more consolidation: introduce VP8LHistogramSet
VP8LHistogramSet is container for pointers to histograms that we can shuffle around. Allocation is one big chunk of memory. Downside is that we don't de-allocate memory on-the-go during HistogramRefine(). + renamed HistogramRefine() into HistogramRemap(), so we don't confuse with "HistogramCombine" + made VP8LHistogramClear() static. Change-Id: Idf1a748a871c3b942cca5c8050072ccd82c7511d
This commit is contained in:
parent
1a210ef1a9
commit
d0d88990d8
@ -17,20 +17,7 @@
|
||||
#include "./histogram.h"
|
||||
#include "../dsp/lossless.h"
|
||||
|
||||
void VP8LHistogramCreate(VP8LHistogram* const p,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int palette_code_bits) {
|
||||
int i;
|
||||
if (palette_code_bits >= 0) {
|
||||
p->palette_code_bits_ = palette_code_bits;
|
||||
}
|
||||
VP8LHistogramClear(p);
|
||||
for (i = 0; i < refs->size; ++i) {
|
||||
VP8LHistogramAddSinglePixOrCopy(p, &refs->refs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LHistogramClear(VP8LHistogram* const p) {
|
||||
static void HistogramClear(VP8LHistogram* const p) {
|
||||
memset(p->literal_, 0, sizeof(p->literal_));
|
||||
memset(p->red_, 0, sizeof(p->red_));
|
||||
memset(p->blue_, 0, sizeof(p->blue_));
|
||||
@ -39,38 +26,52 @@ void VP8LHistogramClear(VP8LHistogram* const p) {
|
||||
p->bit_cost_ = 0;
|
||||
}
|
||||
|
||||
void VP8LHistogramCreate(VP8LHistogram* const p,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int palette_code_bits) {
|
||||
int i;
|
||||
if (palette_code_bits >= 0) {
|
||||
p->palette_code_bits_ = palette_code_bits;
|
||||
}
|
||||
HistogramClear(p);
|
||||
for (i = 0; i < refs->size; ++i) {
|
||||
VP8LHistogramAddSinglePixOrCopy(p, &refs->refs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
|
||||
p->palette_code_bits_ = palette_code_bits;
|
||||
VP8LHistogramClear(p);
|
||||
HistogramClear(p);
|
||||
}
|
||||
|
||||
VP8LHistogram** VP8LAllocateHistograms(int size, int cache_bits) {
|
||||
VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
|
||||
int i;
|
||||
VP8LHistogram** const histos =
|
||||
(VP8LHistogram**)calloc(size, sizeof(*histos));
|
||||
if (histos == NULL) return NULL;
|
||||
VP8LHistogramSet* set;
|
||||
VP8LHistogram* bulk;
|
||||
const size_t total_size = sizeof(*set)
|
||||
+ size * sizeof(*set->histograms)
|
||||
+ size * sizeof(**set->histograms);
|
||||
uint8_t* memory = (uint8_t*)malloc(total_size);
|
||||
if (memory == NULL) return NULL;
|
||||
|
||||
set = (VP8LHistogramSet*)memory;
|
||||
memory += sizeof(*set);
|
||||
set->histograms = (VP8LHistogram**)memory;
|
||||
memory += size * sizeof(*set->histograms);
|
||||
bulk = (VP8LHistogram*)memory;
|
||||
set->max_size = size;
|
||||
set->size = size;
|
||||
for (i = 0; i < size; ++i) {
|
||||
histos[i] = (VP8LHistogram*)malloc(sizeof(**histos));
|
||||
if (histos[i] == NULL) {
|
||||
VP8LDeleteHistograms(histos, i);
|
||||
return NULL;
|
||||
set->histograms[i] = bulk + i;
