webm/mkvparser.cpp
Matthew Heaney 2fc496a0d6 mkvparser: create generic track objects
Formerly, it was only possible to create instances of
the Track subclasses, VideoTrack and AudioTrack.  However,
we now populate WebM files with WebVTT metadata blocks,
so we must allow for a third kind of track object.

We now enable instances of type Track to be created,
by providing a new factory function, Track::Create, and
making all Track methods non-pure and with a generic
implementation.

Change-Id: I7d4c965eb566b9fc2f5ceefe1d43723cf8c1e5f0
2012-10-10 16:51:21 -07:00

8790 lines
206 KiB
C++

// Copyright (c) 2012 The WebM project authors. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
#include "mkvparser.hpp"
#include <cassert>
#include <cstring>
#include <new>
#include <climits>
mkvparser::IMkvReader::~IMkvReader()
{
}
void mkvparser::GetVersion(int& major, int& minor, int& build, int& revision)
{
major = 1;
minor = 0;
build = 0;
revision = 26;
}
long long mkvparser::ReadUInt(IMkvReader* pReader, long long pos, long& len)
{
assert(pReader);
assert(pos >= 0);
int status;
//#ifdef _DEBUG
// long long total, available;
// status = pReader->Length(&total, &available);
// assert(status >= 0);
// assert((total < 0) || (available <= total));
// assert(pos < available);
// assert((available - pos) >= 1); //assume here max u-int len is 8
//#endif
len = 1;
unsigned char b;
status = pReader->Read(pos, 1, &b);
if (status < 0) //error or underflow
return status;
if (status > 0) //interpreted as "underflow"
return E_BUFFER_NOT_FULL;
if (b == 0) //we can't handle u-int values larger than 8 bytes
return E_FILE_FORMAT_INVALID;
unsigned char m = 0x80;
while (!(b & m))
{
m >>= 1;
++len;
}
//#ifdef _DEBUG
// assert((available - pos) >= len);
//#endif
long long result = b & (~m);
++pos;
for (int i = 1; i < len; ++i)
{
status = pReader->Read(pos, 1, &b);
if (status < 0)
{
len = 1;
return status;
}
if (status > 0)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result <<= 8;
result |= b;
++pos;
}
return result;
}
long long mkvparser::GetUIntLength(
IMkvReader* pReader,
long long pos,
long& len)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
int status = pReader->Length(&total, &available);
assert(status >= 0);
assert((total < 0) || (available <= total));
len = 1;
if (pos >= available)
return pos; //too few bytes available
unsigned char b;
status = pReader->Read(pos, 1, &b);
if (status < 0)
return status;
assert(status == 0);
if (b == 0) //we can't handle u-int values larger than 8 bytes
return E_FILE_FORMAT_INVALID;
unsigned char m = 0x80;
while (!(b & m))
{
m >>= 1;
++len;
}
return 0; //success
}
long long mkvparser::UnserializeUInt(
IMkvReader* pReader,
long long pos,
long long size)
{
assert(pReader);
assert(pos >= 0);
if ((size <= 0) || (size > 8))
return E_FILE_FORMAT_INVALID;
long long result = 0;
for (long long i = 0; i < size; ++i)
{
unsigned char b;
const long status = pReader->Read(pos, 1, &b);
if (status < 0)
return status;
result <<= 8;
result |= b;
++pos;
}
return result;
}
long mkvparser::UnserializeFloat(
IMkvReader* pReader,
long long pos,
long long size_,
double& result)
{
assert(pReader);
assert(pos >= 0);
if ((size_ != 4) && (size_ != 8))
return E_FILE_FORMAT_INVALID;
const long size = static_cast<long>(size_);
unsigned char buf[8];
const int status = pReader->Read(pos, size, buf);
if (status < 0) //error
return status;
if (size == 4)
{
union
{
float f;
unsigned long ff;
};
ff = 0;
for (int i = 0;;)
{
ff |= buf[i];
if (++i >= 4)
break;
ff <<= 8;
}
result = f;
}
else
{
assert(size == 8);
union
{
double d;
unsigned long long dd;
};
dd = 0;
for (int i = 0;;)
{
dd |= buf[i];
if (++i >= 8)
break;
dd <<= 8;
}
result = d;
}
return 0;
}
long mkvparser::UnserializeInt(
IMkvReader* pReader,
long long pos,
long size,
long long& result)
{
assert(pReader);
assert(pos >= 0);
assert(size > 0);
assert(size <= 8);
{
signed char b;
const long status = pReader->Read(pos, 1, (unsigned char*)&b);
if (status < 0)
return status;
result = b;
++pos;
}
for (long i = 1; i < size; ++i)
{
unsigned char b;
const long status = pReader->Read(pos, 1, &b);
if (status < 0)
return status;
result <<= 8;
result |= b;
++pos;
}
return 0; //success
}
long mkvparser::UnserializeString(
IMkvReader* pReader,
long long pos,
long long size_,
char*& str)
{
delete[] str;
str = NULL;
if (size_ >= LONG_MAX) //we need (size+1) chars
return E_FILE_FORMAT_INVALID;
const long size = static_cast<long>(size_);
str = new (std::nothrow) char[size+1];
if (str == NULL)
return -1;
unsigned char* const buf = reinterpret_cast<unsigned char*>(str);
const long status = pReader->Read(pos, size, buf);
if (status)
{
delete[] str;
str = NULL;
return status;
}
str[size] = '\0';
return 0; //success
}
long mkvparser::ParseElementHeader(
IMkvReader* pReader,
long long& pos,
long long stop,
long long& id,
long long& size)
{
if ((stop >= 0) && (pos >= stop))
return E_FILE_FORMAT_INVALID;
long len;
id = ReadUInt(pReader, pos, len);
if (id <= 0)
return E_FILE_FORMAT_INVALID;
pos += len; //consume id
if ((stop >= 0) && (pos >= stop))
return E_FILE_FORMAT_INVALID;
size = ReadUInt(pReader, pos, len);
if (size < 0)
return E_FILE_FORMAT_INVALID;
pos += len; //consume length of size
//pos now designates payload
if ((stop >= 0) && ((pos + size) > stop))
return E_FILE_FORMAT_INVALID;
return 0; //success
}
bool mkvparser::Match(
IMkvReader* pReader,
long long& pos,
unsigned long id_,
long long& val)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
const long status = pReader->Length(&total, &available);
assert(status >= 0);
assert((total < 0) || (available <= total));
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
if ((unsigned long)id != id_)
return false;
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert(size <= 8);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
pos += len; //consume length of size of payload
