webm/mkvmuxer.cpp
Vignesh Venkatasubramanian f06e152abd mkvmuxer: Fix MoveCuesBeforeClustersHelper recursive call.
The third parameter of the MoveCuesBeforeClustersHelper recursive function
should always be the size of the cues element without the master element's size
(i.e.) it should be the sum of size of all Cue Points. This way, the changes in
the Length of the master element itself will be computed correctly.

Change-Id: I05ff1606fb74168f80ffed81fd3c0de3f237c579
2015-02-02 18:34:18 -08:00

3175 lines
86 KiB
C++

// Copyright (c) 2012 The WebM project authors. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
#include "mkvmuxer.hpp"
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <new>
#include "mkvmuxerutil.hpp"
#include "mkvparser.hpp"
#include "mkvwriter.hpp"
#include "webmids.hpp"
#ifdef _MSC_VER
// Disable MSVC warnings that suggest making code non-portable.
#pragma warning(disable : 4996)
#endif
namespace mkvmuxer {
namespace {
// Deallocate the string designated by |dst|, and then copy the |src|
// string to |dst|. The caller owns both the |src| string and the
// |dst| copy (hence the caller is responsible for eventually
// deallocating the strings, either directly, or indirectly via
// StrCpy). Returns true if the source string was successfully copied
// to the destination.
bool StrCpy(const char* src, char** dst_ptr) {
if (dst_ptr == NULL)
return false;
char*& dst = *dst_ptr;
delete[] dst;
dst = NULL;
if (src == NULL)
return true;
const size_t size = strlen(src) + 1;
dst = new (std::nothrow) char[size]; // NOLINT
if (dst == NULL)
return false;
strcpy(dst, src); // NOLINT
return true;
}
} // namespace
///////////////////////////////////////////////////////////////
//
// IMkvWriter Class
IMkvWriter::IMkvWriter() {}
IMkvWriter::~IMkvWriter() {}
bool WriteEbmlHeader(IMkvWriter* writer, uint64 doc_type_version) {
// Level 0
uint64 size = EbmlElementSize(kMkvEBMLVersion, 1ULL);
size += EbmlElementSize(kMkvEBMLReadVersion, 1ULL);
size += EbmlElementSize(kMkvEBMLMaxIDLength, 4ULL);
size += EbmlElementSize(kMkvEBMLMaxSizeLength, 8ULL);
size += EbmlElementSize(kMkvDocType, "webm");
size += EbmlElementSize(kMkvDocTypeVersion, doc_type_version);
size += EbmlElementSize(kMkvDocTypeReadVersion, 2ULL);
if (!WriteEbmlMasterElement(writer, kMkvEBML, size))
return false;
if (!WriteEbmlElement(writer, kMkvEBMLVersion, 1ULL))
return false;
if (!WriteEbmlElement(writer, kMkvEBMLReadVersion, 1ULL))
return false;
if (!WriteEbmlElement(writer, kMkvEBMLMaxIDLength, 4ULL))
return false;
if (!WriteEbmlElement(writer, kMkvEBMLMaxSizeLength, 8ULL))
return false;
if (!WriteEbmlElement(writer, kMkvDocType, "webm"))
return false;
if (!WriteEbmlElement(writer, kMkvDocTypeVersion, doc_type_version))
return false;
if (!WriteEbmlElement(writer, kMkvDocTypeReadVersion, 2ULL))
return false;
return true;
}
bool WriteEbmlHeader(IMkvWriter* writer) {
return WriteEbmlHeader(writer, mkvmuxer::Segment::kDefaultDocTypeVersion);
}
bool ChunkedCopy(mkvparser::IMkvReader* source, mkvmuxer::IMkvWriter* dst,
mkvmuxer::int64 start, int64 size) {
// TODO(vigneshv): Check if this is a reasonable value.
const uint32 kBufSize = 2048;
uint8* buf = new uint8[kBufSize];
int64 offset = start;
while (size > 0) {
const int64 read_len = (size > kBufSize) ? kBufSize : size;
if (source->Read(offset, static_cast<long>(read_len), buf))
return false;
dst->Write(buf, static_cast<uint32>(read_len));
offset += read_len;
size -= read_len;
}
delete[] buf;
return true;
}
///////////////////////////////////////////////////////////////
//
// Frame Class
Frame::Frame()
: add_id_(0),
additional_(NULL),
additional_length_(0),
duration_(0),
frame_(NULL),
is_key_(false),
length_(0),
track_number_(0),
timestamp_(0),
discard_padding_(0) {}
Frame::~Frame() {
delete[] frame_;
delete[] additional_;
}
bool Frame::Init(const uint8* frame, uint64 length) {
uint8* const data =
new (std::nothrow) uint8[static_cast<size_t>(length)]; // NOLINT
if (!data)
return false;
delete[] frame_;
frame_ = data;
length_ = length;
memcpy(frame_, frame, static_cast<size_t>(length_));
return true;
}
bool Frame::AddAdditionalData(const uint8* additional, uint64 length,
uint64 add_id) {
uint8* const data =
new (std::nothrow) uint8[static_cast<size_t>(length)]; // NOLINT
if (!data)
return false;
delete[] additional_;
additional_ = data;
additional_length_ = length;
add_id_ = add_id;
memcpy(additional_, additional, static_cast<size_t>(additional_length_));
return true;
}
///////////////////////////////////////////////////////////////
//
// CuePoint Class
CuePoint::CuePoint()
: time_(0),
track_(0),
cluster_pos_(0),
block_number_(1),
output_block_number_(true) {}
CuePoint::~CuePoint() {}
bool CuePoint::Write(IMkvWriter* writer) const {
if (!writer || track_ < 1 || cluster_pos_ < 1)
return false;
uint64 size = EbmlElementSize(kMkvCueClusterPosition, cluster_pos_);
size += EbmlElementSize(kMkvCueTrack, track_);
if (output_block_number_ && block_number_ > 1)
size += EbmlElementSize(kMkvCueBlockNumber, block_number_);
const uint64 track_pos_size =
EbmlMasterElementSize(kMkvCueTrackPositions, size) + size;
const uint64 payload_size =
EbmlElementSize(kMkvCueTime, time_) + track_pos_size;
if (!WriteEbmlMasterElement(writer, kMkvCuePoint, payload_size))
return false;
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
if (!WriteEbmlElement(writer, kMkvCueTime, time_))
return false;
if (!WriteEbmlMasterElement(writer, kMkvCueTrackPositions, size))
return false;
if (!WriteEbmlElement(writer, kMkvCueTrack, track_))
return false;
if (!WriteEbmlElement(writer, kMkvCueClusterPosition, cluster_pos_))
return false;
if (output_block_number_ && block_number_ > 1)
if (!WriteEbmlElement(writer, kMkvCueBlockNumber, block_number_))
return false;
const int64 stop_position = writer->Position();
if (stop_position < 0)
return false;
if (stop_position - payload_position != static_cast<int64>(payload_size))
return false;
return true;
}
uint64 CuePoint::PayloadSize() const {
uint64 size = EbmlElementSize(kMkvCueClusterPosition, cluster_pos_);
size += EbmlElementSize(kMkvCueTrack, track_);
if (output_block_number_ && block_number_ > 1)
size += EbmlElementSize(kMkvCueBlockNumber, block_number_);
const uint64 track_pos_size =
EbmlMasterElementSize(kMkvCueTrackPositions, size) + size;
const uint64 payload_size =
EbmlElementSize(kMkvCueTime, time_) + track_pos_size;
return payload_size;
}
uint64 CuePoint::Size() const {
const uint64 payload_size = PayloadSize();
return EbmlMasterElementSize(kMkvCuePoint, payload_size) + payload_size;
}
///////////////////////////////////////////////////////////////
//
// Cues Class
Cues::Cues()
: cue_entries_capacity_(0),
cue_entries_size_(0),
cue_entries_(NULL),
output_block_number_(true) {}
Cues::~Cues() {
if (cue_entries_) {
for (int32 i = 0; i < cue_entries_size_; ++i) {
CuePoint* const cue = cue_entries_[i];
delete cue;
}
delete[] cue_entries_;
}
}
bool Cues::AddCue(CuePoint* cue) {
if (!cue)
return false;
if ((cue_entries_size_ + 1) > cue_entries_capacity_) {
// Add more CuePoints.
const int32 new_capacity =
(!cue_entries_capacity_) ? 2 : cue_entries_capacity_ * 2;
if (new_capacity < 1)
return false;
CuePoint** const cues =
new (std::nothrow) CuePoint* [new_capacity]; // NOLINT
if (!cues)
return false;
for (int32 i = 0; i < cue_entries_size_; ++i) {
cues[i] = cue_entries_[i];
}
delete[] cue_entries_;
cue_entries_ = cues;
cue_entries_capacity_ = new_capacity;
}
cue->set_output_block_number(output_block_number_);
cue_entries_[cue_entries_size_++] = cue;
return true;
}
CuePoint* Cues::GetCueByIndex(int32 index) const {
if (cue_entries_ == NULL)
return NULL;
if (index >= cue_entries_size_)
return NULL;
return cue_entries_[index];
}
uint64 Cues::Size() {
uint64 size = 0;
for (int32 i = 0; i < cue_entries_size_; ++i)
size += GetCueByIndex(i)->Size();
size += EbmlMasterElementSize(kMkvCues, size);
return size;
}
bool Cues::Write(IMkvWriter* writer) const {
if (!writer)
return false;
uint64 size = 0;
for (int32 i = 0; i < cue_entries_size_; ++i) {
const CuePoint* const cue = GetCueByIndex(i);
if (!cue)
return false;
size += cue->Size();
}
if (!WriteEbmlMasterElement(writer, kMkvCues, size))
return false;
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
for (int32 i = 0; i < cue_entries_size_; ++i) {
const CuePoint* const cue = GetCueByIndex(i);
if (!cue->Write(writer))
return false;
}
const int64 stop_position = writer->Position();
if (stop_position < 0)
return false;
if (stop_position - payload_position != static_cast<int64>(size))
return false;
return true;
}
///////////////////////////////////////////////////////////////
//
// ContentEncAESSettings Class
ContentEncAESSettings::ContentEncAESSettings() : cipher_mode_(kCTR) {}
uint64 ContentEncAESSettings::Size() const {
const uint64 payload = PayloadSize();
const uint64 size =
EbmlMasterElementSize(kMkvContentEncAESSettings, payload) + payload;
return size;
}
bool ContentEncAESSettings::Write(IMkvWriter* writer) const {
const uint64 payload = PayloadSize();
if (!WriteEbmlMasterElement(writer, kMkvContentEncAESSettings, payload))
return false;
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
if (!WriteEbmlElement(writer, kMkvAESSettingsCipherMode, cipher_mode_))
return false;
const int64 stop_position = writer->Position();
if (stop_position < 0 ||
stop_position - payload_position != static_cast<int64>(payload))
return false;
return true;
}
uint64 ContentEncAESSettings::PayloadSize() const {
uint64 size = EbmlElementSize(kMkvAESSettingsCipherMode, cipher_mode_);
return size;
}
///////////////////////////////////////////////////////////////
//
// ContentEncoding Class
ContentEncoding::ContentEncoding()
: enc_algo_(5),
enc_key_id_(NULL),
encoding_order_(0),
encoding_scope_(1),
encoding_type_(1),
enc_key_id_length_(0) {}
ContentEncoding::~ContentEncoding() { delete[] enc_key_id_; }
bool ContentEncoding::SetEncryptionID(const uint8* id, uint64 length) {
if (!id || length < 1)
return false;
delete[] enc_key_id_;
enc_key_id_ =
new (std::nothrow) uint8[static_cast<size_t>(length)]; // NOLINT
if (!enc_key_id_)
return false;
memcpy(enc_key_id_, id, static_cast<size_t>(length));
enc_key_id_length_ = length;
return true;
}
uint64 ContentEncoding::Size() const {
const uint64 encryption_size = EncryptionSize();
const uint64 encoding_size = EncodingSize(0, encryption_size);
const uint64 encodings_size =
EbmlMasterElementSize(kMkvContentEncoding, encoding_size) + encoding_size;
return encodings_size;
}
bool ContentEncoding::Write(IMkvWriter* writer) const {
const uint64 encryption_size = EncryptionSize();
const uint64 encoding_size = EncodingSize(0, encryption_size);
const uint64 size =
EbmlMasterElementSize(kMkvContentEncoding, encoding_size) + encoding_size;
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
if (!WriteEbmlMasterElement(writer, kMkvContentEncoding, encoding_size))
return false;
if (!WriteEbmlElement(writer, kMkvContentEncodingOrder, encoding_order_))
return false;
if (!WriteEbmlElement(writer, kMkvContentEncodingScope, encoding_scope_))
return false;
if (!WriteEbmlElement(writer, kMkvContentEncodingType, encoding_type_))
return false;
if (!WriteEbmlMasterElement(writer, kMkvContentEncryption, encryption_size))
return false;
if (!WriteEbmlElement(writer, kMkvContentEncAlgo, enc_algo_))
return false;
if (!WriteEbmlElement(writer, kMkvContentEncKeyID, enc_key_id_,
enc_key_id_length_))
return false;
if (!enc_aes_settings_.Write(writer))
return false;
const int64 stop_position = writer->Position();
if (stop_position < 0 ||
stop_position - payload_position != static_cast<int64>(size))
return false;
return true;
}
uint64 ContentEncoding::EncodingSize(uint64 compresion_size,
uint64 encryption_size) const {
// TODO(fgalligan): Add support for compression settings.