|
||||
VP8LHistogramInit(set->histograms[i], cache_bits);
|
||||
}
|
||||
VP8LHistogramInit(histos[i], cache_bits);
|
||||
}
|
||||
return histos;
|
||||
return set;
|
||||
}
|
||||
|
||||
void VP8LDeleteHistograms(VP8LHistogram** const histograms, int size) {
|
||||
if (histograms != NULL) {
|
||||
int i;
|
||||
for (i = 0; i < size; ++i) free(histograms[i]);
|
||||
free(histograms);
|
||||
}
|
||||
}
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
void VP8LConvertPopulationCountTableToBitEstimates(
|
||||
int num_symbols,
|
||||
const int* const population_counts,
|
||||
int num_symbols, const int* const population_counts,
|
||||
double* const output) {
|
||||
int sum = 0;
|
||||
int nonzeros = 0;
|
||||
@ -241,7 +242,7 @@ double VP8LHistogramEstimateBitsHeader(const VP8LHistogram* const p) {
|
||||
|
||||
static void HistogramBuildImage(int xsize, int histo_bits,
|
||||
const VP8LBackwardRefs* const backward_refs,
|
||||
VP8LHistogram** const image) {
|
||||
VP8LHistogramSet* const image) {
|
||||
int i;
|
||||
int x = 0, y = 0;
|
||||
const int histo_xsize =
|
||||
@ -251,7 +252,7 @@ static void HistogramBuildImage(int xsize, int histo_bits,
|
||||
const int ix =
|
||||
(histo_bits > 0) ? (y >> histo_bits) * histo_xsize + (x >> histo_bits)
|
||||
: 0;
|
||||
VP8LHistogramAddSinglePixOrCopy(image[ix], v);
|
||||
VP8LHistogramAddSinglePixOrCopy(image->histograms[ix], v);
|
||||
x += PixOrCopyLength(v);
|
||||
while (x >= xsize) {
|
||||
x -= xsize;
|
||||
@ -260,27 +261,25 @@ static void HistogramBuildImage(int xsize, int histo_bits,
|
||||
}
|
||||
}
|
||||
|
||||
static int HistogramCombine(VP8LHistogram* const * const in, int in_size,
|
||||
int num_pairs, VP8LHistogram** const out,
|
||||
int* const final_out_size) {
|
||||
static int HistogramCombine(const VP8LHistogramSet* const in,
|
||||
VP8LHistogramSet* const out, int num_pairs) {
|
||||
int ok = 0;
|
||||
int i, iter;
|
||||
unsigned int seed = 0;
|
||||
int tries_with_no_success = 0;
|
||||
const int min_cluster_size = 2;
|
||||
int out_size = in_size;
|
||||
const int outer_iters = in_size * 3;
|
||||
int out_size = in->size;
|
||||
const int outer_iters = in->size * 3;
|
||||
VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
|
||||
VP8LHistogram* cur_combo = histos + 0; // trial merged histogram
|
||||
VP8LHistogram* best_combo = histos + 1; // best merged histogram so far
|
||||
if (histos == NULL) goto End;
|
||||
|
||||
// Copy histograms from in[] to out[].
|
||||
for (i = 0; i < in_size; ++i) {
|
||||
out[i] = (VP8LHistogram*)malloc(sizeof(*(out[i])));
|
||||
if (out[i] == NULL) goto End;
|
||||
*(out[i]) = *(in[i]);
|
||||
out[i]->bit_cost_ = in[i]->bit_cost_ = VP8LHistogramEstimateBits(out[i]);
|
||||
assert(in->size <= out->size);
|
||||
for (i = 0; i < in->size; ++i) {
|
||||
in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
|
||||
*out->histograms[i] = *in->histograms[i];
|
||||
}
|
||||
|
||||
// Collapse similar histograms in 'out'.