val = UnserializeUInt(pReader, pos, size);
assert(val >= 0);
pos += size; //consume size of payload
return true;
}
bool mkvparser::Match(
IMkvReader* pReader,
long long& pos,
unsigned long id_,
unsigned char*& buf,
size_t& buflen)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long status = pReader->Length(&total, &available);
assert(status >= 0);
assert((total < 0) || (available <= total));
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
if ((unsigned long)id != id_)
return false;
pos += len; //consume id
const long long size_ = ReadUInt(pReader, pos, len);
assert(size_ >= 0);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
pos += len; //consume length of size of payload
assert((pos + size_) <= available);
const long buflen_ = static_cast<long>(size_);
buf = new (std::nothrow) unsigned char[buflen_];
assert(buf); //TODO
status = pReader->Read(pos, buflen_, buf);
assert(status == 0); //TODO
buflen = buflen_;
pos += size_; //consume size of payload
return true;
}
namespace mkvparser
{
EBMLHeader::EBMLHeader() :
m_docType(NULL)
{
Init();
}
EBMLHeader::~EBMLHeader()
{
delete[] m_docType;
}
void EBMLHeader::Init()
{
m_version = 1;
m_readVersion = 1;
m_maxIdLength = 4;
m_maxSizeLength = 8;
if (m_docType)
{
delete[] m_docType;
m_docType = NULL;
}
m_docTypeVersion = 1;
m_docTypeReadVersion = 1;
}
long long EBMLHeader::Parse(
IMkvReader* pReader,
long long& pos)
{
assert(pReader);
long long total, available;
long status = pReader->Length(&total, &available);
if (status < 0) //error
return status;
pos = 0;
long long end = (available >= 1024) ? 1024 : available;
for (;;)
{
unsigned char b = 0;
while (pos < end)
{
status = pReader->Read(pos, 1, &b);
if (status < 0) //error
return status;
if (b == 0x1A)
break;
++pos;
}
if (b != 0x1A)
{
if (pos >= 1024)
return E_FILE_FORMAT_INVALID; //don't bother looking anymore
if ((total >= 0) && ((total - available) < 5))
return E_FILE_FORMAT_INVALID;
return available + 5; //5 = 4-byte ID + 1st byte of size
}
if ((total >= 0) && ((total - pos) < 5))
return E_FILE_FORMAT_INVALID;
if ((available - pos) < 5)
return pos + 5; //try again later
long len;
const long long result = ReadUInt(pReader, pos, len);
if (result < 0) //error
return result;
if (result == 0x0A45DFA3) //EBML Header ID
{
pos += len; //consume ID
break;
}
++pos; //throw away just the 0x1A byte, and try again
}
//pos designates start of size field
//get length of size field
long len;
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return result;
if (result > 0) //need more data
return result;
assert(len > 0);
assert(len <= 8);
if ((total >= 0) && ((total - pos) < len))
return E_FILE_FORMAT_INVALID;
if ((available - pos) < len)
return pos + len; //try again later
//get the EBML header size
result = ReadUInt(pReader, pos, len);
if (result < 0) //error
return result;
pos += len; //consume size field
//pos now designates start of payload
if ((total >= 0) && ((total - pos) < result))
return E_FILE_FORMAT_INVALID;
if ((available - pos) < result)
return pos + result;
end = pos + result;
Init();
while (pos < end)
{
long long id, size;
status = ParseElementHeader(
pReader,
pos,
end,
id,
size);
if (status < 0) //error
return status;
if (size == 0) //weird
return E_FILE_FORMAT_INVALID;
if (id == 0x0286) //version
{
m_version = UnserializeUInt(pReader, pos, size);
if (m_version <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x02F7) //read version
{
m_readVersion = UnserializeUInt(pReader, pos, size);
if (m_readVersion <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x02F2) //max id length
{
m_maxIdLength = UnserializeUInt(pReader, pos, size);
if (m_maxIdLength <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x02F3) //max size length
{
m_maxSizeLength = UnserializeUInt(pReader, pos, size);
if (m_maxSizeLength <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x0282) //doctype
{
if (m_docType)
return E_FILE_FORMAT_INVALID;
status = UnserializeString(pReader, pos, size, m_docType);
if (status) //error
return status;
}
else if (id == 0x0287) //doctype version
{
m_docTypeVersion = UnserializeUInt(pReader, pos, size);
if (m_docTypeVersion <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x0285) //doctype read version
{
m_docTypeReadVersion = UnserializeUInt(pReader, pos, size);
if (m_docTypeReadVersion <= 0)
return E_FILE_FORMAT_INVALID;
}
pos += size;
}
assert(pos == end);
return 0;
}
Segment::Segment(
IMkvReader* pReader,
long long elem_start,
//long long elem_size,
long long start,
long long size) :
m_pReader(pReader),
m_element_start(elem_start),
//m_element_size(elem_size),
m_start(start),
m_size(size),
m_pos(start),
m_pUnknownSize(0),
m_pSeekHead(NULL),
m_pInfo(NULL),
m_pTracks(NULL),
m_pCues(NULL),
m_clusters(NULL),
m_clusterCount(0),
m_clusterPreloadCount(0),
m_clusterSize(0)
{
}
Segment::~Segment()
{
const long count = m_clusterCount + m_clusterPreloadCount;
Cluster** i = m_clusters;
Cluster** j = m_clusters + count;
while (i != j)
{
Cluster* const p = *i++;
assert(p);
delete p;
}
delete[] m_clusters;
delete m_pTracks;
delete m_pInfo;
delete m_pCues;
delete m_pSeekHead;
}
long long Segment::CreateInstance(
IMkvReader* pReader,
long long pos,
Segment*& pSegment)
{
assert(pReader);
assert(pos >= 0);
pSegment = NULL;
long long total, available;
const long status = pReader->Length(&total, &available);
if (status < 0) //error
return status;
if (available < 0)
return -1;
if ((total >= 0) && (available > total))
return -1;
//I would assume that in practice this loop would execute
//exactly once, but we allow for other elements (e.g. Void)
//to immediately follow the EBML header. This is fine for
//the source filter case (since the entire file is available),
//but in the splitter case over a network we should probably
//just give up early. We could for example decide only to
//execute this loop a maximum of, say, 10 times.