if (compresion_size != 0)
return 0;
uint64 encoding_size = 0;
if (encryption_size > 0) {
encoding_size +=
EbmlMasterElementSize(kMkvContentEncryption, encryption_size) +
encryption_size;
}
encoding_size += EbmlElementSize(kMkvContentEncodingType, encoding_type_);
encoding_size += EbmlElementSize(kMkvContentEncodingScope, encoding_scope_);
encoding_size += EbmlElementSize(kMkvContentEncodingOrder, encoding_order_);
return encoding_size;
}
uint64 ContentEncoding::EncryptionSize() const {
const uint64 aes_size = enc_aes_settings_.Size();
uint64 encryption_size =
EbmlElementSize(kMkvContentEncKeyID, enc_key_id_, enc_key_id_length_);
encryption_size += EbmlElementSize(kMkvContentEncAlgo, enc_algo_);
return encryption_size + aes_size;
}
///////////////////////////////////////////////////////////////
//
// Track Class
Track::Track(unsigned int* seed)
: codec_id_(NULL),
codec_private_(NULL),
language_(NULL),
max_block_additional_id_(0),
name_(NULL),
number_(0),
type_(0),
uid_(MakeUID(seed)),
codec_delay_(0),
seek_pre_roll_(0),
default_duration_(0),
codec_private_length_(0),
content_encoding_entries_(NULL),
content_encoding_entries_size_(0) {}
Track::~Track() {
delete[] codec_id_;
delete[] codec_private_;
delete[] language_;
delete[] name_;
if (content_encoding_entries_) {
for (uint32 i = 0; i < content_encoding_entries_size_; ++i) {
ContentEncoding* const encoding = content_encoding_entries_[i];
delete encoding;
}
delete[] content_encoding_entries_;
}
}
bool Track::AddContentEncoding() {
const uint32 count = content_encoding_entries_size_ + 1;
ContentEncoding** const content_encoding_entries =
new (std::nothrow) ContentEncoding* [count]; // NOLINT
if (!content_encoding_entries)
return false;
ContentEncoding* const content_encoding =
new (std::nothrow) ContentEncoding(); // NOLINT
if (!content_encoding) {
delete[] content_encoding_entries;
return false;
}
for (uint32 i = 0; i < content_encoding_entries_size_; ++i) {
content_encoding_entries[i] = content_encoding_entries_[i];
}
delete[] content_encoding_entries_;
content_encoding_entries_ = content_encoding_entries;
content_encoding_entries_[content_encoding_entries_size_] = content_encoding;
content_encoding_entries_size_ = count;
return true;
}
ContentEncoding* Track::GetContentEncodingByIndex(uint32 index) const {
if (content_encoding_entries_ == NULL)
return NULL;
if (index >= content_encoding_entries_size_)
return NULL;
return content_encoding_entries_[index];
}
uint64 Track::PayloadSize() const {
uint64 size = EbmlElementSize(kMkvTrackNumber, number_);
size += EbmlElementSize(kMkvTrackUID, uid_);
size += EbmlElementSize(kMkvTrackType, type_);
if (codec_id_)
size += EbmlElementSize(kMkvCodecID, codec_id_);
if (codec_private_)
size += EbmlElementSize(kMkvCodecPrivate, codec_private_,
codec_private_length_);
if (language_)
size += EbmlElementSize(kMkvLanguage, language_);
if (name_)
size += EbmlElementSize(kMkvName, name_);
if (max_block_additional_id_)
size += EbmlElementSize(kMkvMaxBlockAdditionID, max_block_additional_id_);
if (codec_delay_)
size += EbmlElementSize(kMkvCodecDelay, codec_delay_);
if (seek_pre_roll_)
size += EbmlElementSize(kMkvSeekPreRoll, seek_pre_roll_);
if (default_duration_)
size += EbmlElementSize(kMkvDefaultDuration, default_duration_);
if (content_encoding_entries_size_ > 0) {
uint64 content_encodings_size = 0;
for (uint32 i = 0; i < content_encoding_entries_size_; ++i) {
ContentEncoding* const encoding = content_encoding_entries_[i];
content_encodings_size += encoding->Size();
}
size +=
EbmlMasterElementSize(kMkvContentEncodings, content_encodings_size) +
content_encodings_size;
}
return size;
}
uint64 Track::Size() const {
uint64 size = PayloadSize();
size += EbmlMasterElementSize(kMkvTrackEntry, size);
return size;
}
bool Track::Write(IMkvWriter* writer) const {
if (!writer)
return false;
// mandatory elements without a default value.
if (!type_ || !codec_id_)
return false;
// |size| may be bigger than what is written out in this function because
// derived classes may write out more data in the Track element.
const uint64 payload_size = PayloadSize();
if (!WriteEbmlMasterElement(writer, kMkvTrackEntry, payload_size))
return false;
uint64 size = EbmlElementSize(kMkvTrackNumber, number_);
size += EbmlElementSize(kMkvTrackUID, uid_);
size += EbmlElementSize(kMkvTrackType, type_);
if (codec_id_)
size += EbmlElementSize(kMkvCodecID, codec_id_);
if (codec_private_)
size += EbmlElementSize(kMkvCodecPrivate, codec_private_,
codec_private_length_);
if (language_)
size += EbmlElementSize(kMkvLanguage, language_);
if (name_)
size += EbmlElementSize(kMkvName, name_);
if (max_block_additional_id_)
size += EbmlElementSize(kMkvMaxBlockAdditionID, max_block_additional_id_);
if (codec_delay_)
size += EbmlElementSize(kMkvCodecDelay, codec_delay_);
if (seek_pre_roll_)
size += EbmlElementSize(kMkvSeekPreRoll, seek_pre_roll_);
if (default_duration_)
size += EbmlElementSize(kMkvDefaultDuration, default_duration_);
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
if (!WriteEbmlElement(writer, kMkvTrackNumber, number_))
return false;
if (!WriteEbmlElement(writer, kMkvTrackUID, uid_))
return false;
if (!WriteEbmlElement(writer, kMkvTrackType, type_))
return false;
if (max_block_additional_id_) {
if (!WriteEbmlElement(writer, kMkvMaxBlockAdditionID,
max_block_additional_id_)) {
return false;
}
}
if (codec_delay_) {
if (!WriteEbmlElement(writer, kMkvCodecDelay, codec_delay_))
return false;
}
if (seek_pre_roll_) {
if (!WriteEbmlElement(writer, kMkvSeekPreRoll, seek_pre_roll_))
return false;
}
if (default_duration_) {
if (!WriteEbmlElement(writer, kMkvDefaultDuration, default_duration_))
return false;
}
if (codec_id_) {
if (!WriteEbmlElement(writer, kMkvCodecID, codec_id_))
return false;
}
if (codec_private_) {
if (!WriteEbmlElement(writer, kMkvCodecPrivate, codec_private_,
codec_private_length_))
return false;
}
if (language_) {
if (!WriteEbmlElement(writer, kMkvLanguage, language_))
return false;
}
if (name_) {
if (!WriteEbmlElement(writer, kMkvName, name_))
return false;
}
int64 stop_position = writer->Position();
if (stop_position < 0 ||
stop_position - payload_position != static_cast<int64>(size))
return false;
if (content_encoding_entries_size_ > 0) {
uint64 content_encodings_size = 0;
for (uint32 i = 0; i < content_encoding_entries_size_; ++i) {
ContentEncoding* const encoding = content_encoding_entries_[i];
content_encodings_size += encoding->Size();
}
if (!WriteEbmlMasterElement(writer, kMkvContentEncodings,
content_encodings_size))
return false;
for (uint32 i = 0; i < content_encoding_entries_size_; ++i) {
ContentEncoding* const encoding = content_encoding_entries_[i];
if (!encoding->Write(writer))
return false;
}
}
stop_position = writer->Position();
if (stop_position < 0)
return false;
return true;
}
bool Track::SetCodecPrivate(const uint8* codec_private, uint64 length) {
if (!codec_private || length < 1)
return false;
delete[] codec_private_;
codec_private_ =
new (std::nothrow) uint8[static_cast<size_t>(length)]; // NOLINT
if (!codec_private_)
return false;
memcpy(codec_private_, codec_private, static_cast<size_t>(length));
codec_private_length_ = length;
return true;
}
void Track::set_codec_id(const char* codec_id) {
if (codec_id) {
delete[] codec_id_;
const size_t length = strlen(codec_id) + 1;
codec_id_ = new (std::nothrow) char[length]; // NOLINT
if (codec_id_) {
#ifdef _MSC_VER
strcpy_s(codec_id_, length, codec_id);
#else
strcpy(codec_id_, codec_id);
#endif
}
}
}
// TODO(fgalligan): Vet the language parameter.