|
||||
@ -299,12 +298,13 @@ static int HistogramCombine(VP8LHistogram* const * const in, int in_size,
|
||||
if (idx1 == idx2) {
|
||||
continue;
|
||||
}
|
||||
*cur_combo = *out[idx1];
|
||||
VP8LHistogramAdd(cur_combo, out[idx2]);
|
||||
*cur_combo = *out->histograms[idx1];
|
||||
VP8LHistogramAdd(cur_combo, out->histograms[idx2]);
|
||||
cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo);
|
||||
// Calculate cost reduction on combining.
|
||||
curr_cost_diff = cur_combo->bit_cost_
|
||||
- out[idx1]->bit_cost_ - out[idx2]->bit_cost_;
|
||||
- out->histograms[idx1]->bit_cost_
|
||||
- out->histograms[idx2]->bit_cost_;
|
||||
if (best_cost_diff > curr_cost_diff) { // found a better pair?
|
||||
{ // swap cur/best combo histograms
|
||||
VP8LHistogram* const tmp = cur_combo;
|
||||
@ -318,13 +318,12 @@ static int HistogramCombine(VP8LHistogram* const * const in, int in_size,
|
||||
}
|
||||
|
||||
if (best_cost_diff < 0.0) {
|
||||
*out[best_idx1] = *best_combo;
|
||||
*out->histograms[best_idx1] = *best_combo;
|
||||
// swap best_idx2 slot with last one (which is now unused)
|
||||
free(out[best_idx2]);
|
||||
--out_size;
|
||||
if (best_idx2 != out_size) {
|
||||
out[best_idx2] = out[out_size];
|
||||
out[out_size] = NULL; // just for sanity check.
|
||||
out->histograms[best_idx2] = out->histograms[out_size];
|
||||
out->histograms[out_size] = NULL; // just for sanity check.
|
||||
}
|
||||
tries_with_no_success = 0;
|
||||
}
|
||||
@ -332,7 +331,7 @@ static int HistogramCombine(VP8LHistogram* const * const in, int in_size,
|
||||
break;
|
||||
}
|
||||
}
|
||||
*final_out_size = out_size;
|
||||
out->size = out_size;
|
||||
ok = 1;
|
||||
|
||||
End:
|
||||
@ -359,18 +358,19 @@ static double HistogramDistance(const VP8LHistogram* const square_histogram,
|
||||
return new_bit_cost - previous_bit_cost;
|
||||
}
|
||||
|
||||
// Find the best 'out' histogram for each of the raw histograms.
|
||||
// Find the best 'out' histogram for each of the 'in' histograms.
|
||||
// Note: we assume that out[]->bit_cost_ is already up-to-date.
|
||||
static void HistogramRefine(VP8LHistogram* const * const raw, int raw_size,
|
||||
uint16_t* const symbols,
|
||||
VP8LHistogram** const out, int out_size) {
|
||||
static void HistogramRemap(const VP8LHistogramSet* const in,
|
||||
const VP8LHistogramSet* const out,
|
||||
uint16_t* const symbols) {
|
||||
int i;
|
||||
for (i = 0; i < raw_size; ++i) {
|
||||
for (i = 0; i < in->size; ++i) {
|
||||
int best_out = 0;
|
||||
double best_bits = HistogramDistance(raw[i], out[0]);
|
||||
double best_bits = HistogramDistance(in->histograms[i], out->histograms[0]);
|
||||
int k;
|
||||
for (k = 1; k < out_size; ++k) {
|
||||
const double cur_bits = HistogramDistance(raw[i], out[k]);
|
||||
for (k = 1; k < out->size; ++k) {
|
||||
const double cur_bits =
|
||||
HistogramDistance(in->histograms[i], out->histograms[k]);
|
||||
if (cur_bits < best_bits) {
|
||||
best_bits = cur_bits;
|
||||
best_out = k;
|
||||
@ -380,47 +380,40 @@ static void HistogramRefine(VP8LHistogram* const * const raw, int raw_size,
|
||||
}
|
||||
|
||||
// Recompute each out based on raw and symbols.