//TODO:
//There is an implied "give up early" by only parsing up
//to the available limit. We do do that, but only if the
//total file size is unknown. We could decide to always
//use what's available as our limit (irrespective of whether
//we happen to know the total file length). This would have
//as its sense "parse this much of the file before giving up",
//which a slightly different sense from "try to parse up to
//10 EMBL elements before giving up".
for (;;)
{
if ((total >= 0) && (pos >= total))
return E_FILE_FORMAT_INVALID;
//Read ID
long len;
long long result = GetUIntLength(pReader, pos, len);
if (result) //error, or too few available bytes
return result;
if ((total >= 0) && ((pos + len) > total))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
const long long idpos = pos;
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return id;
pos += len; //consume ID
//Read Size
result = GetUIntLength(pReader, pos, len);
if (result) //error, or too few available bytes
return result;
if ((total >= 0) && ((pos + len) > total))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return size;
pos += len; //consume length of size of element
//Pos now points to start of payload
//Handle "unknown size" for live streaming of webm files.
const long long unknown_size = (1LL << (7 * len)) - 1;
if (id == 0x08538067) //Segment ID
{
if (size == unknown_size)
size = -1;
else if (total < 0)
size = -1;
else if ((pos + size) > total)
size = -1;
pSegment = new (std::nothrow) Segment(
pReader,
idpos,
//elem_size
pos,
size);
if (pSegment == 0)
return -1; //generic error
return 0; //success
}
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((pos + size) > total))
return E_FILE_FORMAT_INVALID;
if ((pos + size) > available)
return pos + size;
pos += size; //consume payload
}
}
long long Segment::ParseHeaders()
{
//Outermost (level 0) segment object has been constructed,
//and pos designates start of payload. We need to find the
//inner (level 1) elements.
long long total, available;
const int status = m_pReader->Length(&total, &available);
if (status < 0) //error
return status;
assert((total < 0) || (available <= total));
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
assert((segment_stop < 0) || (total < 0) || (segment_stop <= total));
assert((segment_stop < 0) || (m_pos <= segment_stop));
for (;;)
{
if ((total >= 0) && (m_pos >= total))
break;
if ((segment_stop >= 0) && (m_pos >= segment_stop))
break;
long long pos = m_pos;
const long long element_start = pos;
if ((pos + 1) > available)
return (pos + 1);
long len;
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return result;
if (result > 0) //underflow (weird)
return (pos + 1);
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
if (id < 0) //error
return id;
if (id == 0x0F43B675) //Cluster ID
break;
pos += len; //consume ID
if ((pos + 1) > available)
return (pos + 1);
//Read Size
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return result;
if (result > 0) //underflow (weird)
return (pos + 1);
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return size;
pos += len; //consume length of size of element
const long long element_size = size + pos - element_start;
//Pos now points to start of payload
if ((segment_stop >= 0) && ((pos + size) > segment_stop))
return E_FILE_FORMAT_INVALID;
//We read EBML elements either in total or nothing at all.
if ((pos + size) > available)
return pos + size;
if (id == 0x0549A966) //Segment Info ID
{
if (m_pInfo)
return E_FILE_FORMAT_INVALID;
m_pInfo = new (std::nothrow) SegmentInfo(
this,
pos,
size,
element_start,
element_size);
if (m_pInfo == NULL)
return -1;
const long status = m_pInfo->Parse();
if (status)
return status;
}
else if (id == 0x0654AE6B) //Tracks ID
{
if (m_pTracks)
return E_FILE_FORMAT_INVALID;
m_pTracks = new (std::nothrow) Tracks(this,
pos,
size,
element_start,
element_size);
if (m_pTracks == NULL)
return -1;
const long status = m_pTracks->Parse();
if (status)
return status;
}
else if (id == 0x0C53BB6B) //Cues ID
{
if (m_pCues == NULL)
{
m_pCues = new (std::nothrow) Cues(
this,
pos,
size,
element_start,
element_size);
if (m_pCues == NULL)
return -1;
}
}
else if (id == 0x014D9B74) //SeekHead ID
{
if (m_pSeekHead == NULL)
{
m_pSeekHead = new (std::nothrow) SeekHead(
this,
pos,
size,
element_start,
element_size);
if (m_pSeekHead == NULL)
return -1;
const long status = m_pSeekHead->Parse();
if (status)
return status;
}
}
m_pos = pos + size; //consume payload
}
assert((segment_stop < 0) || (m_pos <= segment_stop));
if (m_pInfo == NULL) //TODO: liberalize this behavior
return E_FILE_FORMAT_INVALID;
if (m_pTracks == NULL)
return E_FILE_FORMAT_INVALID;
return 0; //success
}
long Segment::LoadCluster(
long long& pos,
long& len)
{
for (;;)
{
const long result = DoLoadCluster(pos, len);
if (result <= 1)
return result;
}
}
long Segment::DoLoadCluster(
long long& pos,
long& len)
{
if (m_pos < 0)
return DoLoadClusterUnknownSize(pos, len);
long long total, avail;
long status = m_pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
long long cluster_off = -1; //offset relative to start of segment
long long cluster_size = -1; //size of cluster payload
for (;;)
{
if ((total >= 0) && (m_pos >= total))
return 1; //no more clusters
if ((segment_stop >= 0) && (m_pos >= segment_stop))
return 1; //no more clusters
pos = m_pos;
//Read ID
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
if (id < 0) //error (or underflow)
return static_cast<long>(id);
pos += len; //consume ID
//Read Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume length of size of element
//pos now points to start of payload
if (size == 0) //weird
{
m_pos = pos;
continue;
}
const long long unknown_size = (1LL << (7 * len)) - 1;
#if 0 //we must handle this to support live webm
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; //TODO: allow this
#endif
if ((segment_stop >= 0) &&
(size != unknown_size) &&
((pos + size) > segment_stop))
{
return E_FILE_FORMAT_INVALID;
}
#if 0 //commented-out, to support incremental cluster parsing
len = static_cast<long>(size);
if ((pos + size) > avail)
return E_BUFFER_NOT_FULL;
#endif
if (id == 0x0C53BB6B) //Cues ID
{
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; //TODO: liberalize
if (m_pCues == NULL)
{
const long long element_size = (pos - idpos) + size;
m_pCues = new Cues(this,
pos,
size,
idpos,
element_size);
assert(m_pCues); //TODO
}
m_pos = pos + size; //consume payload
continue;
}
if (id != 0x0F43B675) //Cluster ID
{
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; //TODO: liberalize
m_pos = pos + size; //consume payload
continue;
}
//We have a cluster.
cluster_off = idpos - m_start; //relative pos
if (size != unknown_size)
cluster_size = size;
break;
}
assert(cluster_off >= 0); //have cluster
long long pos_;
long len_;
status = Cluster::HasBlockEntries(this, cluster_off, pos_, len_);
if (status < 0) //error, or underflow
{
pos = pos_;
len = len_;
return status;
}
//status == 0 means "no block entries found"
//status > 0 means "found at least one block entry"
//TODO:
//The issue here is that the segment increments its own
//pos ptr past the most recent cluster parsed, and then
//starts from there to parse the next cluster. If we
//don't know the size of the current cluster, then we
//must either parse its payload (as we do below), looking
//for the cluster (or cues) ID to terminate the parse.
//This isn't really what we want: rather, we really need
//a way to create the curr cluster object immediately.
//The pity is that cluster::parse can determine its own
//boundary, and we largely duplicate that same logic here.
//
//Maybe we need to get rid of our look-ahead preloading
//in source::parse???
//
//As we're parsing the blocks in the curr cluster
//(in cluster::parse), we should have some way to signal
//to the segment that we have determined the boundary,
//so it can adjust its own segment::m_pos member.
