LZ77 interval speedups. Faster, smaller, simpler.

The initial re-writing of this part of the code with intervals
had to be done with a complex logic (mostly intervals with a
lower and upper bound, not a constant value like now) to properly
deal with the inefficiencies of the then LZ77 algorithm.
The improvements made to LZ77 since, now allow for a simpler logic.

There were also small errors in the interval insertion logic
that lead to small inefficiencies (hence a slightly better
compression rate).

Change-Id: If079a0cafaae7be8e3f253485d9015a7177cf973
This commit is contained in:
Vincent Rabaud 2017-02-02 10:49:32 +01:00
parent 1e7ad88b85
commit 5cfd4ebc5e

View File

@ -566,11 +566,6 @@ typedef struct {
double* literal_; double* literal_;
} CostModel; } CostModel;
static int BackwardReferencesTraceBackwards(
int xsize, int ysize, const uint32_t* const argb, int quality,
int cache_bits, const VP8LHashChain* const hash_chain,
VP8LBackwardRefs* const refs);
static void ConvertPopulationCountTableToBitEstimates( static void ConvertPopulationCountTableToBitEstimates(
int num_symbols, const uint32_t population_counts[], double output[]) { int num_symbols, const uint32_t population_counts[], double output[]) {
uint32_t sum = 0; uint32_t sum = 0;
@ -644,12 +639,10 @@ static WEBP_INLINE double GetDistanceCost(const CostModel* const m,
return m->distance_[code] + extra_bits; return m->distance_[code] + extra_bits;
} }
static void AddSingleLiteralWithCostModel(const uint32_t* const argb, static WEBP_INLINE void AddSingleLiteralWithCostModel(
VP8LColorCache* const hashers, const uint32_t* const argb, VP8LColorCache* const hashers,
const CostModel* const cost_model, const CostModel* const cost_model, int idx, int use_color_cache,
int idx, int use_color_cache, float prev_cost, float* const cost, uint16_t* const dist_array) {
double prev_cost, float* const cost,
uint16_t* const dist_array) {
double cost_val = prev_cost; double cost_val = prev_cost;
const uint32_t color = argb[0]; const uint32_t color = argb[0];
const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1; const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1;
@ -672,45 +665,37 @@ static void AddSingleLiteralWithCostModel(const uint32_t* const argb,
// CostManager and interval handling // CostManager and interval handling
// Empirical value to avoid high memory consumption but good for performance. // Empirical value to avoid high memory consumption but good for performance.
#define COST_CACHE_INTERVAL_SIZE_MAX 100 #define COST_CACHE_INTERVAL_SIZE_MAX 500
// To perform backward reference every pixel at index index_ is considered and // To perform backward reference every pixel at index index_ is considered and
// the cost for the MAX_LENGTH following pixels computed. Those following pixels // the cost for the MAX_LENGTH following pixels computed. Those following pixels
// at index index_ + k (k from 0 to MAX_LENGTH) have a cost of: // at index index_ + k (k from 0 to MAX_LENGTH) have a cost of:
// distance_cost_ at index_ + GetLengthCost(cost_model, k) // cost_ = distance cost at index + GetLengthCost(cost_model, k)
// (named cost) (named cached cost)
// and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an // and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an
// array of size MAX_LENGTH. // array of size MAX_LENGTH.
// Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the // Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the
// minimal values using intervals, for which lower_ and upper_ bounds are kept. // minimal values using intervals of constant cost.
// An interval is defined by the index_ of the pixel that generated it and // An interval is defined by the index_ of the pixel that generated it and
// is only useful in a range of indices from start_ to end_ (exclusive), i.e. // is only useful in a range of indices from start_ to end_ (exclusive), i.e.
// it contains the minimum value for pixels between start_ and end_. // it contains the minimum value for pixels between start_ and end_.
// Intervals are stored in a linked list and ordered by start_. When a new // Intervals are stored in a linked list and ordered by start_. When a new
// interval has a better minimum, old intervals are split or removed. // interval has a better value, old intervals are split or removed. There are
// therefore no overlapping intervals.
typedef struct CostInterval CostInterval; typedef struct CostInterval CostInterval;
struct CostInterval { struct CostInterval {
double lower_; float cost_;
double upper_;
int start_; int start_;
int end_; int end_;
double distance_cost_;
int index_; int index_;
CostInterval* previous_; CostInterval* previous_;
CostInterval* next_; CostInterval* next_;
}; };
// The GetLengthCost(cost_model, k) part of the costs is also bounded for // The GetLengthCost(cost_model, k) are cached in a CostCacheInterval.
// efficiency in a set of intervals of a different type.