void Track::set_language(const char* language) {
if (language) {
delete[] language_;
const size_t length = strlen(language) + 1;
language_ = new (std::nothrow) char[length]; // NOLINT
if (language_) {
#ifdef _MSC_VER
strcpy_s(language_, length, language);
#else
strcpy(language_, language);
#endif
}
}
}
void Track::set_name(const char* name) {
if (name) {
delete[] name_;
const size_t length = strlen(name) + 1;
name_ = new (std::nothrow) char[length]; // NOLINT
if (name_) {
#ifdef _MSC_VER
strcpy_s(name_, length, name);
#else
strcpy(name_, name);
#endif
}
}
}
///////////////////////////////////////////////////////////////
//
// VideoTrack Class
VideoTrack::VideoTrack(unsigned int* seed)
: Track(seed),
display_height_(0),
display_width_(0),
crop_left_(0),
crop_right_(0),
crop_top_(0),
crop_bottom_(0),
frame_rate_(0.0),
height_(0),
stereo_mode_(0),
alpha_mode_(0),
width_(0) {}
VideoTrack::~VideoTrack() {}
bool VideoTrack::SetStereoMode(uint64 stereo_mode) {
if (stereo_mode != kMono && stereo_mode != kSideBySideLeftIsFirst &&
stereo_mode != kTopBottomRightIsFirst &&
stereo_mode != kTopBottomLeftIsFirst &&
stereo_mode != kSideBySideRightIsFirst)
return false;
stereo_mode_ = stereo_mode;
return true;
}
bool VideoTrack::SetAlphaMode(uint64 alpha_mode) {
if (alpha_mode != kNoAlpha && alpha_mode != kAlpha)
return false;
alpha_mode_ = alpha_mode;
return true;
}
uint64 VideoTrack::PayloadSize() const {
const uint64 parent_size = Track::PayloadSize();
uint64 size = VideoPayloadSize();
size += EbmlMasterElementSize(kMkvVideo, size);
return parent_size + size;
}
bool VideoTrack::Write(IMkvWriter* writer) const {
if (!Track::Write(writer))
return false;
const uint64 size = VideoPayloadSize();
if (!WriteEbmlMasterElement(writer, kMkvVideo, size))
return false;
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
if (!WriteEbmlElement(writer, kMkvPixelWidth, width_))
return false;
if (!WriteEbmlElement(writer, kMkvPixelHeight, height_))
return false;
if (display_width_ > 0) {
if (!WriteEbmlElement(writer, kMkvDisplayWidth, display_width_))
return false;
}
if (display_height_ > 0) {
if (!WriteEbmlElement(writer, kMkvDisplayHeight, display_height_))
return false;
}
if (crop_left_ > 0) {
if (!WriteEbmlElement(writer, kMkvPixelCropLeft, crop_left_))
return false;
}
if (crop_right_ > 0) {
if (!WriteEbmlElement(writer, kMkvPixelCropRight, crop_right_))
return false;
}
if (crop_top_ > 0) {
if (!WriteEbmlElement(writer, kMkvPixelCropTop, crop_top_))
return false;
}
if (crop_bottom_ > 0) {
if (!WriteEbmlElement(writer, kMkvPixelCropBottom, crop_bottom_))
return false;
}
if (stereo_mode_ > kMono) {
if (!WriteEbmlElement(writer, kMkvStereoMode, stereo_mode_))
return false;
}
if (alpha_mode_ > kNoAlpha) {
if (!WriteEbmlElement(writer, kMkvAlphaMode, alpha_mode_))
return false;
}
if (frame_rate_ > 0.0) {
if (!WriteEbmlElement(writer, kMkvFrameRate,
static_cast<float>(frame_rate_))) {
return false;
}
}
const int64 stop_position = writer->Position();
if (stop_position < 0 ||
stop_position - payload_position != static_cast<int64>(size)) {
return false;
}
return true;
}
uint64 VideoTrack::VideoPayloadSize() const {
uint64 size = EbmlElementSize(kMkvPixelWidth, width_);
size += EbmlElementSize(kMkvPixelHeight, height_);
if (display_width_ > 0)
size += EbmlElementSize(kMkvDisplayWidth, display_width_);
if (display_height_ > 0)
size += EbmlElementSize(kMkvDisplayHeight, display_height_);
if (crop_left_ > 0)
size += EbmlElementSize(kMkvPixelCropLeft, crop_left_);
if (crop_right_ > 0)
size += EbmlElementSize(kMkvPixelCropRight, crop_right_);
if (crop_top_ > 0)
size += EbmlElementSize(kMkvPixelCropTop, crop_top_);
if (crop_bottom_ > 0)
size += EbmlElementSize(kMkvPixelCropBottom, crop_bottom_);
if (stereo_mode_ > kMono)
size += EbmlElementSize(kMkvStereoMode, stereo_mode_);
if (alpha_mode_ > kNoAlpha)
size += EbmlElementSize(kMkvAlphaMode, alpha_mode_);
if (frame_rate_ > 0.0)
size += EbmlElementSize(kMkvFrameRate, static_cast<float>(frame_rate_));
return size;
}
///////////////////////////////////////////////////////////////
//
// AudioTrack Class
AudioTrack::AudioTrack(unsigned int* seed)
: Track(seed), bit_depth_(0), channels_(1), sample_rate_(0.0) {}
AudioTrack::~AudioTrack() {}
uint64 AudioTrack::PayloadSize() const {
const uint64 parent_size = Track::PayloadSize();
uint64 size =
EbmlElementSize(kMkvSamplingFrequency, static_cast<float>(sample_rate_));
size += EbmlElementSize(kMkvChannels, channels_);
if (bit_depth_ > 0)
size += EbmlElementSize(kMkvBitDepth, bit_depth_);
size += EbmlMasterElementSize(kMkvAudio, size);
return parent_size + size;
}
bool AudioTrack::Write(IMkvWriter* writer) const {
if (!Track::Write(writer))
return false;
// Calculate AudioSettings size.
uint64 size =
EbmlElementSize(kMkvSamplingFrequency, static_cast<float>(sample_rate_));
size += EbmlElementSize(kMkvChannels, channels_);
if (bit_depth_ > 0)
size += EbmlElementSize(kMkvBitDepth, bit_depth_);
if (!WriteEbmlMasterElement(writer, kMkvAudio, size))
return false;
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
if (!WriteEbmlElement(writer, kMkvSamplingFrequency,
static_cast<float>(sample_rate_)))
return false;
if (!WriteEbmlElement(writer, kMkvChannels, channels_))
return false;
if (bit_depth_ > 0)
if (!WriteEbmlElement(writer, kMkvBitDepth, bit_depth_))
return false;
const int64 stop_position = writer->Position();
if (stop_position < 0 ||
stop_position - payload_position != static_cast<int64>(size))
return false;
return true;
}
///////////////////////////////////////////////////////////////
//
// Tracks Class
const char Tracks::kOpusCodecId[] = "A_OPUS";
const char Tracks::kVorbisCodecId[] = "A_VORBIS";
const char Tracks::kVp8CodecId[] = "V_VP8";
const char Tracks::kVp9CodecId[] = "V_VP9";
Tracks::Tracks() : track_entries_(NULL), track_entries_size_(0) {}
Tracks::~Tracks() {
if (track_entries_) {
for (uint32 i = 0; i < track_entries_size_; ++i) {
Track* const track = track_entries_[i];
delete track;
}
delete[] track_entries_;
}
}
bool Tracks::AddTrack(Track* track, int32 number) {
if (number < 0)
return false;
// This muxer only supports track numbers in the range [1, 126], in
// order to be able (to use Matroska integer representation) to
// serialize the block header (of which the track number is a part)
// for a frame using exactly 4 bytes.
if (number > 0x7E)
return false;
uint32 track_num = number;
if (track_num > 0) {
// Check to make sure a track does not already have |track_num|.
for (uint32 i = 0; i < track_entries_size_; ++i) {
if (track_entries_[i]->number() == track_num)
return false;
}
}
const uint32 count = track_entries_size_ + 1;
Track** const track_entries = new (std::nothrow) Track* [count]; // NOLINT
if (!track_entries)
return false;
for (uint32 i = 0; i < track_entries_size_; ++i) {
track_entries[i] = track_entries_[i];
}
delete[] track_entries_;
// Find the lowest availible track number > 0.
if (track_num == 0) {
track_num = count;
// Check to make sure a track does not already have |track_num|.
bool exit = false;
do {
exit = true;
for (uint32 i = 0; i < track_entries_size_; ++i) {
if (track_entries[i]->number() == track_num) {
track_num++;
exit = false;
break;
}
}
} while (!exit);
}
track->set_number(track_num);
track_entries_ = track_entries;
track_entries_[track_entries_size_] = track;
track_entries_size_ = count;
return true;
}
const Track* Tracks::GetTrackByIndex(uint32 index) const {
if (track_entries_ == NULL)
return NULL;
if (index >= track_entries_size_)
return NULL;
return track_entries_[index];
}
Track* Tracks::GetTrackByNumber(uint64 track_number) const {
const int32 count = track_entries_size();
for (int32 i = 0; i < count; ++i) {
if (track_entries_[i]->number() == track_number)
return track_entries_[i];
}
return NULL;
}
bool Tracks::TrackIsAudio(uint64 track_number) const {
const Track* const track = GetTrackByNumber(track_number);
if (track->type() == kAudio)
return true;
return false;
}
bool Tracks::TrackIsVideo(uint64 track_number) const {
const Track* const track = GetTrackByNumber(track_number);
if (track->type() == kVideo)
return true;
return false;
}
bool Tracks::Write(IMkvWriter* writer) const {
uint64 size = 0;
const int32 count = track_entries_size();
for (int32 i = 0; i < count; ++i) {
const Track* const track = GetTrackByIndex(i);
if (!track)
return false;
size += track->Size();
}
if (!WriteEbmlMasterElement(writer, kMkvTracks, size))
return false;
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
for (int32 i = 0; i < count; ++i) {
const Track* const track = GetTrackByIndex(i);
if (!track->Write(writer))
return false;
}
const int64 stop_position = writer->Position();
if (stop_position < 0 ||
stop_position - payload_position != static_cast<int64>(size))
return false;
return true;
}
///////////////////////////////////////////////////////////////
//
// Chapter Class
bool Chapter::set_id(const char* id) { return StrCpy(id, &id_); }
void Chapter::set_time(const Segment& segment, uint64 start_ns, uint64 end_ns) {
const SegmentInfo* const info = segment.GetSegmentInfo();
const uint64 timecode_scale = info->timecode_scale();
start_timecode_ = start_ns / timecode_scale;
end_timecode_ = end_ns / timecode_scale;
}
bool Chapter::add_string(const char* title, const char* language,
const char* country) {
if (!ExpandDisplaysArray())
return false;
Display& d = displays_[displays_count_++];
d.Init();
if (!d.set_title(title))
return false;
if (!d.set_language(language))
return false;
if (!d.set_country(country))
return false;
return true;
}
Chapter::Chapter() {
// This ctor only constructs the object. Proper initialization is
// done in Init() (called in Chapters::AddChapter()). The only
// reason we bother implementing this ctor is because we had to
// declare it as private (along with the dtor), in order to prevent
// clients from creating Chapter instances (a privelege we grant
// only to the Chapters class). Doing no initialization here also
// means that creating arrays of chapter objects is more efficient,
// because we only initialize each new chapter object as it becomes
// active on the array.