//
//The problem is that we're asserting in asyncreadinit,
//because we adjust the pos down to the curr seek pos,
//and the resulting adjusted len is > 2GB. I'm suspicious
//that this is even correct, but even if it is, we can't
//be loading that much data in the cache anyway.
const long idx = m_clusterCount;
if (m_clusterPreloadCount > 0)
{
assert(idx < m_clusterSize);
Cluster* const pCluster = m_clusters[idx];
assert(pCluster);
assert(pCluster->m_index < 0);
const long long off = pCluster->GetPosition();
assert(off >= 0);
if (off == cluster_off) //preloaded already
{
if (status == 0) //no entries found
return E_FILE_FORMAT_INVALID;
if (cluster_size >= 0)
pos += cluster_size;
else
{
const long long element_size = pCluster->GetElementSize();
if (element_size <= 0)
return E_FILE_FORMAT_INVALID; //TODO: handle this case
pos = pCluster->m_element_start + element_size;
}
pCluster->m_index = idx; //move from preloaded to loaded
++m_clusterCount;
--m_clusterPreloadCount;
m_pos = pos; //consume payload
assert((segment_stop < 0) || (m_pos <= segment_stop));
return 0; //success
}
}
if (status == 0) //no entries found
{
if (cluster_size < 0)
return E_FILE_FORMAT_INVALID; //TODO: handle this
pos += cluster_size;
if ((total >= 0) && (pos >= total))
{
m_pos = total;
return 1; //no more clusters
}
if ((segment_stop >= 0) && (pos >= segment_stop))
{
m_pos = segment_stop;
return 1; //no more clusters
}
m_pos = pos;
return 2; //try again
}
//status > 0 means we have an entry
Cluster* const pCluster = Cluster::Create(this,
idx,
cluster_off);
//element_size);
assert(pCluster);
AppendCluster(pCluster);
assert(m_clusters);
assert(idx < m_clusterSize);
assert(m_clusters[idx] == pCluster);
if (cluster_size >= 0)
{
pos += cluster_size;
m_pos = pos;
assert((segment_stop < 0) || (m_pos <= segment_stop));
return 0;
}
m_pUnknownSize = pCluster;
m_pos = -pos;
return 0; //partial success, since we have a new cluster
//status == 0 means "no block entries found"
//pos designates start of payload
//m_pos has NOT been adjusted yet (in case we need to come back here)
#if 0
if (cluster_size < 0) //unknown size
{
const long long payload_pos = pos; //absolute pos of cluster payload
for (;;) //determine cluster size
{
if ((total >= 0) && (pos >= total))
break;
if ((segment_stop >= 0) && (pos >= segment_stop))
break; //no more clusters
//Read ID
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
if (id < 0) //error (or underflow)
return static_cast<long>(id);
//This is the distinguished set of ID's we use to determine
//that we have exhausted the sub-element's inside the cluster
//whose ID we parsed earlier.
if (id == 0x0F43B675) //Cluster ID
break;
if (id == 0x0C53BB6B) //Cues ID
break;
switch (id)
{
case 0x20: //BlockGroup
case 0x23: //Simple Block
case 0x67: //TimeCode
case 0x2B: //PrevSize
break;
default:
assert(false);
break;
}
pos += len; //consume ID (of sub-element)
//Read Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume size field of element
//pos now points to start of sub-element's payload
if (size == 0) //weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; //not allowed for sub-elements
if ((segment_stop >= 0) && ((pos + size) > segment_stop)) //weird
return E_FILE_FORMAT_INVALID;
pos += size; //consume payload of sub-element
assert((segment_stop < 0) || (pos <= segment_stop));
} //determine cluster size
cluster_size = pos - payload_pos;
assert(cluster_size >= 0);
pos = payload_pos; //reset and re-parse original cluster
}
if (m_clusterPreloadCount > 0)
{
assert(idx < m_clusterSize);
Cluster* const pCluster = m_clusters[idx];
assert(pCluster);
assert(pCluster->m_index < 0);
const long long off = pCluster->GetPosition();
assert(off >= 0);
if (off == cluster_off) //preloaded already
return E_FILE_FORMAT_INVALID; //subtle
}
m_pos = pos + cluster_size; //consume payload
assert((segment_stop < 0) || (m_pos <= segment_stop));
return 2; //try to find another cluster
#endif
}
long Segment::DoLoadClusterUnknownSize(
long long& pos,
long& len)
{
assert(m_pos < 0);
assert(m_pUnknownSize);
#if 0
assert(m_pUnknownSize->GetElementSize() < 0); //TODO: verify this
const long long element_start = m_pUnknownSize->m_element_start;
pos = -m_pos;
assert(pos > element_start);
//We have already consumed the (cluster) ID and size fields.
//We just need to consume the blocks and other sub-elements
//of this cluster, until we discover the boundary.
long long total, avail;
long status = m_pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
long long element_size = -1;
for (;;) //determine cluster size
{
if ((total >= 0) && (pos >= total))
{
element_size = total - element_start;
assert(element_size > 0);
break;
}
if ((segment_stop >= 0) && (pos >= segment_stop))
{
element_size = segment_stop - element_start;
assert(element_size > 0);
break;
}
//Read ID
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
if (id < 0) //error (or underflow)
return static_cast<long>(id);
//This is the distinguished set of ID's we use to determine
//that we have exhausted the sub-element's inside the cluster
//whose ID we parsed earlier.