// If those intervals are small enough, they are not used for comparison and
// written into the costs right away.
typedef struct { typedef struct {
double lower_; // Lower bound of the interval. double cost_;
double upper_; // Upper bound of the interval.
int start_; int start_;
int end_; // Exclusive. int end_; // Exclusive.
int do_write_; // If !=0, the interval is saved to cost instead of being kept
// for comparison.
} CostCacheInterval; } CostCacheInterval;
// This structure is in charge of managing intervals and costs. // This structure is in charge of managing intervals and costs.
@ -724,8 +709,6 @@ typedef struct {
CostCacheInterval* cache_intervals_; CostCacheInterval* cache_intervals_;
size_t cache_intervals_size_; size_t cache_intervals_size_;
double cost_cache_[MAX_LENGTH]; // Contains the GetLengthCost(cost_model, k). double cost_cache_[MAX_LENGTH]; // Contains the GetLengthCost(cost_model, k).
double min_cost_cache_; // The minimum value in cost_cache_[1:].
double max_cost_cache_; // The maximum value in cost_cache_[1:].
float* costs_; float* costs_;
uint16_t* dist_array_; uint16_t* dist_array_;
// Most of the time, we only need few intervals -> use a free-list, to avoid // Most of the time, we only need few intervals -> use a free-list, to avoid
@ -735,22 +718,8 @@ typedef struct {
// These are regularly malloc'd remains. This list can't grow larger than than // These are regularly malloc'd remains. This list can't grow larger than than
// size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note. // size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note.
CostInterval* recycled_intervals_; CostInterval* recycled_intervals_;
// Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends
// of the intervals that can have impacted the cost at a pixel.
int* interval_ends_;
int interval_ends_size_;
} CostManager; } CostManager;
static int IsCostCacheIntervalWritable(int start, int end) {
// 100 is the length for which we consider an interval for comparison, and not
// for writing.
// The first intervals are very small and go in increasing size. This constant
// helps merging them into one big interval (up to index 150/200 usually from
// which intervals start getting much bigger).
// This value is empirical.
return (end - start + 1 < 100);
}
static void CostIntervalAddToFreeList(CostManager* const manager, static void CostIntervalAddToFreeList(CostManager* const manager,
CostInterval* const interval) { CostInterval* const interval) {
interval->next_ = manager->free_intervals_; interval->next_ = manager->free_intervals_;
@ -787,7 +756,6 @@ static void CostManagerClear(CostManager* const manager) {
WebPSafeFree(manager->costs_); WebPSafeFree(manager->costs_);
WebPSafeFree(manager->cache_intervals_); WebPSafeFree(manager->cache_intervals_);
WebPSafeFree(manager->interval_ends_);
// Clear the interval lists. // Clear the interval lists.
DeleteIntervalList(manager, manager->head_); DeleteIntervalList(manager, manager->head_);
@ -805,13 +773,9 @@ static int CostManagerInit(CostManager* const manager,
const CostModel* const cost_model) { const CostModel* const cost_model) {
int i; int i;
const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count; const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count;
// This constant is tied to the cost_model we use.
// Empirically, differences between intervals is usually of more than 1.
const double min_cost_diff = 0.1;
manager->costs_ = NULL; manager->costs_ = NULL;
manager->cache_intervals_ = NULL; manager->cache_intervals_ = NULL;
manager->interval_ends_ = NULL;
manager->head_ = NULL; manager->head_ = NULL;
manager->recycled_intervals_ = NULL; manager->recycled_intervals_ = NULL;
manager->count_ = 0; manager->count_ = 0;
@ -820,30 +784,20 @@ static int CostManagerInit(CostManager* const manager,
// Fill in the cost_cache_. // Fill in the cost_cache_.
manager->cache_intervals_size_ = 1; manager->cache_intervals_size_ = 1;
manager->cost_cache_[0] = 0; manager->cost_cache_[0] = GetLengthCost(cost_model, 0);
for (i = 1; i < cost_cache_size; ++i) { for (i = 1; i < cost_cache_size; ++i) {
manager->cost_cache_[i] = GetLengthCost(cost_model, i); manager->cost_cache_[i] = GetLengthCost(cost_model, i);
// Get an approximation of the number of bound intervals. // Get an approximation of the number of bound intervals.
if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) > if (manager->cost_cache_[i] != manager->cost_cache_[i - 1]) {
min_cost_diff) {
++manager->cache_intervals_size_; ++manager->cache_intervals_size_;
} }
// Compute the minimum of cost_cache_.
if (i == 1) {
manager->min_cost_cache_ = manager->cost_cache_[1];
manager->max_cost_cache_ = manager->cost_cache_[1];
} else if (manager->cost_cache_[i] < manager->min_cost_cache_) {
manager->min_cost_cache_ = manager->cost_cache_[i];
} else if (manager->cost_cache_[i] > manager->max_cost_cache_) {
manager->max_cost_cache_ = manager->cost_cache_[i];
}
} }
// With the current cost models, we have 15 intervals, so we are safe by // With the current cost model, we usually have below 20 intervals.
// setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX. // The worst case scenario with a cost model would be if every length has a
if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) { // different cost, hence MAX_LENGTH but that is impossible with the current
manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX; // implementation that spirals around a pixel.
} assert(manager->cache_intervals_size_ <= MAX_LENGTH);
manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc( manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc(
manager->cache_intervals_size_, sizeof(*manager->cache_intervals_)); manager->cache_intervals_size_, sizeof(*manager->cache_intervals_));
if (manager->cache_intervals_ == NULL) { if (manager->cache_intervals_ == NULL) {
@ -853,52 +807,22 @@ static int CostManagerInit(CostManager* const manager,
// Fill in the cache_intervals_. // Fill in the cache_intervals_.
{ {
double cost_prev = -1e38f; // unprobably low initial value
CostCacheInterval* prev = NULL;
CostCacheInterval* cur = manager->cache_intervals_; CostCacheInterval* cur = manager->cache_intervals_;
const CostCacheInterval* const end =
manager->cache_intervals_ + manager->cache_intervals_size_;
// Consecutive values in cost_cache_ are compared and if a big enough // Consecutive values in cost_cache_ are compared and if a big enough
// difference is found, a new interval is created and bounded. // difference is found, a new interval is created and bounded.
for (i = 0; i < cost_cache_size; ++i) { cur->start_ = 0;
cur->end_ = 1;
cur->cost_ = manager->cost_cache_[0];
for (i = 1; i < cost_cache_size; ++i) {
const double cost_val = manager->cost_cache_[i]; const double cost_val = manager->cost_cache_[i];
if (i == 0 || if (cost_val != cur->cost_) {
(fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) { ++cur;
if (i > 1) {
const int is_writable =
IsCostCacheIntervalWritable(cur->start_, cur->end_);
// Merge with the previous interval if both are writable.
if (is_writable && cur != manager->cache_intervals_ &&
prev->do_write_) {
// Update the previous interval.
prev->end_ = cur->end_;
if (cur->lower_ < prev->lower_) {
prev->lower_ = cur->lower_;
} else if (cur->upper_ > prev->upper_) {
prev->upper_ = cur->upper_;
}
} else {
cur->do_write_ = is_writable;
prev = cur;
++cur;
}
}
// Initialize an interval. // Initialize an interval.
cur->start_ = i; cur->start_ = i;
cur->do_write_ = 0; cur->cost_ = cost_val;
cur->lower_ = cost_val;
cur->upper_ = cost_val;
} else {
// Update the current interval bounds.
if (cost_val < cur->lower_) {
cur->lower_ = cost_val;
} else if (cost_val > cur->upper_) {
cur->upper_ = cost_val;
}
} }
cur->end_ = i + 1; cur->end_ = i + 1;
cost_prev = cost_val;
} }
manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_; manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_;
} }
@ -911,79 +835,29 @@ static int CostManagerInit(CostManager* const manager,
// Set the initial costs_ high for every pixel as we will keep the minimum. // Set the initial costs_ high for every pixel as we will keep the minimum.
for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f; for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f;
// The cost at pixel is influenced by the cost intervals from previous pixels.
// Let us take the specific case where the offset is the same (which actually
// happens a lot in case of uniform regions).
// pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i]
// pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1]
// pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2]
// and so on.
// A pixel i influences the following length(j) < MAX_LENGTH pixels. What is
// the value of j such that pixel i + j cannot influence any of those pixels?
// This value is such that:
// max of cost_cache_ < j*offset cost + min of cost_cache_
// (pixel i + j 's cost cannot beat the worst cost given by pixel i).
// This value will be used to optimize the cost computation in
// BackwardReferencesHashChainDistanceOnly.
{
// The offset cost is computed in GetDistanceCost and has a minimum value of
// the minimum in cost_model->distance_. The case where the offset cost is 0
// will be dealt with differently later so we are only interested in the
// minimum non-zero offset cost.
double offset_cost_min = 0.;
int size;
for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
if (cost_model->distance_[i] != 0) {
if (offset_cost_min == 0.) {
offset_cost_min = cost_model->distance_[i];
} else if (cost_model->distance_[i] < offset_cost_min) {
offset_cost_min = cost_model->distance_[i];
}
}
}
// In case all the cost_model->distance_ is 0, the next non-zero cost we
// can have is from the extra bit in GetDistanceCost, hence 1.
if (offset_cost_min < 1.) offset_cost_min = 1.;
size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) /
offset_cost_min);
// Empirically, we usually end up with a value below 100.
if (size > MAX_LENGTH) size = MAX_LENGTH;
manager->interval_ends_ =
(int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_));
if (manager->interval_ends_ == NULL) {
CostManagerClear(manager);
return 0;
}
manager->interval_ends_size_ = size;
}
return 1; return 1;
} }
// Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it // Given the cost and the index that define an interval, update the cost at
// is smaller than the previously computed value. // pixel 'i' if it is smaller than the previously computed value.