}
Chapter::~Chapter() {}
void Chapter::Init(unsigned int* seed) {
id_ = NULL;
start_timecode_ = 0;
end_timecode_ = 0;
displays_ = NULL;
displays_size_ = 0;
displays_count_ = 0;
uid_ = MakeUID(seed);
}
void Chapter::ShallowCopy(Chapter* dst) const {
dst->id_ = id_;
dst->start_timecode_ = start_timecode_;
dst->end_timecode_ = end_timecode_;
dst->uid_ = uid_;
dst->displays_ = displays_;
dst->displays_size_ = displays_size_;
dst->displays_count_ = displays_count_;
}
void Chapter::Clear() {
StrCpy(NULL, &id_);
while (displays_count_ > 0) {
Display& d = displays_[--displays_count_];
d.Clear();
}
delete[] displays_;
displays_ = NULL;
displays_size_ = 0;
}
bool Chapter::ExpandDisplaysArray() {
if (displays_size_ > displays_count_)
return true; // nothing to do yet
const int size = (displays_size_ == 0) ? 1 : 2 * displays_size_;
Display* const displays = new (std::nothrow) Display[size]; // NOLINT
if (displays == NULL)
return false;
for (int idx = 0; idx < displays_count_; ++idx) {
displays[idx] = displays_[idx]; // shallow copy
}
delete[] displays_;
displays_ = displays;
displays_size_ = size;
return true;
}
uint64 Chapter::WriteAtom(IMkvWriter* writer) const {
uint64 payload_size = EbmlElementSize(kMkvChapterStringUID, id_) +
EbmlElementSize(kMkvChapterUID, uid_) +
EbmlElementSize(kMkvChapterTimeStart, start_timecode_) +
EbmlElementSize(kMkvChapterTimeEnd, end_timecode_);
for (int idx = 0; idx < displays_count_; ++idx) {
const Display& d = displays_[idx];
payload_size += d.WriteDisplay(NULL);
}
const uint64 atom_size =
EbmlMasterElementSize(kMkvChapterAtom, payload_size) + payload_size;
if (writer == NULL)
return atom_size;
const int64 start = writer->Position();
if (!WriteEbmlMasterElement(writer, kMkvChapterAtom, payload_size))
return 0;
if (!WriteEbmlElement(writer, kMkvChapterStringUID, id_))
return 0;
if (!WriteEbmlElement(writer, kMkvChapterUID, uid_))
return 0;
if (!WriteEbmlElement(writer, kMkvChapterTimeStart, start_timecode_))
return 0;
if (!WriteEbmlElement(writer, kMkvChapterTimeEnd, end_timecode_))
return 0;
for (int idx = 0; idx < displays_count_; ++idx) {
const Display& d = displays_[idx];
if (!d.WriteDisplay(writer))
return 0;
}
const int64 stop = writer->Position();
if (stop >= start && uint64(stop - start) != atom_size)
return 0;
return atom_size;
}
void Chapter::Display::Init() {
title_ = NULL;
language_ = NULL;
country_ = NULL;
}
void Chapter::Display::Clear() {
StrCpy(NULL, &title_);
StrCpy(NULL, &language_);
StrCpy(NULL, &country_);
}
bool Chapter::Display::set_title(const char* title) {
return StrCpy(title, &title_);
}
bool Chapter::Display::set_language(const char* language) {
return StrCpy(language, &language_);
}
bool Chapter::Display::set_country(const char* country) {
return StrCpy(country, &country_);
}
uint64 Chapter::Display::WriteDisplay(IMkvWriter* writer) const {
uint64 payload_size = EbmlElementSize(kMkvChapString, title_);
if (language_)
payload_size += EbmlElementSize(kMkvChapLanguage, language_);
if (country_)
payload_size += EbmlElementSize(kMkvChapCountry, country_);
const uint64 display_size =
EbmlMasterElementSize(kMkvChapterDisplay, payload_size) + payload_size;
if (writer == NULL)
return display_size;
const int64 start = writer->Position();
if (!WriteEbmlMasterElement(writer, kMkvChapterDisplay, payload_size))
return 0;
if (!WriteEbmlElement(writer, kMkvChapString, title_))
return 0;
if (language_) {
if (!WriteEbmlElement(writer, kMkvChapLanguage, language_))
return 0;
}
if (country_) {
if (!WriteEbmlElement(writer, kMkvChapCountry, country_))
return 0;
}
const int64 stop = writer->Position();
if (stop >= start && uint64(stop - start) != display_size)
return 0;
return display_size;
}
///////////////////////////////////////////////////////////////
//
// Chapters Class
Chapters::Chapters() : chapters_size_(0), chapters_count_(0), chapters_(NULL) {}
Chapters::~Chapters() {
while (chapters_count_ > 0) {
Chapter& chapter = chapters_[--chapters_count_];
chapter.Clear();
}
delete[] chapters_;
chapters_ = NULL;
}
int Chapters::Count() const { return chapters_count_; }
Chapter* Chapters::AddChapter(unsigned int* seed) {
if (!ExpandChaptersArray())
return NULL;
Chapter& chapter = chapters_[chapters_count_++];
chapter.Init(seed);
return &chapter;
}
bool Chapters::Write(IMkvWriter* writer) const {
if (writer == NULL)
return false;
const uint64 payload_size = WriteEdition(NULL); // return size only
if (!WriteEbmlMasterElement(writer, kMkvChapters, payload_size))
return false;
const int64 start = writer->Position();
if (WriteEdition(writer) == 0) // error
return false;
const int64 stop = writer->Position();
if (stop >= start && uint64(stop - start) != payload_size)
return false;
return true;
}
bool Chapters::ExpandChaptersArray() {
if (chapters_size_ > chapters_count_)
return true; // nothing to do yet
const int size = (chapters_size_ == 0) ? 1 : 2 * chapters_size_;
Chapter* const chapters = new (std::nothrow) Chapter[size]; // NOLINT
if (chapters == NULL)
return false;
for (int idx = 0; idx < chapters_count_; ++idx) {
const Chapter& src = chapters_[idx];
Chapter* const dst = chapters + idx;
src.ShallowCopy(dst);
}
delete[] chapters_;
chapters_ = chapters;
chapters_size_ = size;
return true;
}
uint64 Chapters::WriteEdition(IMkvWriter* writer) const {
uint64 payload_size = 0;
for (int idx = 0; idx < chapters_count_; ++idx) {
const Chapter& chapter = chapters_[idx];
payload_size += chapter.WriteAtom(NULL);
}
const uint64 edition_size =
EbmlMasterElementSize(kMkvEditionEntry, payload_size) + payload_size;
if (writer == NULL) // return size only
return edition_size;
const int64 start = writer->Position();
if (!WriteEbmlMasterElement(writer, kMkvEditionEntry, payload_size))
return 0; // error
for (int idx = 0; idx < chapters_count_; ++idx) {
const Chapter& chapter = chapters_[idx];
const uint64 chapter_size = chapter.WriteAtom(writer);
if (chapter_size == 0) // error
return 0;
}
const int64 stop = writer->Position();
if (stop >= start && uint64(stop - start) != edition_size)
return 0;
return edition_size;
}
///////////////////////////////////////////////////////////////
//
// Cluster class
Cluster::Cluster(uint64 timecode, int64 cues_pos)
: blocks_added_(0),
finalized_(false),
header_written_(false),
payload_size_(0),
position_for_cues_(cues_pos),
size_position_(-1),
timecode_(timecode),
writer_(NULL) {}
Cluster::~Cluster() {}
bool Cluster::Init(IMkvWriter* ptr_writer) {
if (!ptr_writer) {
return false;
}
writer_ = ptr_writer;
return true;
}
bool Cluster::AddFrame(const uint8* frame, uint64 length, uint64 track_number,
uint64 abs_timecode, bool is_key) {
return DoWriteBlock(frame, length, track_number, abs_timecode, is_key ? 1 : 0,
&WriteSimpleBlock);
}
bool Cluster::AddFrameWithAdditional(const uint8* frame, uint64 length,
const uint8* additional,
uint64 additional_length, uint64 add_id,
uint64 track_number, uint64 abs_timecode,
bool is_key) {
return DoWriteBlockWithAdditional(
frame, length, additional, additional_length, add_id, track_number,
abs_timecode, is_key ? 1 : 0, &WriteBlockWithAdditional);
}
bool Cluster::AddFrameWithDiscardPadding(const uint8* frame, uint64 length,
int64 discard_padding,
uint64 track_number,
uint64 abs_timecode, bool is_key) {
return DoWriteBlockWithDiscardPadding(
frame, length, discard_padding, track_number, abs_timecode,
is_key ? 1 : 0, &WriteBlockWithDiscardPadding);
}
bool Cluster::AddMetadata(const uint8* frame, uint64 length,
uint64 track_number, uint64 abs_timecode,
uint64 duration_timecode) {
return DoWriteBlock(frame, length, track_number, abs_timecode,
duration_timecode, &WriteMetadataBlock);
}
void Cluster::AddPayloadSize(uint64 size) { payload_size_ += size; }
bool Cluster::Finalize() {
if (!writer_ || finalized_ || size_position_ == -1)
return false;
if (writer_->Seekable()) {
const int64 pos = writer_->Position();
if (writer_->Position(size_position_))
return false;
if (WriteUIntSize(writer_, payload_size(), 8))
return false;
if (writer_->Position(pos))
return false;
}
finalized_ = true;
return true;
}
uint64 Cluster::Size() const {
const uint64 element_size =
EbmlMasterElementSize(kMkvCluster, 0xFFFFFFFFFFFFFFFFULL) + payload_size_;
return element_size;
}
template <typename Type>
bool Cluster::PreWriteBlock(Type* write_function) {
if (write_function == NULL)
return false;
if (finalized_)
return false;
if (!header_written_) {
if (!WriteClusterHeader())
return false;
}
return true;
}
void Cluster::PostWriteBlock(uint64 element_size) {
AddPayloadSize(element_size);
++blocks_added_;
}
bool Cluster::IsValidTrackNumber(uint64 track_number) const {
return (track_number > 0 && track_number <= 0x7E);
}
int64 Cluster::GetRelativeTimecode(int64 abs_timecode) const {
const int64 cluster_timecode = this->Cluster::timecode();
const int64 rel_timecode =
static_cast<int64>(abs_timecode) - cluster_timecode;
if (rel_timecode < 0 || rel_timecode > kMaxBlockTimecode)
return -1;
return rel_timecode;
}
bool Cluster::DoWriteBlock(const uint8* frame, uint64 length,
uint64 track_number, uint64 abs_timecode,
uint64 generic_arg, WriteBlock write_block) {
if (frame == NULL || length == 0)
return false;
if (!IsValidTrackNumber(track_number))
return false;
const int64 rel_timecode = GetRelativeTimecode(abs_timecode);
if (rel_timecode < 0)
return false;
if (!PreWriteBlock(write_block))
return false;
const uint64 element_size = (*write_block)(
writer_, frame, length, track_number, rel_timecode, generic_arg);
if (element_size == 0)
return false;
PostWriteBlock(element_size);
return true;
}
bool Cluster::DoWriteBlockWithAdditional(
const uint8* frame, uint64 length, const uint8* additional,
uint64 additional_length, uint64 add_id, uint64 track_number,
uint64 abs_timecode, uint64 generic_arg, WriteBlockAdditional write_block) {
if (frame == NULL || length == 0 || additional == NULL ||
additional_length == 0)
return false;
if (!IsValidTrackNumber(track_number))
return false;
const int64 rel_timecode = GetRelativeTimecode(abs_timecode);
if (rel_timecode < 0)
return false;
if (!PreWriteBlock(write_block))
return false;
const uint64 element_size =
(*write_block)(writer_, frame, length, additional, additional_length,
add_id, track_number, rel_timecode, generic_arg);
if (element_size == 0)
return false;
PostWriteBlock(element_size);
return true;
}
bool Cluster::DoWriteBlockWithDiscardPadding(
const uint8* frame, uint64 length, int64 discard_padding,
uint64 track_number, uint64 abs_timecode, uint64 generic_arg,
WriteBlockDiscardPadding write_block) {
if (frame == NULL || length == 0)
return false;
if (!IsValidTrackNumber(track_number))
return false;
const int64 rel_timecode = GetRelativeTimecode(abs_timecode);
if (rel_timecode < 0)
return false;
if (!PreWriteBlock(write_block))
return false;
const uint64 element_size =
(*write_block)(writer_, frame, length, discard_padding, track_number,
rel_timecode, generic_arg);
if (element_size == 0)
return false;
PostWriteBlock(element_size);
return true;
}
bool Cluster::WriteClusterHeader() {
if (finalized_)
return false;
if (WriteID(writer_, kMkvCluster))
return false;
// Save for later.
