|
||||
|
||||
struct TCoder {
|
||||
// dynamic fields:
|
||||
int num_symbols_; // number of symbols actually used
|
||||
Count_t total_coded_; // total number of coded symbols
|
||||
int frozen_; // if true, frequencies are not updated
|
||||
int fixed_symbols_; // if true, symbols are not updated
|
||||
int probaN_; // cached new-symbol probability
|
||||
|
||||
// constants:
|
||||
int num_nodes_; // max number of symbols or nodes. Constant, > 0.
|
||||
double symbol_bit_cost_; // latest evaluation of the bit-cost per new symbol
|
||||
|
||||
Node* nodes_; // nodes (1-based indexed)
|
||||
int* symbols_; // for each symbol, location of its node
|
||||
};
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_UTILS_TCODERI_H_
|
Loading…
Reference in New Issue
Block a user