|
||||
for (i = 0; i < out_size; ++i) {
|
||||
VP8LHistogramClear(out[i]);
|
||||
for (i = 0; i < out->size; ++i) {
|
||||
HistogramClear(out->histograms[i]);
|
||||
}
|
||||
for (i = 0; i < raw_size; ++i) {
|
||||
VP8LHistogramAdd(out[symbols[i]], raw[i]);
|
||||
for (i = 0; i < in->size; ++i) {
|
||||
VP8LHistogramAdd(out->histograms[symbols[i]], in->histograms[i]);
|
||||
}
|
||||
}
|
||||
|
||||
int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int quality, int histo_bits, int cache_bits,
|
||||
VP8LHistogram** const histogram_image,
|
||||
int* const histo_image_raw_size_ptr,
|
||||
VP8LHistogramSet* const image_in,
|
||||
uint16_t* const histogram_symbols) {
|
||||
int ok = 0;
|
||||
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
|
||||
const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
|
||||
const int num_histo_pairs = 10 + quality / 2; // For HistogramCombine().
|
||||
const int histo_image_raw_size = histo_xsize * histo_ysize;
|
||||
VP8LHistogram** const histo_image_raw =
|
||||
VP8LAllocateHistograms(histo_image_raw_size, cache_bits);
|
||||
if (histo_image_raw == NULL) return 0;
|
||||
*histo_image_raw_size_ptr = histo_image_raw_size; // initial guess.
|
||||
VP8LHistogramSet* const image_out =
|
||||
VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
|
||||
if (image_out == NULL) return 0;
|
||||
|
||||
// Build histogram image.
|
||||
HistogramBuildImage(xsize, histo_bits, refs, histo_image_raw);
|
||||
HistogramBuildImage(xsize, histo_bits, refs, image_out);
|
||||
// Collapse similar histograms.
|
||||
if (!HistogramCombine(histo_image_raw, histo_image_raw_size, num_histo_pairs,
|
||||
histogram_image, histo_image_raw_size_ptr)) {
|
||||
if (!HistogramCombine(image_out, image_in, num_histo_pairs)) {
|
||||
goto Error;
|
||||
}
|
||||
// Refine histogram image.
|
||||
HistogramRefine(histo_image_raw, histo_image_raw_size, histogram_symbols,
|
||||
histogram_image, *histo_image_raw_size_ptr);
|
||||
// Find the optimal map from original histograms to the final ones.
|
||||
HistogramRemap(image_out, image_in, histogram_symbols);
|
||||
ok = 1;
|
||||
|
||||
Error:
|
||||
if (!ok) {
|
||||
VP8LDeleteHistograms(histogram_image, *histo_image_raw_size_ptr);
|
||||
}
|
||||
VP8LDeleteHistograms(histo_image_raw, histo_image_raw_size);
|
||||
free(image_out);
|
||||
return ok;
|
||||
}
|
||||
|
||||
|
@ -41,6 +41,14 @@ typedef struct {
|
||||
double bit_cost_; // cached value of VP8LHistogramEstimateBits(this)
|
||||
} VP8LHistogram;
|
||||
|
||||
// Collection of histograms with fixed capacity, allocated as one
|
||||
// big memory chunk. Can be destroyed by simply calling 'free()'.
|
||||
typedef struct {
|
||||
int size; // number of slots currently in use
|
||||
int max_size; // maximum capacity
|
||||
VP8LHistogram** histograms;
|
||||
} VP8LHistogramSet;
|
||||
|
||||
// Create the histogram.
|
||||
//
|
||||
// The input data is the PixOrCopy data, which models the literals, stop
|
||||
@ -50,18 +58,12 @@ void VP8LHistogramCreate(VP8LHistogram* const p,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int palette_code_bits);
|
||||
|
||||
// Reset the histogram's stats.
|
||||
void VP8LHistogramClear(VP8LHistogram* const p);
|
||||
|
||||
// Set the palette_code_bits and reset the stats.