if ((id == 0x0F43B675) || (id == 0x0C53BB6B)) //Cluster ID or Cues ID
{
element_size = pos - element_start;
assert(element_size > 0);
break;
}
#ifdef _DEBUG
switch (id)
{
case 0x20: //BlockGroup
case 0x23: //Simple Block
case 0x67: //TimeCode
case 0x2B: //PrevSize
break;
default:
assert(false);
break;
}
#endif
pos += len; //consume ID (of sub-element)
//Read Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume size field of element
//pos now points to start of sub-element's payload
if (size == 0) //weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; //not allowed for sub-elements
if ((segment_stop >= 0) && ((pos + size) > segment_stop)) //weird
return E_FILE_FORMAT_INVALID;
pos += size; //consume payload of sub-element
assert((segment_stop < 0) || (pos <= segment_stop));
} //determine cluster size
assert(element_size >= 0);
m_pos = element_start + element_size;
m_pUnknownSize = 0;
return 2; //continue parsing
#else
const long status = m_pUnknownSize->Parse(pos, len);
if (status < 0) //error or underflow
return status;
if (status == 0) //parsed a block
return 2; //continue parsing
assert(status > 0); //nothing left to parse of this cluster
const long long start = m_pUnknownSize->m_element_start;
const long long size = m_pUnknownSize->GetElementSize();
assert(size >= 0);
pos = start + size;
m_pos = pos;
m_pUnknownSize = 0;
return 2; //continue parsing
#endif
}
void Segment::AppendCluster(Cluster* pCluster)
{
assert(pCluster);
assert(pCluster->m_index >= 0);
const long count = m_clusterCount + m_clusterPreloadCount;
long& size = m_clusterSize;
assert(size >= count);
const long idx = pCluster->m_index;
assert(idx == m_clusterCount);
if (count >= size)
{
const long n = (size <= 0) ? 2048 : 2*size;
Cluster** const qq = new Cluster*[n];
Cluster** q = qq;
Cluster** p = m_clusters;
Cluster** const pp = p + count;
while (p != pp)
*q++ = *p++;
delete[] m_clusters;
m_clusters = qq;
size = n;
}
if (m_clusterPreloadCount > 0)
{
assert(m_clusters);
Cluster** const p = m_clusters + m_clusterCount;
assert(*p);
assert((*p)->m_index < 0);
Cluster** q = p + m_clusterPreloadCount;
assert(q < (m_clusters + size));
for (;;)
{
Cluster** const qq = q - 1;
assert((*qq)->m_index < 0);
*q = *qq;
q = qq;
if (q == p)
break;
}
}
m_clusters[idx] = pCluster;
++m_clusterCount;
}
void Segment::PreloadCluster(Cluster* pCluster, ptrdiff_t idx)
{
assert(pCluster);
assert(pCluster->m_index < 0);
assert(idx >= m_clusterCount);
const long count = m_clusterCount + m_clusterPreloadCount;
long& size = m_clusterSize;
assert(size >= count);
if (count >= size)
{
const long n = (size <= 0) ? 2048 : 2*size;
Cluster** const qq = new Cluster*[n];
Cluster** q = qq;
Cluster** p = m_clusters;
Cluster** const pp = p + count;
while (p != pp)
*q++ = *p++;
delete[] m_clusters;
m_clusters = qq;
size = n;
}
assert(m_clusters);
Cluster** const p = m_clusters + idx;
Cluster** q = m_clusters + count;
assert(q >= p);
assert(q < (m_clusters + size));
while (q > p)
{
Cluster** const qq = q - 1;
assert((*qq)->m_index < 0);
*q = *qq;
q = qq;
}
m_clusters[idx] = pCluster;
++m_clusterPreloadCount;
}
long Segment::Load()
{
assert(m_clusters == NULL);
assert(m_clusterSize == 0);
assert(m_clusterCount == 0);
//assert(m_size >= 0);
//Outermost (level 0) segment object has been constructed,
//and pos designates start of payload. We need to find the
//inner (level 1) elements.
const long long header_status = ParseHeaders();
if (header_status < 0) //error
return static_cast<long>(header_status);
if (header_status > 0) //underflow
return E_BUFFER_NOT_FULL;
assert(m_pInfo);
assert(m_pTracks);
for (;;)
{
const int status = LoadCluster();
if (status < 0) //error
return status;
if (status >= 1) //no more clusters
return 0;
}
}
SeekHead::SeekHead(
Segment* pSegment,
long long start,
long long size_,
long long element_start,
long long element_size) :
m_pSegment(pSegment),
m_start(start),
m_size(size_),
m_element_start(element_start),
m_element_size(element_size),
m_entries(0),
m_entry_count(0),
m_void_elements(0),
m_void_element_count(0)
{
}
SeekHead::~SeekHead()
{
delete[] m_entries;
delete[] m_void_elements;
}
long SeekHead::Parse()
{
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = m_start;
const long long stop = m_start + m_size;
//first count the seek head entries
int entry_count = 0;
int void_element_count = 0;
while (pos < stop)
{
long long id, size;
const long status = ParseElementHeader(
pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x0DBB) //SeekEntry ID
++entry_count;
else if (id == 0x6C) //Void ID
++void_element_count;
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
m_entries = new (std::nothrow) Entry[entry_count];
if (m_entries == NULL)
return -1;
m_void_elements = new (std::nothrow) VoidElement[void_element_count];
if (m_void_elements == NULL)
return -1;
//now parse the entries and void elements
Entry* pEntry = m_entries;
VoidElement* pVoidElement = m_void_elements;
pos = m_start;
while (pos < stop)
{
const long long idpos = pos;
long long id, size;
const long status = ParseElementHeader(
pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x0DBB) //SeekEntry ID
{
if (ParseEntry(pReader, pos, size, pEntry))
{
Entry& e = *pEntry++;
e.element_start = idpos;
e.element_size = (pos + size) - idpos;
}
}
else if (id == 0x6C) //Void ID
{
VoidElement& e = *pVoidElement++;
e.element_start = idpos;
e.element_size = (pos + size) - idpos;
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
ptrdiff_t count_ = ptrdiff_t(pEntry - m_entries);
assert(count_ >= 0);
assert(count_ <= entry_count);
m_entry_count = static_cast<int>(count_);
count_ = ptrdiff_t(pVoidElement - m_void_elements);
assert(count_ >= 0);
assert(count_ <= void_element_count);
m_void_element_count = static_cast<int>(count_);
return 0;
}
int SeekHead::GetCount() const
{
return m_entry_count;
}
const SeekHead::Entry* SeekHead::GetEntry(int idx) const
{
if (idx < 0)
return 0;
if (idx >= m_entry_count)
return 0;
return m_entries + idx;
}
int SeekHead::GetVoidElementCount() const
{
return m_void_element_count;
}
const SeekHead::VoidElement* SeekHead::GetVoidElement(int idx) const
{
if (idx < 0)
return 0;
if (idx >= m_void_element_count)
return 0;
return m_void_elements + idx;
}
#if 0
void Segment::ParseCues(long long off)
{
if (m_pCues)
return;
//odbgstream os;
//os << "Segment::ParseCues (begin)" << endl;
long long pos = m_start + off;
const long long element_start = pos;
const long long stop = m_start + m_size;
long len;
long long result = GetUIntLength(m_pReader, pos, len);
assert(result == 0);
assert((pos + len) <= stop);
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
assert(id == 0x0C53BB6B); //Cues ID
pos += len; //consume ID
assert(pos < stop);
//Read Size
result = GetUIntLength(m_pReader, pos, len);
assert(result == 0);
assert((pos + len) <= stop);
const long long size = ReadUInt(m_pReader, pos, len);
assert(size >= 0);
pos += len; //consume length of size of element
assert((pos + size) <= stop);
const long long element_size = size + pos - element_start;
//Pos now points to start of payload
m_pCues = new Cues(this, pos, size, element_start, element_size);
assert(m_pCues); //TODO
//os << "Segment::ParseCues (end)" << endl;
}
#else
long Segment::ParseCues(
long long off,
long long& pos,
long& len)
{
if (m_pCues)
return 0; //success
if (off < 0)
return -1;
long long total, avail;
const int status = m_pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
pos = m_start + off;
if ((total < 0) || (pos >= total))
return 1; //don't bother parsing cues
const long long element_start = pos;
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //underflow (weird)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