size_position_ = writer_->Position();
// Write "unknown" (EBML coded -1) as cluster size value. We need to write 8
// bytes because we do not know how big our cluster will be.
if (SerializeInt(writer_, kEbmlUnknownValue, 8))
return false;
if (!WriteEbmlElement(writer_, kMkvTimecode, timecode()))
return false;
AddPayloadSize(EbmlElementSize(kMkvTimecode, timecode()));
header_written_ = true;
return true;
}
///////////////////////////////////////////////////////////////
//
// SeekHead Class
SeekHead::SeekHead() : start_pos_(0ULL) {
for (int32 i = 0; i < kSeekEntryCount; ++i) {
seek_entry_id_[i] = 0;
seek_entry_pos_[i] = 0;
}
}
SeekHead::~SeekHead() {}
bool SeekHead::Finalize(IMkvWriter* writer) const {
if (writer->Seekable()) {
if (start_pos_ == -1)
return false;
uint64 payload_size = 0;
uint64 entry_size[kSeekEntryCount];
for (int32 i = 0; i < kSeekEntryCount; ++i) {
if (seek_entry_id_[i] != 0) {
entry_size[i] =
EbmlElementSize(kMkvSeekID, static_cast<uint64>(seek_entry_id_[i]));
entry_size[i] += EbmlElementSize(kMkvSeekPosition, seek_entry_pos_[i]);
payload_size +=
EbmlMasterElementSize(kMkvSeek, entry_size[i]) + entry_size[i];
}
}
// No SeekHead elements
if (payload_size == 0)
return true;
const int64 pos = writer->Position();
if (writer->Position(start_pos_))
return false;
if (!WriteEbmlMasterElement(writer, kMkvSeekHead, payload_size))
return false;
for (int32 i = 0; i < kSeekEntryCount; ++i) {
if (seek_entry_id_[i] != 0) {
if (!WriteEbmlMasterElement(writer, kMkvSeek, entry_size[i]))
return false;
if (!WriteEbmlElement(writer, kMkvSeekID,
static_cast<uint64>(seek_entry_id_[i])))
return false;
if (!WriteEbmlElement(writer, kMkvSeekPosition, seek_entry_pos_[i]))
return false;
}
}
const uint64 total_entry_size = kSeekEntryCount * MaxEntrySize();
const uint64 total_size =
EbmlMasterElementSize(kMkvSeekHead, total_entry_size) +
total_entry_size;
const int64 size_left = total_size - (writer->Position() - start_pos_);
const uint64 bytes_written = WriteVoidElement(writer, size_left);
if (!bytes_written)
return false;
if (writer->Position(pos))
return false;
}
return true;
}
bool SeekHead::Write(IMkvWriter* writer) {
const uint64 entry_size = kSeekEntryCount * MaxEntrySize();
const uint64 size = EbmlMasterElementSize(kMkvSeekHead, entry_size);
start_pos_ = writer->Position();
const uint64 bytes_written = WriteVoidElement(writer, size + entry_size);
if (!bytes_written)
return false;
return true;
}
bool SeekHead::AddSeekEntry(uint32 id, uint64 pos) {
for (int32 i = 0; i < kSeekEntryCount; ++i) {
if (seek_entry_id_[i] == 0) {
seek_entry_id_[i] = id;
seek_entry_pos_[i] = pos;
return true;
}
}
return false;
}
uint32 SeekHead::GetId(int index) const {
if (index < 0 || index >= kSeekEntryCount)
return UINT_MAX;
return seek_entry_id_[index];
}
uint64 SeekHead::GetPosition(int index) const {
if (index < 0 || index >= kSeekEntryCount)
return ULLONG_MAX;
return seek_entry_pos_[index];
}
bool SeekHead::SetSeekEntry(int index, uint32 id, uint64 position) {
if (index < 0 || index >= kSeekEntryCount)
return false;
seek_entry_id_[index] = id;
seek_entry_pos_[index] = position;
return true;
}
uint64 SeekHead::MaxEntrySize() const {
const uint64 max_entry_payload_size =
EbmlElementSize(kMkvSeekID, 0xffffffffULL) +
EbmlElementSize(kMkvSeekPosition, 0xffffffffffffffffULL);
const uint64 max_entry_size =
EbmlMasterElementSize(kMkvSeek, max_entry_payload_size) +
max_entry_payload_size;
return max_entry_size;
}
///////////////////////////////////////////////////////////////
//
// SegmentInfo Class
SegmentInfo::SegmentInfo()
: duration_(-1.0),
muxing_app_(NULL),
timecode_scale_(1000000ULL),
writing_app_(NULL),
date_utc_(LLONG_MIN),
duration_pos_(-1) {}
SegmentInfo::~SegmentInfo() {
delete[] muxing_app_;
delete[] writing_app_;
}
bool SegmentInfo::Init() {
int32 major;
int32 minor;
int32 build;
int32 revision;
GetVersion(&major, &minor, &build, &revision);
char temp[256];
#ifdef _MSC_VER
sprintf_s(temp, sizeof(temp) / sizeof(temp[0]), "libwebm-%d.%d.%d.%d", major,
minor, build, revision);
#else
snprintf(temp, sizeof(temp) / sizeof(temp[0]), "libwebm-%d.%d.%d.%d", major,
minor, build, revision);
#endif
const size_t app_len = strlen(temp) + 1;
delete[] muxing_app_;
muxing_app_ = new (std::nothrow) char[app_len]; // NOLINT
if (!muxing_app_)
return false;
#ifdef _MSC_VER
strcpy_s(muxing_app_, app_len, temp);
#else
strcpy(muxing_app_, temp);
#endif
set_writing_app(temp);
if (!writing_app_)
return false;
return true;
}
bool SegmentInfo::Finalize(IMkvWriter* writer) const {
if (!writer)
return false;
if (duration_ > 0.0) {
if (writer->Seekable()) {
if (duration_pos_ == -1)
return false;
const int64 pos = writer->Position();
if (writer->Position(duration_pos_))
return false;
if (!WriteEbmlElement(writer, kMkvDuration,
static_cast<float>(duration_)))
return false;
if (writer->Position(pos))
return false;
}
}
return true;
}
bool SegmentInfo::Write(IMkvWriter* writer) {
if (!writer || !muxing_app_ || !writing_app_)
return false;
uint64 size = EbmlElementSize(kMkvTimecodeScale, timecode_scale_);
if (duration_ > 0.0)
size += EbmlElementSize(kMkvDuration, static_cast<float>(duration_));
if (date_utc_ != LLONG_MIN)
size += EbmlDateElementSize(kMkvDateUTC, date_utc_);
size += EbmlElementSize(kMkvMuxingApp, muxing_app_);
size += EbmlElementSize(kMkvWritingApp, writing_app_);
if (!WriteEbmlMasterElement(writer, kMkvInfo, size))
return false;
const int64 payload_position = writer->Position();
if (payload_position < 0)
return false;
if (!WriteEbmlElement(writer, kMkvTimecodeScale, timecode_scale_))
return false;
if (duration_ > 0.0) {
// Save for later
duration_pos_ = writer->Position();
if (!WriteEbmlElement(writer, kMkvDuration, static_cast<float>(duration_)))
return false;
}
if (date_utc_ != LLONG_MIN)
WriteEbmlDateElement(writer, kMkvDateUTC, date_utc_);
if (!WriteEbmlElement(writer, kMkvMuxingApp, muxing_app_))
return false;
if (!WriteEbmlElement(writer, kMkvWritingApp, writing_app_))
return false;
const int64 stop_position = writer->Position();
if (stop_position < 0 ||
stop_position - payload_position != static_cast<int64>(size))
return false;
return true;
}
void SegmentInfo::set_muxing_app(const char* app) {
if (app) {
const size_t length = strlen(app) + 1;
char* temp_str = new (std::nothrow) char[length]; // NOLINT
if (!temp_str)
return;
#ifdef _MSC_VER
strcpy_s(temp_str, length, app);
#else
strcpy(temp_str, app);
#endif
delete[] muxing_app_;
muxing_app_ = temp_str;
}
}
void SegmentInfo::set_writing_app(const char* app) {
if (app) {
const size_t length = strlen(app) + 1;
char* temp_str = new (std::nothrow) char[length]; // NOLINT
if (!temp_str)
return;
#ifdef _MSC_VER
strcpy_s(temp_str, length, app);
#else
strcpy(temp_str, app);
#endif
delete[] writing_app_;
writing_app_ = temp_str;
}
}
///////////////////////////////////////////////////////////////
//
// Segment Class
Segment::Segment()
: chunk_count_(0),
chunk_name_(NULL),
chunk_writer_cluster_(NULL),
chunk_writer_cues_(NULL),
chunk_writer_header_(NULL),
chunking_(false),
chunking_base_name_(NULL),
cluster_list_(NULL),
cluster_list_capacity_(0),
cluster_list_size_(0),
cues_position_(kAfterClusters),
cues_track_(0),
force_new_cluster_(false),
frames_(NULL),
frames_capacity_(0),
frames_size_(0),
has_video_(false),
header_written_(false),
last_block_duration_(0),
last_timestamp_(0),
max_cluster_duration_(kDefaultMaxClusterDuration),
max_cluster_size_(0),
mode_(kFile),
new_cuepoint_(false),
output_cues_(true),
payload_pos_(0),
size_position_(0),
doc_type_version_(kDefaultDocTypeVersion),
doc_type_version_written_(0),
writer_cluster_(NULL),
writer_cues_(NULL),
writer_header_(NULL) {
const time_t curr_time = time(NULL);
seed_ = static_cast<unsigned int>(curr_time);
#ifdef _WIN32
srand(seed_);
#endif
}
Segment::~Segment() {
if (cluster_list_) {
for (int32 i = 0; i < cluster_list_size_; ++i) {
Cluster* const cluster = cluster_list_[i];
delete cluster;
}
delete[] cluster_list_;
}
if (frames_) {
for (int32 i = 0; i < frames_size_; ++i) {
Frame* const frame = frames_[i];
delete frame;
}
delete[] frames_;
}
delete[] chunk_name_;
delete[] chunking_base_name_;
if (chunk_writer_cluster_) {
chunk_writer_cluster_->Close();
delete chunk_writer_cluster_;
}
if (chunk_writer_cues_) {
chunk_writer_cues_->Close();
delete chunk_writer_cues_;
}
if (chunk_writer_header_) {
chunk_writer_header_->Close();
delete chunk_writer_header_;
}
}
void Segment::MoveCuesBeforeClustersHelper(uint64 diff, int32 index,
uint64* cues_size) {
CuePoint* const cue_point = cues_.GetCueByIndex(index);
if (cue_point == NULL)
return;
const uint64 old_cue_point_size = cue_point->Size();
const uint64 cluster_pos = cue_point->cluster_pos() + diff;
cue_point->set_cluster_pos(cluster_pos); // update the new cluster position
// New size of the cue is computed as follows
// Let a = current sum of size of all CuePoints
// Let b = Increase in Cue Point's size due to this iteration
// Let c = Increase in size of Cues Element's length due to this iteration
// (This is computed as CodedSize(a + b) - CodedSize(a))
// Let d = b + c. Now d is the |diff| passed to the next recursive call.