|
||||
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits);
|
||||
|
||||
// Allocate an array of pointer to histograms, allocated and initialized
|
||||
// using 'cache_bits'. Return NULL in case of memory error.
|
||||
VP8LHistogram** VP8LAllocateHistograms(int size, int cache_bits);
|
||||
|
||||
// Destroy an array of histograms (and the array itself).
|
||||
void VP8LDeleteHistograms(VP8LHistogram** const histograms, int size);
|
||||
VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits);
|
||||
|
||||
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const p,
|
||||
const PixOrCopy* const v);
|
||||
@ -125,10 +127,8 @@ void VP8LConvertPopulationCountTableToBitEstimates(
|
||||
// Builds the histogram image.
|
||||
int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int quality, int histogram_bits,
|
||||
int cache_bits,
|
||||
VP8LHistogram** const histogram_image,
|
||||
int* const histogram_image_size,
|
||||
int quality, int histogram_bits, int cache_bits,
|
||||
VP8LHistogramSet* const image_in,
|
||||
uint16_t* const histogram_symbols);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
|
@ -103,7 +103,8 @@ static int AnalyzeAndCreatePalette(const uint32_t* const argb, int num_pix,
|
||||
}
|
||||
|
||||
static int AnalyzeEntropy(const uint32_t const *argb, int xsize, int ysize,
|
||||
int* nonpredicted_bits, int* predicted_bits) {
|
||||
double* const nonpredicted_bits,
|
||||
double* const predicted_bits) {
|
||||
int i;
|
||||
VP8LHistogram* nonpredicted = NULL;
|
||||
VP8LHistogram* predicted = (VP8LHistogram*)malloc(2 * sizeof(*predicted));
|
||||
@ -126,8 +127,8 @@ static int AnalyzeEntropy(const uint32_t const *argb, int xsize, int ysize,
|
||||
VP8LHistogramAddSinglePixOrCopy(predicted, &pix_diff_token);
|
||||
}
|
||||
}
|
||||
*nonpredicted_bits = (int)VP8LHistogramEstimateBitsBulk(nonpredicted);
|
||||
*predicted_bits = (int)VP8LHistogramEstimateBitsBulk(predicted);
|
||||
*nonpredicted_bits = VP8LHistogramEstimateBitsBulk(nonpredicted);
|
||||
*predicted_bits = VP8LHistogramEstimateBitsBulk(predicted);
|
||||
free(predicted);
|
||||
return 1;
|
||||
}
|
||||
@ -140,13 +141,13 @@ static int VP8LEncAnalyze(VP8LEncoder* const enc) {
|
||||
AnalyzeAndCreatePalette(pic->argb, pic->width * pic->height,
|
||||
enc->palette_, &enc->palette_size_);
|
||||
if (!enc->use_palette_) {
|
||||
int non_pred_entropy, pred_entropy;
|
||||
double non_pred_entropy, pred_entropy;
|
||||
if (!AnalyzeEntropy(pic->argb, pic->width, pic->height,
|
||||
&non_pred_entropy, &pred_entropy)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (20 * pred_entropy < 19 * non_pred_entropy) {
|
||||
if (pred_entropy < 0.95 * non_pred_entropy) {
|
||||
enc->use_predict_ = 1;
|
||||
enc->use_cross_color_ = 1;
|
||||
}
|
||||
@ -157,7 +158,7 @@ static int VP8LEncAnalyze(VP8LEncoder* const enc) {
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
static int GetBackwardReferences(int width, int height,
|
||||
const uint32_t* argb,
|
||||
const uint32_t* const argb,
|
||||
int quality, int use_color_cache,
|
||||
int cache_bits, int use_2d_locality,
|
||||
VP8LBackwardRefs* const best) {
|
||||
@ -345,13 +346,15 @@ static int OptimizeHuffmanForRle(int length, int* counts) {
|
||||
|
||||
// TODO(vikasa): Wrap bit_codes and bit_lengths in a Struct.