static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index, static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index,
double distance_cost) { float cost) {
int k = i - index; const int k = i - index;
double cost_tmp;
assert(k >= 0 && k < MAX_LENGTH); assert(k >= 0 && k < MAX_LENGTH);
cost_tmp = distance_cost + manager->cost_cache_[k];
if (manager->costs_[i] > cost_tmp) { if (manager->costs_[i] > cost) {
manager->costs_[i] = (float)cost_tmp; manager->costs_[i] = cost;
manager->dist_array_[i] = k + 1; manager->dist_array_[i] = k + 1;
} }
} }
// Given the distance_cost for pixel 'index', update the cost for all the pixels // Given the cost and the index that define an interval, update the cost for all
// between 'start' and 'end' excluded. // the pixels between 'start' and 'end' excluded.
static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager, static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager,
int start, int end, int index, int start, int end, int index,
double distance_cost) { float cost) {
int i; int i;
for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost); for (i = start; i < end; ++i) UpdateCost(manager, i, index, cost);
} }
// Given two intervals, make 'prev' be the previous one of 'next' in 'manager'. // Given two intervals, make 'prev' be the previous one of 'next' in 'manager'.
@ -1002,11 +876,9 @@ static WEBP_INLINE void ConnectIntervals(CostManager* const manager,
// Pop an interval in the manager. // Pop an interval in the manager.
static WEBP_INLINE void PopInterval(CostManager* const manager, static WEBP_INLINE void PopInterval(CostManager* const manager,
CostInterval* const interval) { CostInterval* const interval) {
CostInterval* const next = interval->next_;
if (interval == NULL) return; if (interval == NULL) return;
ConnectIntervals(manager, interval->previous_, next); ConnectIntervals(manager, interval->previous_, interval->next_);
if (CostIntervalIsInFreeList(manager, interval)) { if (CostIntervalIsInFreeList(manager, interval)) {
CostIntervalAddToFreeList(manager, interval); CostIntervalAddToFreeList(manager, interval);
} else { // recycle regularly malloc'd intervals too } else { // recycle regularly malloc'd intervals too
@ -1019,19 +891,23 @@ static WEBP_INLINE void PopInterval(CostManager* const manager,
// Update the cost at index i by going over all the stored intervals that // Update the cost at index i by going over all the stored intervals that
// overlap with i. // overlap with i.
static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) { // If 'do_clean_intervals' is set to something different than 0, intervals that
// end before 'i' will be popped.
static WEBP_INLINE void UpdateCostAtIndex(CostManager* const manager, int i,
int do_clean_intervals) {
CostInterval* current = manager->head_; CostInterval* current = manager->head_;
while (current != NULL && current->start_ <= i) { while (current != NULL && current->start_ <= i) {
CostInterval* const next = current->next_;
if (current->end_ <= i) { if (current->end_ <= i) {
// We have an outdated interval, remove it. if (do_clean_intervals) {
CostInterval* next = current->next_; // We have an outdated interval, remove it.
PopInterval(manager, current); PopInterval(manager, current);
current = next; }
} else { } else {
UpdateCost(manager, i, current->index_, current->distance_cost_); UpdateCost(manager, i, current->index_, current->cost_);
current = current->next_;
} }
current = next;
} }
} }
@ -1064,15 +940,14 @@ static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager,
// interval_in as a hint. The intervals are sorted by start_ value. // interval_in as a hint. The intervals are sorted by start_ value.
static WEBP_INLINE void InsertInterval(CostManager* const manager, static WEBP_INLINE void InsertInterval(CostManager* const manager,
CostInterval* const interval_in, CostInterval* const interval_in,
double distance_cost, double lower, float cost, int index, int start,
double upper, int index, int start,
int end) { int end) {
CostInterval* interval_new; CostInterval* interval_new;
if (IsCostCacheIntervalWritable(start, end) || if (start >= end) return;
manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) { if (manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) {
// Write down the interval if it is too small. // Serialize the interval if we cannot store it.
UpdateCostPerInterval(manager, start, end, index, distance_cost); UpdateCostPerInterval(manager, start, end, index, cost);
return; return;
} }
if (manager->free_intervals_ != NULL) { if (manager->free_intervals_ != NULL) {
@ -1081,18 +956,16 @@ static WEBP_INLINE void InsertInterval(CostManager* const manager,
} else if (manager->recycled_intervals_ != NULL) { } else if (manager->recycled_intervals_ != NULL) {
interval_new = manager->recycled_intervals_; interval_new = manager->recycled_intervals_;
manager->recycled_intervals_ = interval_new->next_; manager->recycled_intervals_ = interval_new->next_;
} else { // malloc for good } else { // malloc for good
interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new)); interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new));
if (interval_new == NULL) { if (interval_new == NULL) {
// Write down the interval if we cannot create it. // Write down the interval if we cannot create it.