if (id != 0x0C53BB6B) //Cues ID
return E_FILE_FORMAT_INVALID;
pos += len; //consume ID
assert((segment_stop < 0) || (pos <= segment_stop));
//Read Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //underflow (weird)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
if (size == 0) //weird, although technically not illegal
return 1; //done
pos += len; //consume length of size of element
assert((segment_stop < 0) || (pos <= segment_stop));
//Pos now points to start of payload
const long long element_stop = pos + size;
if ((segment_stop >= 0) && (element_stop > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && (element_stop > total))
return 1; //don't bother parsing anymore
len = static_cast<long>(size);
if (element_stop > avail)
return E_BUFFER_NOT_FULL;
const long long element_size = element_stop - element_start;
m_pCues = new (std::nothrow) Cues(
this,
pos,
size,
element_start,
element_size);
assert(m_pCues); //TODO
return 0; //success
}
#endif
#if 0
void Segment::ParseSeekEntry(
long long start,
long long size_)
{
long long pos = start;
const long long stop = start + size_;
long len;
const long long seekIdId = ReadUInt(m_pReader, pos, len);
//seekIdId;
assert(seekIdId == 0x13AB); //SeekID ID
assert((pos + len) <= stop);
pos += len; //consume id
const long long seekIdSize = ReadUInt(m_pReader, pos, len);
assert(seekIdSize >= 0);
assert((pos + len) <= stop);
pos += len; //consume size
const long long seekId = ReadUInt(m_pReader, pos, len); //payload
assert(seekId >= 0);
assert(len == seekIdSize);
assert((pos + len) <= stop);
pos += seekIdSize; //consume payload
const long long seekPosId = ReadUInt(m_pReader, pos, len);
//seekPosId;
assert(seekPosId == 0x13AC); //SeekPos ID
assert((pos + len) <= stop);
pos += len; //consume id
const long long seekPosSize = ReadUInt(m_pReader, pos, len);
assert(seekPosSize >= 0);
assert((pos + len) <= stop);
pos += len; //consume size
assert((pos + seekPosSize) <= stop);
const long long seekOff = UnserializeUInt(m_pReader, pos, seekPosSize);
assert(seekOff >= 0);
assert(seekOff < m_size);
pos += seekPosSize; //consume payload
assert(pos == stop);
const long long seekPos = m_start + seekOff;
assert(seekPos < (m_start + m_size));
if (seekId == 0x0C53BB6B) //Cues ID
ParseCues(seekOff);
}
#else
bool SeekHead::ParseEntry(
IMkvReader* pReader,
long long start,
long long size_,
Entry* pEntry)
{
if (size_ <= 0)
return false;
long long pos = start;
const long long stop = start + size_;
long len;
//parse the container for the level-1 element ID
const long long seekIdId = ReadUInt(pReader, pos, len);
//seekIdId;
if (seekIdId != 0x13AB) //SeekID ID
return false;
if ((pos + len) > stop)
return false;
pos += len; //consume SeekID id
const long long seekIdSize = ReadUInt(pReader, pos, len);
if (seekIdSize <= 0)
return false;
if ((pos + len) > stop)
return false;
pos += len; //consume size of field
if ((pos + seekIdSize) > stop)
return false;
//Note that the SeekId payload really is serialized
//as a "Matroska integer", not as a plain binary value.
//In fact, Matroska requires that ID values in the
//stream exactly match the binary representation as listed
//in the Matroska specification.
//
//This parser is more liberal, and permits IDs to have
//any width. (This could make the representation in the stream
//different from what's in the spec, but it doesn't matter here,
//since we always normalize "Matroska integer" values.)
pEntry->id = ReadUInt(pReader, pos, len); //payload
if (pEntry->id <= 0)
return false;
if (len != seekIdSize)
return false;
pos += seekIdSize; //consume SeekID payload
const long long seekPosId = ReadUInt(pReader, pos, len);
if (seekPosId != 0x13AC) //SeekPos ID
return false;
if ((pos + len) > stop)
return false;
pos += len; //consume id
const long long seekPosSize = ReadUInt(pReader, pos, len);
if (seekPosSize <= 0)
return false;
if ((pos + len) > stop)
return false;
pos += len; //consume size
if ((pos + seekPosSize) > stop)
return false;
pEntry->pos = UnserializeUInt(pReader, pos, seekPosSize);
if (pEntry->pos < 0)
return false;
pos += seekPosSize; //consume payload
if (pos != stop)
return false;
return true;
}
#endif
Cues::Cues(
Segment* pSegment,
long long start_,
long long size_,
long long element_start,
long long element_size) :
m_pSegment(pSegment),
m_start(start_),
m_size(size_),
m_element_start(element_start),
m_element_size(element_size),
m_cue_points(NULL),
m_count(0),
m_preload_count(0),
m_pos(start_)
{
}
Cues::~Cues()
{
const long n = m_count + m_preload_count;
CuePoint** p = m_cue_points;
CuePoint** const q = p + n;
while (p != q)
{
CuePoint* const pCP = *p++;
assert(pCP);
delete pCP;
}
delete[] m_cue_points;
}
long Cues::GetCount() const
{
if (m_cue_points == NULL)
return -1;
return m_count; //TODO: really ignore preload count?
}
bool Cues::DoneParsing() const
{
const long long stop = m_start + m_size;
return (m_pos >= stop);
}
void Cues::Init() const
{
if (m_cue_points)
return;
assert(m_count == 0);
assert(m_preload_count == 0);
IMkvReader* const pReader = m_pSegment->m_pReader;
const long long stop = m_start + m_size;
long long pos = m_start;
long cue_points_size = 0;
while (pos < stop)
{
const long long idpos = pos;
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x3B) //CuePoint ID
PreloadCuePoint(cue_points_size, idpos);
pos += size; //consume payload
assert(pos <= stop);
}
}
void Cues::PreloadCuePoint(
long& cue_points_size,
long long pos) const
{
assert(m_count == 0);
if (m_preload_count >= cue_points_size)
{
const long n = (cue_points_size <= 0) ? 2048 : 2*cue_points_size;
CuePoint** const qq = new CuePoint*[n];
CuePoint** q = qq; //beginning of target
CuePoint** p = m_cue_points; //beginning of source
CuePoint** const pp = p + m_preload_count; //end of source
while (p != pp)
*q++ = *p++;
delete[] m_cue_points;
m_cue_points = qq;
cue_points_size = n;
}
CuePoint* const pCP = new CuePoint(m_preload_count, pos);
m_cue_points[m_preload_count++] = pCP;
}
bool Cues::LoadCuePoint() const
{
//odbgstream os;
//os << "Cues::LoadCuePoint" << endl;
const long long stop = m_start + m_size;
if (m_pos >= stop)
return false; //nothing else to do
Init();
IMkvReader* const pReader = m_pSegment->m_pReader;
while (m_pos < stop)
{
const long long idpos = m_pos;
long len;
const long long id = ReadUInt(pReader, m_pos, len);
assert(id >= 0); //TODO
assert((m_pos + len) <= stop);
m_pos += len; //consume ID
const long long size = ReadUInt(pReader, m_pos, len);
assert(size >= 0);
assert((m_pos + len) <= stop);
m_pos += len; //consume Size field
assert((m_pos + size) <= stop);
if (id != 0x3B) //CuePoint ID
{
m_pos += size; //consume payload
assert(m_pos <= stop);
continue;
}
assert(m_preload_count > 0);
CuePoint* const pCP = m_cue_points[m_count];
assert(pCP);
assert((pCP->GetTimeCode() >= 0) || (-pCP->GetTimeCode() == idpos));
pCP->Load(pReader);
++m_count;
--m_preload_count;
m_pos += size; //consume payload
assert(m_pos <= stop);
return true; //yes, we loaded a cue point
}
//return (m_pos < stop);
return false; //no, we did not load a cue point
}
bool Cues::Find(
long long time_ns,
const Track* pTrack,
const CuePoint*& pCP,
const CuePoint::TrackPosition*& pTP) const
{
assert(time_ns >= 0);
assert(pTrack);
#if 0
LoadCuePoint(); //establish invariant
assert(m_cue_points);
assert(m_count > 0);
CuePoint** const ii = m_cue_points;
CuePoint** i = ii;
CuePoint** const jj = ii + m_count + m_preload_count;
CuePoint** j = jj;
pCP = *i;
assert(pCP);
if (time_ns <= pCP->GetTime(m_pSegment))
{
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
IMkvReader* const pReader = m_pSegment->m_pReader;
while (i < j)
{
//INVARIANT:
//[ii, i) <= time_ns
//[i, j) ?