|
||||
static int GetHuffBitLengthsAndCodes(
|
||||
int histogram_image_size, VP8LHistogram** histogram_image,
|
||||
const VP8LHistogramSet* const histogram_image,
|
||||
int use_color_cache, int** bit_length_sizes,
|
||||
uint16_t*** bit_codes, uint8_t*** bit_lengths) {
|
||||
int i, k;
|
||||
int ok = 1;
|
||||
const int histogram_image_size = histogram_image->size;
|
||||
for (i = 0; i < histogram_image_size; ++i) {
|
||||
const int num_literals = VP8LHistogramNumCodes(histogram_image[i]);
|
||||
VP8LHistogram* const histo = histogram_image->histograms[i];
|
||||
const int num_literals = VP8LHistogramNumCodes(histo);
|
||||
k = 0;
|
||||
// TODO(vikasa): Alloc one big buffer instead of allocating in the loop.
|
||||
(*bit_length_sizes)[5 * i] = num_literals;
|
||||
@ -364,23 +367,21 @@ static int GetHuffBitLengthsAndCodes(
|
||||
}
|
||||
|
||||
// For each component, optimize histogram for Huffman with RLE compression.
|
||||
ok = ok && OptimizeHuffmanForRle(num_literals,
|
||||
histogram_image[i]->literal_);
|
||||
ok = ok && OptimizeHuffmanForRle(num_literals, histo->literal_);
|
||||
if (!use_color_cache) {
|
||||
// Implies that palette_bits == 0,
|
||||
// and so number of palette entries = (1 << 0) = 1.
|
||||
// Optimization might have smeared population count in this single
|
||||
// palette entry, so zero it out.
|
||||
histogram_image[i]->literal_[256 + kLengthCodes] = 0;
|
||||
histo->literal_[256 + kLengthCodes] = 0;
|
||||
}
|
||||
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->red_);
|
||||
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->blue_);
|
||||
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->alpha_);
|
||||
ok = ok && OptimizeHuffmanForRle(DISTANCE_CODES_MAX,
|
||||
histogram_image[i]->distance_);
|
||||
ok = ok && OptimizeHuffmanForRle(256, histo->red_);
|
||||
ok = ok && OptimizeHuffmanForRle(256, histo->blue_);
|
||||
ok = ok && OptimizeHuffmanForRle(256, histo->alpha_);
|
||||
ok = ok && OptimizeHuffmanForRle(DISTANCE_CODES_MAX, histo->distance_);
|
||||
|
||||
// Create a Huffman tree (in the form of bit lengths) for each component.
|
||||
ok = ok && VP8LCreateHuffmanTree(histogram_image[i]->literal_, num_literals,
|
||||
ok = ok && VP8LCreateHuffmanTree(histo->literal_, num_literals,
|
||||
15, (*bit_lengths)[5 * i]);
|
||||
for (k = 1; k < 5; ++k) {
|
||||
int val = 256;
|
||||
@ -396,14 +397,14 @@ static int GetHuffBitLengthsAndCodes(
|
||||
goto Error;
|
||||
}
|
||||
}
|
||||
ok = ok && VP8LCreateHuffmanTree(histogram_image[i]->red_, 256, 15,
|
||||
ok = ok &&
|
||||
VP8LCreateHuffmanTree(histo->red_, 256, 15,
|
||||
(*bit_lengths)[5 * i + 1]) &&
|
||||
VP8LCreateHuffmanTree(histogram_image[i]->blue_, 256, 15,
|
||||
VP8LCreateHuffmanTree(histo->blue_, 256, 15,
|
||||
(*bit_lengths)[5 * i + 2]) &&
|
||||
VP8LCreateHuffmanTree(histogram_image[i]->alpha_, 256, 15,
|
||||
VP8LCreateHuffmanTree(histo->alpha_, 256, 15,
|
||||
(*bit_lengths)[5 * i + 3]) &&
|
||||
VP8LCreateHuffmanTree(histogram_image[i]->distance_,
|
||||
DISTANCE_CODES_MAX, 15,
|
||||
VP8LCreateHuffmanTree(histo->distance_, DISTANCE_CODES_MAX, 15,
|
||||
(*bit_lengths)[5 * i + 4]);
|
||||
// Create the actual bit codes for the bit lengths.