UpdateCostPerInterval(manager, start, end, index, distance_cost); UpdateCostPerInterval(manager, start, end, index, cost);
return; return;
} }
} }
interval_new->distance_cost_ = distance_cost; interval_new->cost_ = cost;
interval_new->lower_ = lower;
interval_new->upper_ = upper;
interval_new->index_ = index; interval_new->index_ = index;
interval_new->start_ = start; interval_new->start_ = start;
interval_new->end_ = end; interval_new->end_ = end;
@ -1101,163 +974,135 @@ static WEBP_INLINE void InsertInterval(CostManager* const manager,
++manager->count_; ++manager->count_;
} }
// When an interval has its start_ or end_ modified, it needs to be // Given a new cost interval defined by its start at index, its length value and
// repositioned in the linked list.
static WEBP_INLINE void RepositionInterval(CostManager* const manager,
CostInterval* const interval) {
if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) {
// Maybe interval has been resized and is small enough to be removed.
UpdateCostPerInterval(manager, interval->start_, interval->end_,
interval->index_, interval->distance_cost_);
PopInterval(manager, interval);
return;
}
// Early exit if interval is at the right spot.
if ((interval->previous_ == NULL ||
interval->previous_->start_ <= interval->start_) &&
(interval->next_ == NULL ||
interval->start_ <= interval->next_->start_)) {
return;
}
ConnectIntervals(manager, interval->previous_, interval->next_);
PositionOrphanInterval(manager, interval, interval->previous_);
}
// Given a new cost interval defined by its start at index, its last value and
// distance_cost, add its contributions to the previous intervals and costs. // distance_cost, add its contributions to the previous intervals and costs.
// If handling the interval or one of its subintervals becomes to heavy, its // If handling the interval or one of its subintervals becomes to heavy, its
// contribution is added to the costs right away. // contribution is added to the costs right away.
static WEBP_INLINE void PushInterval(CostManager* const manager, static WEBP_INLINE void PushInterval(CostManager* const manager,
double distance_cost, int index, double distance_cost, int index,
int last) { int len) {
size_t i; size_t i;
CostInterval* interval = manager->head_; CostInterval* interval = manager->head_;
CostInterval* interval_next; CostInterval* interval_next;
const CostCacheInterval* const cost_cache_intervals = const CostCacheInterval* const cost_cache_intervals =
manager->cache_intervals_; manager->cache_intervals_;
// If the interval is small enough, no need to deal with the heavy
// interval logic, just serialize it right away. This constant is empirical.
const int kSkipDistance = 10;
if (len < kSkipDistance) {
int j;
for (j = index; j < index + len; ++j) {
const int k = j - index;
float cost_tmp;
assert(k >= 0 && k < MAX_LENGTH);
cost_tmp = (float)(distance_cost + manager->cost_cache_[k]);
if (manager->costs_[j] > cost_tmp) {
manager->costs_[j] = cost_tmp;
manager->dist_array_[j] = k + 1;
}
}
return;
}
for (i = 0; i < manager->cache_intervals_size_ && for (i = 0; i < manager->cache_intervals_size_ &&
cost_cache_intervals[i].start_ < last; cost_cache_intervals[i].start_ < len;
++i) { ++i) {
// Define the intersection of the ith interval with the new one. // Define the intersection of the ith interval with the new one.
int start = index + cost_cache_intervals[i].start_; int start = index + cost_cache_intervals[i].start_;
const int end = index + (cost_cache_intervals[i].end_ > last const int end = index + (cost_cache_intervals[i].end_ > len
? last ? len
: cost_cache_intervals[i].end_); : cost_cache_intervals[i].end_);
const double lower_in = cost_cache_intervals[i].lower_; const float cost = (float)(distance_cost + cost_cache_intervals[i].cost_);
const double upper_in = cost_cache_intervals[i].upper_;
const double lower_full_in = distance_cost + lower_in;
const double upper_full_in = distance_cost + upper_in;
if (cost_cache_intervals[i].do_write_) { for (; interval != NULL && interval->start_ < end;
UpdateCostPerInterval(manager, start, end, index, distance_cost);
continue;
}
for (; interval != NULL && interval->start_ < end && start < end;
interval = interval_next) { interval = interval_next) {
const double lower_full_interval =
interval->distance_cost_ + interval->lower_;
const double upper_full_interval =
interval->distance_cost_ + interval->upper_;
interval_next = interval->next_; interval_next = interval->next_;
// Make sure we have some overlap // Make sure we have some overlap
if (start >= interval->end_) continue; if (start >= interval->end_) continue;
if (lower_full_in >= upper_full_interval) { if (cost >= interval->cost_) {
// When intervals are represented, the lower, the better. // When intervals are represented, the lower, the better.