//[j, jj) > time_ns
CuePoint** const k = i + (j - i) / 2;
assert(k < jj);
CuePoint* const pCP = *k;
assert(pCP);
pCP->Load(pReader);
const long long t = pCP->GetTime(m_pSegment);
if (t <= time_ns)
i = k + 1;
else
j = k;
assert(i <= j);
}
assert(i == j);
assert(i <= jj);
assert(i > ii);
pCP = *--i;
assert(pCP);
assert(pCP->GetTime(m_pSegment) <= time_ns);
#else
if (m_cue_points == NULL)
return false;
if (m_count == 0)
return false;
CuePoint** const ii = m_cue_points;
CuePoint** i = ii;
CuePoint** const jj = ii + m_count;
CuePoint** j = jj;
pCP = *i;
assert(pCP);
if (time_ns <= pCP->GetTime(m_pSegment))
{
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
while (i < j)
{
//INVARIANT:
//[ii, i) <= time_ns
//[i, j) ?
//[j, jj) > time_ns
CuePoint** const k = i + (j - i) / 2;
assert(k < jj);
CuePoint* const pCP = *k;
assert(pCP);
const long long t = pCP->GetTime(m_pSegment);
if (t <= time_ns)
i = k + 1;
else
j = k;
assert(i <= j);
}
assert(i == j);
assert(i <= jj);
assert(i > ii);
pCP = *--i;
assert(pCP);
assert(pCP->GetTime(m_pSegment) <= time_ns);
#endif
//TODO: here and elsewhere, it's probably not correct to search
//for the cue point with this time, and then search for a matching
//track. In principle, the matching track could be on some earlier
//cue point, and with our current algorithm, we'd miss it. To make
//this bullet-proof, we'd need to create a secondary structure,
//with a list of cue points that apply to a track, and then search
//that track-based structure for a matching cue point.
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
#if 0
bool Cues::FindNext(
long long time_ns,
const Track* pTrack,
const CuePoint*& pCP,
const CuePoint::TrackPosition*& pTP) const
{
pCP = 0;
pTP = 0;
if (m_count == 0)
return false;
assert(m_cue_points);
const CuePoint* const* const ii = m_cue_points;
const CuePoint* const* i = ii;
const CuePoint* const* const jj = ii + m_count;
const CuePoint* const* j = jj;
while (i < j)
{
//INVARIANT:
//[ii, i) <= time_ns
//[i, j) ?
//[j, jj) > time_ns
const CuePoint* const* const k = i + (j - i) / 2;
assert(k < jj);
pCP = *k;
assert(pCP);
const long long t = pCP->GetTime(m_pSegment);
if (t <= time_ns)
i = k + 1;
else
j = k;
assert(i <= j);
}
assert(i == j);
assert(i <= jj);
if (i >= jj) //time_ns is greater than max cue point
return false;
pCP = *i;
assert(pCP);
assert(pCP->GetTime(m_pSegment) > time_ns);
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
#endif
const CuePoint* Cues::GetFirst() const
{
if (m_cue_points == NULL)
return NULL;
if (m_count == 0)
return NULL;
#if 0
LoadCuePoint(); //init cues
const size_t count = m_count + m_preload_count;
if (count == 0) //weird
return NULL;
#endif
CuePoint* const* const pp = m_cue_points;
assert(pp);
CuePoint* const pCP = pp[0];
assert(pCP);
assert(pCP->GetTimeCode() >= 0);
return pCP;
}
const CuePoint* Cues::GetLast() const
{
if (m_cue_points == NULL)
return NULL;
if (m_count <= 0)
return NULL;
#if 0
LoadCuePoint(); //init cues
const size_t count = m_count + m_preload_count;
if (count == 0) //weird
return NULL;
const size_t index = count - 1;
CuePoint* const* const pp = m_cue_points;
assert(pp);
CuePoint* const pCP = pp[index];
assert(pCP);
pCP->Load(m_pSegment->m_pReader);
assert(pCP->GetTimeCode() >= 0);
#else
const long index = m_count - 1;
CuePoint* const* const pp = m_cue_points;
assert(pp);
CuePoint* const pCP = pp[index];
assert(pCP);
assert(pCP->GetTimeCode() >= 0);
#endif
return pCP;
}
const CuePoint* Cues::GetNext(const CuePoint* pCurr) const
{
if (pCurr == NULL)
return NULL;
assert(pCurr->GetTimeCode() >= 0);
assert(m_cue_points);
assert(m_count >= 1);
#if 0
const size_t count = m_count + m_preload_count;
size_t index = pCurr->m_index;
assert(index < count);
CuePoint* const* const pp = m_cue_points;
assert(pp);
assert(pp[index] == pCurr);
++index;
if (index >= count)
return NULL;
CuePoint* const pNext = pp[index];
assert(pNext);
pNext->Load(m_pSegment->m_pReader);
#else
long index = pCurr->m_index;
assert(index < m_count);
CuePoint* const* const pp = m_cue_points;
assert(pp);
assert(pp[index] == pCurr);
++index;
if (index >= m_count)
return NULL;
CuePoint* const pNext = pp[index];
assert(pNext);
assert(pNext->GetTimeCode() >= 0);
#endif
return pNext;
}
const BlockEntry* Cues::GetBlock(
const CuePoint* pCP,
const CuePoint::TrackPosition* pTP) const
{
if (pCP == NULL)
return NULL;
if (pTP == NULL)
return NULL;
return m_pSegment->GetBlock(*pCP, *pTP);
}
const BlockEntry* Segment::GetBlock(
const CuePoint& cp,
const CuePoint::TrackPosition& tp)
{
Cluster** const ii = m_clusters;
Cluster** i = ii;
const long count = m_clusterCount + m_clusterPreloadCount;
Cluster** const jj = ii + count;
Cluster** j = jj;
while (i < j)
{
//INVARIANT:
//[ii, i) < pTP->m_pos
//[i, j) ?