// Let e = a + b. Now e is the |cues_size| passed to the next recursive
// call.
const uint64 cue_point_size_diff = cue_point->Size() - old_cue_point_size;
const uint64 cue_size_diff =
GetCodedUIntSize(*cues_size + cue_point_size_diff) -
GetCodedUIntSize(*cues_size);
*cues_size += cue_point_size_diff;
diff = cue_size_diff + cue_point_size_diff;
if (diff > 0) {
for (int32 i = 0; i < cues_.cue_entries_size(); ++i) {
MoveCuesBeforeClustersHelper(diff, i, cues_size);
}
}
}
void Segment::MoveCuesBeforeClusters() {
const uint64 current_cue_size = cues_.Size();
uint64 cue_size = 0;
for (int32 i = 0; i < cues_.cue_entries_size(); ++i)
cue_size += cues_.GetCueByIndex(i)->Size();
for (int32 i = 0; i < cues_.cue_entries_size(); ++i)
MoveCuesBeforeClustersHelper(current_cue_size, i, &cue_size);
// Adjust the Seek Entry to reflect the change in position
// of Cluster and Cues
int32 cluster_index = 0;
int32 cues_index = 0;
for (int32 i = 0; i < SeekHead::kSeekEntryCount; ++i) {
if (seek_head_.GetId(i) == kMkvCluster)
cluster_index = i;
if (seek_head_.GetId(i) == kMkvCues)
cues_index = i;
}
seek_head_.SetSeekEntry(cues_index, kMkvCues,
seek_head_.GetPosition(cluster_index));
seek_head_.SetSeekEntry(cluster_index, kMkvCluster,
cues_.Size() + seek_head_.GetPosition(cues_index));
}
bool Segment::Init(IMkvWriter* ptr_writer) {
if (!ptr_writer) {
return false;
}
writer_cluster_ = ptr_writer;
writer_cues_ = ptr_writer;
writer_header_ = ptr_writer;
return segment_info_.Init();
}
bool Segment::CopyAndMoveCuesBeforeClusters(mkvparser::IMkvReader* reader,
IMkvWriter* writer) {
if (!writer->Seekable() || chunking_)
return false;
const int64 cluster_offset =
cluster_list_[0]->size_position() - GetUIntSize(kMkvCluster);
// Copy the headers.
if (!ChunkedCopy(reader, writer, 0, cluster_offset))
return false;
// Recompute cue positions and seek entries.
MoveCuesBeforeClusters();
// Write cues and seek entries.
// TODO(vigneshv): As of now, it's safe to call seek_head_.Finalize() for the
// second time with a different writer object. But the name Finalize() doesn't
// indicate something we want to call more than once. So consider renaming it
// to write() or some such.
if (!cues_.Write(writer) || !seek_head_.Finalize(writer))
return false;
// Copy the Clusters.
if (!ChunkedCopy(reader, writer, cluster_offset,
cluster_end_offset_ - cluster_offset))
return false;
// Update the Segment size in case the Cues size has changed.
const int64 pos = writer->Position();
const int64 segment_size = writer->Position() - payload_pos_;
if (writer->Position(size_position_) ||
WriteUIntSize(writer, segment_size, 8) || writer->Position(pos))
return false;
return true;
}
bool Segment::Finalize() {
if (WriteFramesAll() < 0)
return false;
if (mode_ == kFile) {
if (cluster_list_size_ > 0) {
// Update last cluster's size
Cluster* const old_cluster = cluster_list_[cluster_list_size_ - 1];
if (!old_cluster || !old_cluster->Finalize())
return false;
}
if (chunking_ && chunk_writer_cluster_) {
chunk_writer_cluster_->Close();
chunk_count_++;
}
const double duration =
(static_cast<double>(last_timestamp_) + last_block_duration_) /
segment_info_.timecode_scale();
segment_info_.set_duration(duration);
if (!segment_info_.Finalize(writer_header_))
return false;
if (output_cues_)
if (!seek_head_.AddSeekEntry(kMkvCues, MaxOffset()))
return false;
if (chunking_) {
if (!chunk_writer_cues_)
return false;
char* name = NULL;
if (!UpdateChunkName("cues", &name))
return false;
const bool cues_open = chunk_writer_cues_->Open(name);
delete[] name;
if (!cues_open)
return false;
}
cluster_end_offset_ = writer_cluster_->Position();
// Write the seek headers and cues
if (output_cues_)
if (!cues_.Write(writer_cues_))
return false;
if (!seek_head_.Finalize(writer_header_))
return false;
if (writer_header_->Seekable()) {
if (size_position_ == -1)
return false;
const int64 segment_size = MaxOffset();
if (segment_size < 1)
return false;
const int64 pos = writer_header_->Position();
UpdateDocTypeVersion();
if (doc_type_version_ != doc_type_version_written_) {
if (writer_header_->Position(0))
return false;
if (!WriteEbmlHeader(writer_header_, doc_type_version_))
return false;
if (writer_header_->Position() != ebml_header_size_)
return false;
doc_type_version_written_ = doc_type_version_;
}
if (writer_header_->Position(size_position_))
return false;
if (WriteUIntSize(writer_header_, segment_size, 8))
return false;
if (writer_header_->Position(pos))
return false;
}
if (chunking_) {
// Do not close any writers until the segment size has been written,
// otherwise the size may be off.
if (!chunk_writer_cues_ || !chunk_writer_header_)
return false;
chunk_writer_cues_->Close();
chunk_writer_header_->Close();
}
}
return true;
}
Track* Segment::AddTrack(int32 number) {
Track* const track = new (std::nothrow) Track(&seed_); // NOLINT
if (!track)
return NULL;
if (!tracks_.AddTrack(track, number)) {
delete track;
return NULL;
}
return track;
}
Chapter* Segment::AddChapter() { return chapters_.AddChapter(&seed_); }
uint64 Segment::AddVideoTrack(int32 width, int32 height, int32 number) {
VideoTrack* const track = new (std::nothrow) VideoTrack(&seed_); // NOLINT
if (!track)
return 0;
track->set_type(Tracks::kVideo);
track->set_codec_id(Tracks::kVp8CodecId);
track->set_width(width);
track->set_height(height);
tracks_.AddTrack(track, number);
has_video_ = true;
return track->number();
}
bool Segment::AddCuePoint(uint64 timestamp, uint64 track) {
if (cluster_list_size_ < 1)
return false;
const Cluster* const cluster = cluster_list_[cluster_list_size_ - 1];
if (!cluster)
return false;
CuePoint* const cue = new (std::nothrow) CuePoint(); // NOLINT
if (!cue)
return false;
cue->set_time(timestamp / segment_info_.timecode_scale());
cue->set_block_number(cluster->blocks_added());
cue->set_cluster_pos(cluster->position_for_cues());
cue->set_track(track);
if (!cues_.AddCue(cue))
return false;
new_cuepoint_ = false;
return true;
}
uint64 Segment::AddAudioTrack(int32 sample_rate, int32 channels, int32 number) {
AudioTrack* const track = new (std::nothrow) AudioTrack(&seed_); // NOLINT
if (!track)
return 0;
track->set_type(Tracks::kAudio);
track->set_codec_id(Tracks::kVorbisCodecId);
track->set_sample_rate(sample_rate);
track->set_channels(channels);
tracks_.AddTrack(track, number);
return track->number();
}
bool Segment::AddFrame(const uint8* frame, uint64 length, uint64 track_number,
uint64 timestamp, bool is_key) {
if (!frame)
return false;
if (!CheckHeaderInfo())
return false;
// Check for non-monotonically increasing timestamps.
if (timestamp < last_timestamp_)
return false;
// Check if the track number is valid.
if (!tracks_.GetTrackByNumber(track_number))
return false;
// If the segment has a video track hold onto audio frames to make sure the
// audio that is associated with the start time of a video key-frame is
// muxed into the same cluster.
if (has_video_ && tracks_.TrackIsAudio(track_number) && !force_new_cluster_) {
Frame* const new_frame = new (std::nothrow) Frame();
if (new_frame == NULL || !new_frame->Init(frame, length))
return false;
new_frame->set_track_number(track_number);
new_frame->set_timestamp(timestamp);
new_frame->set_is_key(is_key);
if (!QueueFrame(new_frame))
return false;
return true;
}
if (!DoNewClusterProcessing(track_number, timestamp, is_key))
return false;
if (cluster_list_size_ < 1)
return false;
Cluster* const cluster = cluster_list_[cluster_list_size_ - 1];
if (!cluster)
return false;
const uint64 timecode_scale = segment_info_.timecode_scale();
const uint64 abs_timecode = timestamp / timecode_scale;
if (!cluster->AddFrame(frame, length, track_number, abs_timecode, is_key))
return false;
if (new_cuepoint_ && cues_track_ == track_number) {
if (!AddCuePoint(timestamp, cues_track_))
return false;
}
if (timestamp > last_timestamp_)
last_timestamp_ = timestamp;
return true;
}
bool Segment::AddFrameWithAdditional(const uint8* frame, uint64 length,
const uint8* additional,
uint64 additional_length, uint64 add_id,
uint64 track_number, uint64 timestamp,
bool is_key) {
if (frame == NULL || additional == NULL)
return false;
if (!CheckHeaderInfo())
return false;
// Check for non-monotonically increasing timestamps.