// [**********************************************************] // [**********************************************************[
// start end // start end
// [----------------------------------] // [----------------------------------[
// interval->start_ interval->end_ // interval->start_ interval->end_
// If we are worse than what we already have, add whatever we have so // If we are worse than what we already have, add whatever we have so
// far up to interval. // far up to interval.
const int start_new = interval->end_; const int start_new = interval->end_;
InsertInterval(manager, interval, distance_cost, lower_in, upper_in, InsertInterval(manager, interval, cost, index, start, interval->start_);
index, start, interval->start_);
start = start_new; start = start_new;
if (start >= end) break;
continue; continue;
} }
// We know the two intervals intersect. if (start <= interval->start_) {
if (upper_full_in >= lower_full_interval) { if (interval->end_ <= end) {
// There is no clear cut on which is best, so let's keep both. // [----------------------------------[
// [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********] // interval->start_ interval->end_
// start interval->start_ interval->end_ end // [**************************************************************[
// OR // start end
// [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------] // We can safely remove the old interval as it is fully included.
// start interval->start_ end interval->end_ PopInterval(manager, interval);
const int end_new = (interval->end_ <= end) ? interval->end_ : end; } else {
InsertInterval(manager, interval, distance_cost, lower_in, upper_in, // [------------------------------------[
index, start, end_new); // interval->start_ interval->end_
start = end_new; // [*****************************[
} else if (start <= interval->start_ && interval->end_ <= end) { // start end
// [----------------------------------] interval->start_ = end;
// interval->start_ interval->end_ break;
// [**************************************************************] }
// start end
// We can safely remove the old interval as it is fully included.
PopInterval(manager, interval);
} else { } else {
if (interval->start_ <= start && end <= interval->end_) { if (end < interval->end_) {
// [--------------------------------------------------------------] // [--------------------------------------------------------------[
// interval->start_ interval->end_ // interval->start_ interval->end_
// [*****************************] // [*****************************[
// start end // start end
// We have to split the old interval as it fully contains the new one. // We have to split the old interval as it fully contains the new one.
const int end_original = interval->end_; const int end_original = interval->end_;
interval->end_ = start; interval->end_ = start;
InsertInterval(manager, interval, interval->distance_cost_, InsertInterval(manager, interval, interval->cost_, interval->index_,
interval->lower_, interval->upper_, interval->index_,
end, end_original); end, end_original);
} else if (interval->start_ < start) { interval = interval->next_;
// [------------------------------------] break;
} else {
// [------------------------------------[
// interval->start_ interval->end_ // interval->start_ interval->end_
// [*****************************] // [*****************************[
// start end // start end
interval->end_ = start; interval->end_ = start;
} else {
// [------------------------------------]
// interval->start_ interval->end_
// [*****************************]
// start end
interval->start_ = end;
} }
// The interval has been modified, we need to reposition it or write it.
RepositionInterval(manager, interval);
} }
} }
// Insert the remaining interval from start to end. // Insert the remaining interval from start to end.
InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index, InsertInterval(manager, interval, cost, index, start, end);
start, end);
} }
} }
static int BackwardReferencesHashChainDistanceOnly( static int BackwardReferencesHashChainDistanceOnly(
int xsize, int ysize, const uint32_t* const argb, int quality, int xsize, int ysize, const uint32_t* const argb, int cache_bits,
int cache_bits, const VP8LHashChain* const hash_chain, const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs,
VP8LBackwardRefs* const refs, uint16_t* const dist_array) { uint16_t* const dist_array) {
int i; int i;
int ok = 0; int ok = 0;
int cc_init = 0; int cc_init = 0;
const int pix_count = xsize * ysize; const int pix_count = xsize * ysize;
const int use_color_cache = (cache_bits > 0); const int use_color_cache = (cache_bits > 0);
const size_t literal_array_size = sizeof(double) * const size_t literal_array_size =
(NUM_LITERAL_CODES + NUM_LENGTH_CODES + sizeof(double) * (NUM_LITERAL_CODES + NUM_LENGTH_CODES +
((cache_bits > 0) ? (1 << cache_bits) : 0)); ((cache_bits > 0) ? (1 << cache_bits) : 0));
const size_t cost_model_size = sizeof(CostModel) + literal_array_size; const size_t cost_model_size = sizeof(CostModel) + literal_array_size;
CostModel* const cost_model = CostModel* const cost_model =
(CostModel*)WebPSafeCalloc(1ULL, cost_model_size); (CostModel*)WebPSafeCalloc(1ULL, cost_model_size);
VP8LColorCache hashers; VP8LColorCache hashers;
const int skip_length = 32 + quality;
const int skip_min_distance_code = 2;
CostManager* cost_manager = CostManager* cost_manager =
(CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager)); (CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager));
int offset_prev = -1, len_prev = -1;
double offset_cost = -1;
int first_offset_is_constant = -1; // initialized with 'impossible' value
int reach = 0;
if (cost_model == NULL || cost_manager == NULL) goto Error; if (cost_model == NULL || cost_manager == NULL) goto Error;
@ -1280,132 +1125,79 @@ static int BackwardReferencesHashChainDistanceOnly(
dist_array[0] = 0; dist_array[0] = 0;
// Add first pixel as literal. // Add first pixel as literal.
AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0, AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0,
use_color_cache, 0.0, cost_manager->costs_, use_color_cache, 0.f, cost_manager->costs_,
dist_array); dist_array);
for (i = 1; i < pix_count - 1; ++i) { for (i = 1; i < pix_count; ++i) {
int offset = 0, len = 0; const float prev_cost = cost_manager->costs_[i - 1];
double prev_cost = cost_manager->costs_[i - 1]; int offset, len;
HashChainFindCopy(hash_chain, i, &offset, &len); HashChainFindCopy(hash_chain, i, &offset, &len);
if (len >= 2) {
// If we are dealing with a non-literal.
const int code = DistanceToPlaneCode(xsize, offset);
const double offset_cost = GetDistanceCost(cost_model, code);
const int first_i = i;
int j_max = 0, interval_ends_index = 0;
const int is_offset_zero = (offset_cost == 0.);
if (!is_offset_zero) {
j_max = (int)ceil(
(cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) /
offset_cost);
if (j_max < 1) {
j_max = 1;
} else if (j_max > cost_manager->interval_ends_size_ - 1) {
// This could only happen in the case of MAX_LENGTH.
j_max = cost_manager->interval_ends_size_ - 1;
}
} // else j_max is unused anyway.
// Instead of considering all contributions from a pixel i by calling:
// PushInterval(cost_manager, prev_cost + offset_cost, i, len);
// we optimize these contributions in case offset_cost stays the same for
// consecutive pixels. This describes a set of pixels similar to a
// previous set (e.g. constant color regions).
for (; i < pix_count - 1; ++i) {
int offset_next, len_next;
prev_cost = cost_manager->costs_[i - 1];
if (is_offset_zero) {
// No optimization can be made so we just push all of the
// contributions from i.
PushInterval(cost_manager, prev_cost, i, len);
} else {
// j_max is chosen as the smallest j such that:
// max of cost_cache_ < j*offset cost + min of cost_cache_
// Therefore, the pixel influenced by i-j_max, cannot be influenced
// by i. Only the costs after the end of what i contributed need to be
// updated. cost_manager->interval_ends_ is a circular buffer that
// stores those ends.
const double distance_cost = prev_cost + offset_cost;
int j = cost_manager->interval_ends_[interval_ends_index];
if (i - first_i <= j_max ||
!IsCostCacheIntervalWritable(j, i + len)) {
PushInterval(cost_manager, distance_cost, i, len);
} else {
for (; j < i + len; ++j) {
UpdateCost(cost_manager, j, i, distance_cost);
}
}
// Store the new end in the circular buffer.
assert(interval_ends_index < cost_manager->interval_ends_size_);
cost_manager->interval_ends_[interval_ends_index] = i + len;
if (++interval_ends_index > j_max) interval_ends_index = 0;
}
// Check whether i is the last pixel to consider, as it is handled
// differently.
if (i + 1 >= pix_count - 1) break;
HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next);
if (offset_next != offset) break;
len = len_next;
UpdateCostPerIndex(cost_manager, i);
AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
use_color_cache, prev_cost,
cost_manager->costs_, dist_array);
}
// Submit the last pixel.
UpdateCostPerIndex(cost_manager, i + 1);
// This if is for speedup only. It roughly doubles the speed, and
// makes compression worse by .1 %.
if (len >= skip_length && code <= skip_min_distance_code) {
// Long copy for short distances, let's skip the middle
// lookups for better copies.
// 1) insert the hashes.
if (use_color_cache) {
int k;
for (k = 0; k < len; ++k) {
VP8LColorCacheInsert(&hashers, argb[i + k]);
}
}
// 2) jump.
{
const int i_next = i + len - 1; // for loop does ++i, thus -1 here.
for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1);
i = i_next;
}
goto next_symbol;
}
if (len > 2) {
// Also try the smallest interval possible (size 2).
double cost_total =
prev_cost + offset_cost + GetLengthCost(cost_model, 1);
if (cost_manager->costs_[i + 1] > cost_total) {
cost_manager->costs_[i + 1] = (float)cost_total;
dist_array[i + 1] = 2;
}
}
} else {
// The pixel is added as a single literal so just update the costs.