|
||||
for (k = 0; k < 5; ++k) {
|
||||
@ -657,10 +658,11 @@ static int EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
const int use_2d_locality = 1;
|
||||
const int use_color_cache = (cache_bits > 0);
|
||||
const int color_cache_size = use_color_cache ? (1 << cache_bits) : 0;
|
||||
const int histogram_image_xysize = VP8LSubSampleSize(width, histogram_bits) *
|
||||
const int histogram_image_xysize =
|
||||
VP8LSubSampleSize(width, histogram_bits) *
|
||||
VP8LSubSampleSize(height, histogram_bits);
|
||||
VP8LHistogram** histogram_image =
|
||||
(VP8LHistogram**)calloc(histogram_image_xysize, sizeof(*histogram_image));
|
||||
VP8LHistogramSet* histogram_image =
|
||||
VP8LAllocateHistogramSet(histogram_image_xysize, 0);
|
||||
int histogram_image_size;
|
||||
VP8LBackwardRefs refs;
|
||||
uint16_t* const histogram_symbols =
|
||||
@ -677,11 +679,12 @@ static int EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
// Build histogram image & symbols from backward references.
|
||||
if (!VP8LGetHistoImageSymbols(width, height, &refs,
|
||||
quality, histogram_bits, cache_bits,
|
||||
histogram_image, &histogram_image_size,
|
||||
histogram_image,
|
||||
histogram_symbols)) {
|
||||
goto Error;
|
||||
}
|
||||
// Create Huffman bit lengths & codes for each histogram image.
|
||||
histogram_image_size = histogram_image->size;
|
||||
bit_lengths_sizes = (int*)calloc(5 * histogram_image_size,
|
||||
sizeof(*bit_lengths_sizes));
|
||||
bit_lengths = (uint8_t**)calloc(5 * histogram_image_size,
|
||||
@ -689,8 +692,8 @@ static int EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
bit_codes = (uint16_t**)calloc(5 * histogram_image_size,
|
||||
sizeof(*bit_codes));
|
||||
if (bit_lengths_sizes == NULL || bit_lengths == NULL || bit_codes == NULL ||
|
||||
!GetHuffBitLengthsAndCodes(histogram_image_size, histogram_image,
|
||||
use_color_cache, &bit_lengths_sizes,
|
||||
!GetHuffBitLengthsAndCodes(histogram_image, use_color_cache,
|
||||
&bit_lengths_sizes,
|
||||
&bit_codes, &bit_lengths)) {
|
||||
goto Error;
|
||||
}
|
||||
@ -742,7 +745,7 @@ static int EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
}
|
||||
|
||||
// Free combined histograms.
|
||||
VP8LDeleteHistograms(histogram_image, histogram_image_size);
|
||||
free(histogram_image);
|
||||
histogram_image = NULL;
|
||||
|
||||
// Emit no bits if there is only one symbol in the histogram.
|
||||
@ -757,9 +760,8 @@ static int EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
ok = 1;
|
||||
|
||||
Error:
|
||||
if (!ok) {
|
||||
VP8LDeleteHistograms(histogram_image, histogram_image_size);
|
||||
}
|
||||
if (!ok) free(histogram_image);
|
||||
|
||||
VP8LClearBackwardRefs(&refs);
|
||||
for (i = 0; i < 5 * histogram_image_size; ++i) {
|
||||
free(bit_lengths[i]);
|
||||
|
Loading…
Reference in New Issue
Block a user