if (timestamp < last_timestamp_)
return false;
// Check if the track number is valid.
if (!tracks_.GetTrackByNumber(track_number))
return false;
// If the segment has a video track hold onto audio frames to make sure the
// audio that is associated with the start time of a video key-frame is
// muxed into the same cluster.
if (has_video_ && tracks_.TrackIsAudio(track_number) && !force_new_cluster_) {
Frame* const new_frame = new (std::nothrow) Frame();
if (new_frame == NULL || !new_frame->Init(frame, length))
return false;
new_frame->set_track_number(track_number);
new_frame->set_timestamp(timestamp);
new_frame->set_is_key(is_key);
if (!QueueFrame(new_frame))
return false;
return true;
}
if (!DoNewClusterProcessing(track_number, timestamp, is_key))
return false;
if (cluster_list_size_ < 1)
return false;
Cluster* const cluster = cluster_list_[cluster_list_size_ - 1];
if (cluster == NULL)
return false;
const uint64 timecode_scale = segment_info_.timecode_scale();
const uint64 abs_timecode = timestamp / timecode_scale;
if (!cluster->AddFrameWithAdditional(frame, length, additional,
additional_length, add_id, track_number,
abs_timecode, is_key))
return false;
if (new_cuepoint_ && cues_track_ == track_number) {
if (!AddCuePoint(timestamp, cues_track_))
return false;
}
if (timestamp > last_timestamp_)
last_timestamp_ = timestamp;
return true;
}
bool Segment::AddFrameWithDiscardPadding(const uint8* frame, uint64 length,
int64 discard_padding,
uint64 track_number, uint64 timestamp,
bool is_key) {
if (frame == NULL)
return false;
if (!CheckHeaderInfo())
return false;
// Check for non-monotonically increasing timestamps.
if (timestamp < last_timestamp_)
return false;
// Check if the track_number is valid.
if (!tracks_.GetTrackByNumber(track_number))
return false;
if (discard_padding != 0)
doc_type_version_ = 4;
// If the segment has a video track hold onto audio frames to make sure the
// audio that is associated with the start time of a video key-frame is
// muxed into the same cluster.
if (has_video_ && tracks_.TrackIsAudio(track_number) && !force_new_cluster_) {
Frame* const new_frame = new (std::nothrow) Frame();
if (new_frame == NULL || !new_frame->Init(frame, length))
return false;
new_frame->set_track_number(track_number);
new_frame->set_timestamp(timestamp);
new_frame->set_is_key(is_key);
new_frame->set_discard_padding(discard_padding);
if (!QueueFrame(new_frame))
return false;
return true;
}
if (!DoNewClusterProcessing(track_number, timestamp, is_key))
return false;
if (cluster_list_size_ < 1)
return false;
Cluster* const cluster = cluster_list_[cluster_list_size_ - 1];
if (!cluster)
return false;
const uint64 timecode_scale = segment_info_.timecode_scale();
const uint64 abs_timecode = timestamp / timecode_scale;
if (!cluster->AddFrameWithDiscardPadding(
frame, length, discard_padding, track_number, abs_timecode, is_key)) {
return false;
}
if (new_cuepoint_ && cues_track_ == track_number) {
if (!AddCuePoint(timestamp, cues_track_))
return false;
}
if (timestamp > last_timestamp_)
last_timestamp_ = timestamp;
return true;
}
bool Segment::AddMetadata(const uint8* frame, uint64 length,
uint64 track_number, uint64 timestamp_ns,
uint64 duration_ns) {
if (!frame)
return false;
if (!CheckHeaderInfo())
return false;
// Check for non-monotonically increasing timestamps.
if (timestamp_ns < last_timestamp_)
return false;
// Check if the track number is valid.
if (!tracks_.GetTrackByNumber(track_number))
return false;
if (!DoNewClusterProcessing(track_number, timestamp_ns, true))
return false;
if (cluster_list_size_ < 1)
return false;
Cluster* const cluster = cluster_list_[cluster_list_size_ - 1];
if (!cluster)
return false;
const uint64 timecode_scale = segment_info_.timecode_scale();
const uint64 abs_timecode = timestamp_ns / timecode_scale;
const uint64 duration_timecode = duration_ns / timecode_scale;
if (!cluster->AddMetadata(frame, length, track_number, abs_timecode,
duration_timecode))
return false;
if (timestamp_ns > last_timestamp_)
last_timestamp_ = timestamp_ns;
return true;
}
bool Segment::AddGenericFrame(const Frame* frame) {
if (!tracks_.GetTrackByNumber(frame->track_number())) {
return false;
}
last_block_duration_ = frame->duration();
if (!tracks_.TrackIsAudio(frame->track_number()) &&
!tracks_.TrackIsVideo(frame->track_number()) && frame->duration() > 0) {
return AddMetadata(frame->frame(), frame->length(), frame->track_number(),
frame->timestamp(), frame->duration());
} else if (frame->additional() && frame->additional_length() > 0) {
return AddFrameWithAdditional(
frame->frame(), frame->length(), frame->additional(),
frame->additional_length(), frame->add_id(), frame->track_number(),
frame->timestamp(), frame->is_key());
} else if (frame->discard_padding() != 0) {
return AddFrameWithDiscardPadding(
frame->frame(), frame->length(), frame->discard_padding(),
frame->track_number(), frame->timestamp(), frame->is_key());
} else {
return AddFrame(frame->frame(), frame->length(), frame->track_number(),
frame->timestamp(), frame->is_key());
}
}
void Segment::OutputCues(bool output_cues) { output_cues_ = output_cues; }
bool Segment::SetChunking(bool chunking, const char* filename) {
if (chunk_count_ > 0)
return false;
if (chunking) {
if (!filename)
return false;
// Check if we are being set to what is already set.
if (chunking_ && !strcmp(filename, chunking_base_name_))
return true;
const size_t name_length = strlen(filename) + 1;
char* const temp = new (std::nothrow) char[name_length]; // NOLINT
if (!temp)
return false;
#ifdef _MSC_VER
strcpy_s(temp, name_length, filename);
#else
strcpy(temp, filename);
#endif
delete[] chunking_base_name_;
chunking_base_name_ = temp;
if (!UpdateChunkName("chk", &chunk_name_))
return false;
if (!chunk_writer_cluster_) {
chunk_writer_cluster_ = new (std::nothrow) MkvWriter(); // NOLINT
if (!chunk_writer_cluster_)
return false;
}
if (!chunk_writer_cues_) {
chunk_writer_cues_ = new (std::nothrow) MkvWriter(); // NOLINT
if (!chunk_writer_cues_)
return false;
}
if (!chunk_writer_header_) {
chunk_writer_header_ = new (std::nothrow) MkvWriter(); // NOLINT
if (!chunk_writer_header_)
return false;
}
if (!chunk_writer_cluster_->Open(chunk_name_))
return false;
const size_t header_length = strlen(filename) + strlen(".hdr") + 1;
char* const header = new (std::nothrow) char[header_length]; // NOLINT
if (!header)
return false;
#ifdef _MSC_VER
strcpy_s(header, header_length - strlen(".hdr"), chunking_base_name_);
strcat_s(header, header_length, ".hdr");
#else
strcpy(header, chunking_base_name_);
strcat(header, ".hdr");
#endif
if (!chunk_writer_header_->Open(header)) {
delete[] header;
return false;
}
writer_cluster_ = chunk_writer_cluster_;
writer_cues_ = chunk_writer_cues_;
writer_header_ = chunk_writer_header_;
delete[] header;
}
chunking_ = chunking;
return true;
}
bool Segment::CuesTrack(uint64 track_number) {
const Track* const track = GetTrackByNumber(track_number);
if (!track)
return false;
cues_track_ = track_number;
return true;
}
void Segment::ForceNewClusterOnNextFrame() { force_new_cluster_ = true; }
Track* Segment::GetTrackByNumber(uint64 track_number) const {
return tracks_.GetTrackByNumber(track_number);
}
bool Segment::WriteSegmentHeader() {
UpdateDocTypeVersion();
// TODO(fgalligan): Support more than one segment.
if (!WriteEbmlHeader(writer_header_, doc_type_version_))
return false;
doc_type_version_written_ = doc_type_version_;
ebml_header_size_ = static_cast<int32>(writer_header_->Position());
// Write "unknown" (-1) as segment size value. If mode is kFile, Segment
// will write over duration when the file is finalized.
if (WriteID(writer_header_, kMkvSegment))
return false;
// Save for later.
size_position_ = writer_header_->Position();
// Write "unknown" (EBML coded -1) as segment size value. We need to write 8
// bytes because if we are going to overwrite the segment size later we do
// not know how big our segment will be.
if (SerializeInt(writer_header_, kEbmlUnknownValue, 8))
return false;
payload_pos_ = writer_header_->Position();
if (mode_ == kFile && writer_header_->Seekable()) {
// Set the duration > 0.0 so SegmentInfo will write out the duration. When
// the muxer is done writing we will set the correct duration and have
// SegmentInfo upadte it.
segment_info_.set_duration(1.0);
if (!seek_head_.Write(writer_header_))
return false;
}
if (!seek_head_.AddSeekEntry(kMkvInfo, MaxOffset()))
return false;
if (!segment_info_.Write(writer_header_))
return false;
if (!seek_head_.AddSeekEntry(kMkvTracks, MaxOffset()))
return false;
if (!tracks_.Write(writer_header_))
return false;
if (chapters_.Count() > 0) {
if (!seek_head_.AddSeekEntry(kMkvChapters, MaxOffset()))
return false;
if (!chapters_.Write(writer_header_))
return false;
}
if (chunking_ && (mode_ == kLive || !writer_header_->Seekable())) {
if (!chunk_writer_header_)
return false;
chunk_writer_header_->Close();
}
header_written_ = true;
return true;
}
// Here we are testing whether to create a new cluster, given a frame
// having time frame_timestamp_ns.
//
int Segment::TestFrame(uint64 track_number, uint64 frame_timestamp_ns,
bool is_key) const {
if (force_new_cluster_)
return 1;
// If no clusters have been created yet, then create a new cluster
// and write this frame immediately, in the new cluster. This path
// should only be followed once, the first time we attempt to write
// a frame.
if (cluster_list_size_ <= 0)
return 1;
// There exists at least one cluster. We must compare the frame to
// the last cluster, in order to determine whether the frame is
// written to the existing cluster, or that a new cluster should be
// created.
const uint64 timecode_scale = segment_info_.timecode_scale();
const uint64 frame_timecode = frame_timestamp_ns / timecode_scale;
const Cluster* const last_cluster = cluster_list_[cluster_list_size_ - 1];
const uint64 last_cluster_timecode = last_cluster->timecode();
// For completeness we test for the case when the frame's timecode
// is less than the cluster's timecode. Although in principle that
// is allowed, this muxer doesn't actually write clusters like that,
// so this indicates a bug somewhere in our algorithm.
if (frame_timecode < last_cluster_timecode) // should never happen
return -1;
// If the frame has a timestamp significantly larger than the last
// cluster (in Matroska, cluster-relative timestamps are serialized
// using a 16-bit signed integer), then we cannot write this frame
// to that cluster, and so we must create a new cluster.
const int64 delta_timecode = frame_timecode - last_cluster_timecode;
if (delta_timecode > kMaxBlockTimecode)
return 2;
// We decide to create a new cluster when we have a video keyframe.