UpdateCostPerIndex(cost_manager, i + 1);
}
// Try adding the pixel as a literal.
AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
use_color_cache, prev_cost, use_color_cache, prev_cost,
cost_manager->costs_, dist_array); cost_manager->costs_, dist_array);
next_symbol: ; // If we are dealing with a non-literal.
} if (len >= 2) {
// Handle the last pixel. if (offset != offset_prev) {
if (i == (pix_count - 1)) { const int code = DistanceToPlaneCode(xsize, offset);
AddSingleLiteralWithCostModel( offset_cost = GetDistanceCost(cost_model, code);
argb + i, &hashers, cost_model, i, use_color_cache, first_offset_is_constant = 1;
cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array); PushInterval(cost_manager, prev_cost + offset_cost, i, len);
} else {
assert(offset_cost >= 0);
assert(len_prev >= 0);
assert(first_offset_is_constant == 0 || first_offset_is_constant == 1);
// Instead of considering all contributions from a pixel i by calling:
// PushInterval(cost_manager, prev_cost + offset_cost, i, len);
// we optimize these contributions in case offset_cost stays the same
// for consecutive pixels. This describes a set of pixels similar to a
// previous set (e.g. constant color regions).
if (first_offset_is_constant) {
reach = i - 1 + len_prev - 1;
first_offset_is_constant = 0;
}
if (i + len - 1 > reach) {
// We can only be go further with the same offset if the previous
// length was maxed, hence len_prev == len == MAX_LENGTH.
// TODO(vrabaud), bump i to the end right away (insert cache and
// update cost).
// TODO(vrabaud), check if one of the points in between does not have
// a lower cost.
// Already consider the pixel at "reach" to add intervals that are
// better than whatever we add.
int offset_j, len_j = 0;
int j;
assert(len == MAX_LENGTH);
// Figure out the last consecutive pixel within [i, reach + 1] with
// the same offset.
for (j = i; j <= reach; ++j) {
HashChainFindCopy(hash_chain, j + 1, &offset_j, &len_j);
if (offset_j != offset) {
HashChainFindCopy(hash_chain, j, &offset_j, &len_j);
break;
}
}
// Update the cost at j - 1 and j.
UpdateCostAtIndex(cost_manager, j - 1, 0);
UpdateCostAtIndex(cost_manager, j, 0);
PushInterval(cost_manager, cost_manager->costs_[j - 1] + offset_cost,
j, len_j);
reach = j + len_j - 1;
}
}
}
UpdateCostAtIndex(cost_manager, i, 1);
offset_prev = offset;
len_prev = len;
} }
ok = !refs->error_; ok = !refs->error_;
Error: Error:
if (cc_init) VP8LColorCacheClear(&hashers); if (cc_init) VP8LColorCacheClear(&hashers);
CostManagerClear(cost_manager); CostManagerClear(cost_manager);
WebPSafeFree(cost_model); WebPSafeFree(cost_model);
@ -1485,9 +1277,8 @@ static int BackwardReferencesHashChainFollowChosenPath(
// Returns 1 on success. // Returns 1 on success.
static int BackwardReferencesTraceBackwards( static int BackwardReferencesTraceBackwards(
int xsize, int ysize, const uint32_t* const argb, int quality, int xsize, int ysize, const uint32_t* const argb, int cache_bits,
int cache_bits, const VP8LHashChain* const hash_chain, const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) {
VP8LBackwardRefs* const refs) {
int ok = 0; int ok = 0;
const int dist_array_size = xsize * ysize; const int dist_array_size = xsize * ysize;
uint16_t* chosen_path = NULL; uint16_t* chosen_path = NULL;
@ -1497,9 +1288,8 @@ static int BackwardReferencesTraceBackwards(
if (dist_array == NULL) goto Error; if (dist_array == NULL) goto Error;
if (!BackwardReferencesHashChainDistanceOnly( if (!BackwardReferencesHashChainDistanceOnly(xsize, ysize, argb, cache_bits,
xsize, ysize, argb, quality, cache_bits, hash_chain, hash_chain, refs, dist_array)) {
refs, dist_array)) {
goto Error; goto Error;
} }
TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size);
@ -1763,9 +1553,8 @@ static VP8LBackwardRefs* GetBackwardReferences(
best = NULL; best = NULL;
goto Error; goto Error;
} }
if (BackwardReferencesTraceBackwards(width, height, argb, quality, if (BackwardReferencesTraceBackwards(width, height, argb, *cache_bits,
*cache_bits, hash_chain, hash_chain, refs_trace)) {
refs_trace)) {
double bit_cost_trace; double bit_cost_trace;
// Evaluate LZ77 coding. // Evaluate LZ77 coding.
VP8LHistogramCreate(histo, refs_trace, *cache_bits); VP8LHistogramCreate(histo, refs_trace, *cache_bits);