// This will flush queued (audio) frames, and write the keyframe
// immediately, in the newly-created cluster.
if (is_key && tracks_.TrackIsVideo(track_number))
return 1;
// Create a new cluster if we have accumulated too many frames
// already, where "too many" is defined as "the total time of frames
// in the cluster exceeds a threshold".
const uint64 delta_ns = delta_timecode * timecode_scale;
if (max_cluster_duration_ > 0 && delta_ns >= max_cluster_duration_)
return 1;
// This is similar to the case above, with the difference that a new
// cluster is created when the size of the current cluster exceeds a
// threshold.
const uint64 cluster_size = last_cluster->payload_size();
if (max_cluster_size_ > 0 && cluster_size >= max_cluster_size_)
return 1;
// There's no need to create a new cluster, so emit this frame now.
return 0;
}
bool Segment::MakeNewCluster(uint64 frame_timestamp_ns) {
const int32 new_size = cluster_list_size_ + 1;
if (new_size > cluster_list_capacity_) {
// Add more clusters.
const int32 new_capacity =
(cluster_list_capacity_ <= 0) ? 1 : cluster_list_capacity_ * 2;
Cluster** const clusters =
new (std::nothrow) Cluster* [new_capacity]; // NOLINT
if (!clusters)
return false;
for (int32 i = 0; i < cluster_list_size_; ++i) {
clusters[i] = cluster_list_[i];
}
delete[] cluster_list_;
cluster_list_ = clusters;
cluster_list_capacity_ = new_capacity;
}
if (!WriteFramesLessThan(frame_timestamp_ns))
return false;
if (mode_ == kFile) {
if (cluster_list_size_ > 0) {
// Update old cluster's size
Cluster* const old_cluster = cluster_list_[cluster_list_size_ - 1];
if (!old_cluster || !old_cluster->Finalize())
return false;
}
if (output_cues_)
new_cuepoint_ = true;
}
if (chunking_ && cluster_list_size_ > 0) {
chunk_writer_cluster_->Close();
chunk_count_++;
if (!UpdateChunkName("chk", &chunk_name_))
return false;
if (!chunk_writer_cluster_->Open(chunk_name_))
return false;
}
const uint64 timecode_scale = segment_info_.timecode_scale();
const uint64 frame_timecode = frame_timestamp_ns / timecode_scale;
uint64 cluster_timecode = frame_timecode;
if (frames_size_ > 0) {
const Frame* const f = frames_[0]; // earliest queued frame
const uint64 ns = f->timestamp();
const uint64 tc = ns / timecode_scale;
if (tc < cluster_timecode)
cluster_timecode = tc;
}
Cluster*& cluster = cluster_list_[cluster_list_size_];
const int64 offset = MaxOffset();
cluster = new (std::nothrow) Cluster(cluster_timecode, offset); // NOLINT
if (!cluster)
return false;
if (!cluster->Init(writer_cluster_))
return false;
cluster_list_size_ = new_size;
return true;
}
bool Segment::DoNewClusterProcessing(uint64 track_number,
uint64 frame_timestamp_ns, bool is_key) {
for (;;) {
// Based on the characteristics of the current frame and current
// cluster, decide whether to create a new cluster.
const int result = TestFrame(track_number, frame_timestamp_ns, is_key);
if (result < 0) // error
return false;
// Always set force_new_cluster_ to false after TestFrame.
force_new_cluster_ = false;
// A non-zero result means create a new cluster.
if (result > 0 && !MakeNewCluster(frame_timestamp_ns))
return false;
// Write queued (audio) frames.
const int frame_count = WriteFramesAll();
if (frame_count < 0) // error
return false;
// Write the current frame to the current cluster (if TestFrame
// returns 0) or to a newly created cluster (TestFrame returns 1).
if (result <= 1)
return true;
// TestFrame returned 2, which means there was a large time
// difference between the cluster and the frame itself. Do the
// test again, comparing the frame to the new cluster.
}
}
bool Segment::CheckHeaderInfo() {
if (!header_written_) {
if (!WriteSegmentHeader())
return false;
if (!seek_head_.AddSeekEntry(kMkvCluster, MaxOffset()))
return false;
if (output_cues_ && cues_track_ == 0) {
// Check for a video track
for (uint32 i = 0; i < tracks_.track_entries_size(); ++i) {
const Track* const track = tracks_.GetTrackByIndex(i);
if (!track)
return false;
if (tracks_.TrackIsVideo(track->number())) {
cues_track_ = track->number();
break;
}
}
// Set first track found
if (cues_track_ == 0) {
const Track* const track = tracks_.GetTrackByIndex(0);
if (!track)
return false;
cues_track_ = track->number();
}
}
}
return true;
}
void Segment::UpdateDocTypeVersion() {
for (uint32 index = 0; index < tracks_.track_entries_size(); ++index) {
const Track* track = tracks_.GetTrackByIndex(index);
if (track == NULL) break;
if ((track->codec_delay() || track->seek_pre_roll()) &&
doc_type_version_ < 4) {
doc_type_version_ = 4;
break;
}
}
}
bool Segment::UpdateChunkName(const char* ext, char** name) const {
if (!name || !ext)
return false;
char ext_chk[64];
#ifdef _MSC_VER
sprintf_s(ext_chk, sizeof(ext_chk), "_%06d.%s", chunk_count_, ext);
#else
snprintf(ext_chk, sizeof(ext_chk), "_%06d.%s", chunk_count_, ext);
#endif
const size_t length = strlen(chunking_base_name_) + strlen(ext_chk) + 1;
char* const str = new (std::nothrow) char[length]; // NOLINT
if (!str)
return false;
#ifdef _MSC_VER
strcpy_s(str, length - strlen(ext_chk), chunking_base_name_);
strcat_s(str, length, ext_chk);
#else
strcpy(str, chunking_base_name_);
strcat(str, ext_chk);
#endif
delete[] * name;
*name = str;
return true;
}
int64 Segment::MaxOffset() {
if (!writer_header_)
return -1;
int64 offset = writer_header_->Position() - payload_pos_;
if (chunking_) {
for (int32 i = 0; i < cluster_list_size_; ++i) {
Cluster* const cluster = cluster_list_[i];
offset += cluster->Size();
}
if (writer_cues_)
offset += writer_cues_->Position();
}
return offset;
}
bool Segment::QueueFrame(Frame* frame) {
const int32 new_size = frames_size_ + 1;
if (new_size > frames_capacity_) {
// Add more frames.
const int32 new_capacity = (!frames_capacity_) ? 2 : frames_capacity_ * 2;
if (new_capacity < 1)
return false;
Frame** const frames = new (std::nothrow) Frame* [new_capacity]; // NOLINT
if (!frames)
return false;
for (int32 i = 0; i < frames_size_; ++i) {
frames[i] = frames_[i];
}
delete[] frames_;
frames_ = frames;
frames_capacity_ = new_capacity;
}
frames_[frames_size_++] = frame;
return true;
}
int Segment::WriteFramesAll() {
if (frames_ == NULL)
return 0;
if (cluster_list_size_ < 1)
return -1;
Cluster* const cluster = cluster_list_[cluster_list_size_ - 1];
if (!cluster)
return -1;
const uint64 timecode_scale = segment_info_.timecode_scale();
for (int32 i = 0; i < frames_size_; ++i) {
Frame*& frame = frames_[i];
const uint64 frame_timestamp = frame->timestamp(); // ns
const uint64 frame_timecode = frame_timestamp / timecode_scale;
if (frame->discard_padding() != 0) {
// TODO(jzern): using the Segment:: variants here would limit the places
// where doc_type_version_ needs to be updated.
doc_type_version_ = 4;
if (!cluster->AddFrameWithDiscardPadding(
frame->frame(), frame->length(), frame->discard_padding(),
frame->track_number(), frame_timecode, frame->is_key())) {
return -1;
}
} else {
if (!cluster->AddFrame(frame->frame(), frame->length(),
frame->track_number(), frame_timecode,
frame->is_key())) {
return -1;
}
}
if (new_cuepoint_ && cues_track_ == frame->track_number()) {
if (!AddCuePoint(frame_timestamp, cues_track_))
return -1;
}
if (frame_timestamp > last_timestamp_)
last_timestamp_ = frame_timestamp;
delete frame;
frame = NULL;
}
const int result = frames_size_;
frames_size_ = 0;
return result;
}
bool Segment::WriteFramesLessThan(uint64 timestamp) {
// Check |cluster_list_size_| to see if this is the first cluster. If it is
// the first cluster the audio frames that are less than the first video
// timesatmp will be written in a later step.
if (frames_size_ > 0 && cluster_list_size_ > 0) {
if (!frames_)
return false;
Cluster* const cluster = cluster_list_[cluster_list_size_ - 1];
if (!cluster)
return false;
const uint64 timecode_scale = segment_info_.timecode_scale();
int32 shift_left = 0;
// TODO(fgalligan): Change this to use the durations of frames instead of
// the next frame's start time if the duration is accurate.
for (int32 i = 1; i < frames_size_; ++i) {
const Frame* const frame_curr = frames_[i];
if (frame_curr->timestamp() > timestamp)
break;
const Frame* const frame_prev = frames_[i - 1];
const uint64 frame_timestamp = frame_prev->timestamp();
const uint64 frame_timecode = frame_timestamp / timecode_scale;
const int64 discard_padding = frame_prev->discard_padding();
if (discard_padding != 0) {
doc_type_version_ = 4;
if (!cluster->AddFrameWithDiscardPadding(
frame_prev->frame(), frame_prev->length(), discard_padding,
frame_prev->track_number(), frame_timecode,
frame_prev->is_key())) {
return false;
}
} else {
if (!cluster->AddFrame(frame_prev->frame(), frame_prev->length(),
frame_prev->track_number(), frame_timecode,
frame_prev->is_key())) {
return false;
}
}
if (new_cuepoint_ && cues_track_ == frame_prev->track_number()) {
if (!AddCuePoint(frame_timestamp, cues_track_))
return false;
}
++shift_left;
if (frame_timestamp > last_timestamp_)
last_timestamp_ = frame_timestamp;
delete frame_prev;
}
if (shift_left > 0) {
if (shift_left >= frames_size_)
return false;
const int32 new_frames_size = frames_size_ - shift_left;
for (int32 i = 0; i < new_frames_size; ++i) {
frames_[i] = frames_[i + shift_left];
}
frames_size_ = new_frames_size;
}
}
return true;
}
} // namespace mkvmuxer