//[j, jj) > pTP->m_pos
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
Cluster* const pCluster = *k;
assert(pCluster);
//const long long pos_ = pCluster->m_pos;
//assert(pos_);
//const long long pos = pos_ * ((pos_ < 0) ? -1 : 1);
const long long pos = pCluster->GetPosition();
assert(pos >= 0);
if (pos < tp.m_pos)
i = k + 1;
else if (pos > tp.m_pos)
j = k;
else
return pCluster->GetEntry(cp, tp);
}
assert(i == j);
//assert(Cluster::HasBlockEntries(this, tp.m_pos));
Cluster* const pCluster = Cluster::Create(this, -1, tp.m_pos); //, -1);
assert(pCluster);
const ptrdiff_t idx = i - m_clusters;
PreloadCluster(pCluster, idx);
assert(m_clusters);
assert(m_clusterPreloadCount > 0);
assert(m_clusters[idx] == pCluster);
return pCluster->GetEntry(cp, tp);
}
const Cluster* Segment::FindOrPreloadCluster(long long requested_pos)
{
if (requested_pos < 0)
return 0;
Cluster** const ii = m_clusters;
Cluster** i = ii;
const long count = m_clusterCount + m_clusterPreloadCount;
Cluster** const jj = ii + count;
Cluster** j = jj;
while (i < j)
{
//INVARIANT:
//[ii, i) < pTP->m_pos
//[i, j) ?
//[j, jj) > pTP->m_pos
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
Cluster* const pCluster = *k;
assert(pCluster);
//const long long pos_ = pCluster->m_pos;
//assert(pos_);
//const long long pos = pos_ * ((pos_ < 0) ? -1 : 1);
const long long pos = pCluster->GetPosition();
assert(pos >= 0);
if (pos < requested_pos)
i = k + 1;
else if (pos > requested_pos)
j = k;
else
return pCluster;
}
assert(i == j);
//assert(Cluster::HasBlockEntries(this, tp.m_pos));
Cluster* const pCluster = Cluster::Create(
this,
-1,
requested_pos);
//-1);
assert(pCluster);
const ptrdiff_t idx = i - m_clusters;
PreloadCluster(pCluster, idx);
assert(m_clusters);
assert(m_clusterPreloadCount > 0);
assert(m_clusters[idx] == pCluster);
return pCluster;
}
CuePoint::CuePoint(long idx, long long pos) :
m_element_start(0),
m_element_size(0),
m_index(idx),
m_timecode(-1 * pos),
m_track_positions(NULL),
m_track_positions_count(0)
{
assert(pos > 0);
}
CuePoint::~CuePoint()
{
delete[] m_track_positions;
}
void CuePoint::Load(IMkvReader* pReader)
{
//odbgstream os;
//os << "CuePoint::Load(begin): timecode=" << m_timecode << endl;
if (m_timecode >= 0) //already loaded
return;
assert(m_track_positions == NULL);
assert(m_track_positions_count == 0);
long long pos_ = -m_timecode;
const long long element_start = pos_;
long long stop;
{
long len;
const long long id = ReadUInt(pReader, pos_, len);
assert(id == 0x3B); //CuePoint ID
//assert((pos + len) <= stop);
pos_ += len; //consume ID
const long long size = ReadUInt(pReader, pos_, len);
assert(size >= 0);
//assert((pos + len) <= stop);
pos_ += len; //consume Size field
//assert((pos + size) <= stop);
//pos_ now points to start of payload
stop = pos_ + size;
}
const long long element_size = stop - element_start;
long long pos = pos_;
//First count number of track positions
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x33) //CueTime ID
m_timecode = UnserializeUInt(pReader, pos, size);
else if (id == 0x37) //CueTrackPosition(s) ID
++m_track_positions_count;
pos += size; //consume payload
assert(pos <= stop);
}
assert(m_timecode >= 0);
assert(m_track_positions_count > 0);
//os << "CuePoint::Load(cont'd): idpos=" << idpos
// << " timecode=" << m_timecode
// << endl;
m_track_positions = new TrackPosition[m_track_positions_count];
//Now parse track positions
TrackPosition* p = m_track_positions;
pos = pos_;
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x37) //CueTrackPosition(s) ID
{
TrackPosition& tp = *p++;
tp.Parse(pReader, pos, size);
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(size_t(p - m_track_positions) == m_track_positions_count);
m_element_start = element_start;
m_element_size = element_size;
}
void CuePoint::TrackPosition::Parse(
IMkvReader* pReader,
long long start_,
long long size_)
{
const long long stop = start_ + size_;
long long pos = start_;
m_track = -1;
m_pos = -1;
m_block = 1; //default
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x77) //CueTrack ID
m_track = UnserializeUInt(pReader, pos, size);
else if (id == 0x71) //CueClusterPos ID
m_pos = UnserializeUInt(pReader, pos, size);
else if (id == 0x1378) //CueBlockNumber
m_block = UnserializeUInt(pReader, pos, size);
pos += size; //consume payload
assert(pos <= stop);
}
assert(m_pos >= 0);
assert(m_track > 0);
//assert(m_block > 0);
}
const CuePoint::TrackPosition* CuePoint::Find(const Track* pTrack) const
{
assert(pTrack);
const long long n = pTrack->GetNumber();
const TrackPosition* i = m_track_positions;
const TrackPosition* const j = i + m_track_positions_count;
while (i != j)
{
const TrackPosition& p = *i++;
if (p.m_track == n)
return &p;
}
return NULL; //no matching track number found
}
long long CuePoint::GetTimeCode() const
{
return m_timecode;
}
long long CuePoint::GetTime(const Segment* pSegment) const
{
assert(pSegment);
assert(m_timecode >= 0);
const SegmentInfo* const pInfo = pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long time = scale * m_timecode;
return time;
}
#if 0
long long Segment::Unparsed() const
{
if (m_size < 0)
return LLONG_MAX;
const long long stop = m_start + m_size;
const long long result = stop - m_pos;
assert(result >= 0);
return result;
}
#else
bool Segment::DoneParsing() const
{
if (m_size < 0)
{
long long total, avail;
const int status = m_pReader->Length(&total, &avail);
if (status < 0) //error
return true; //must assume done
if (total < 0)
return false; //assume live stream
return (m_pos >= total);
}
const long long stop = m_start + m_size;
return (m_pos >= stop);
}
#endif
const Cluster* Segment::GetFirst() const
{
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
Cluster* const pCluster = m_clusters[0];
assert(pCluster);
return pCluster;
}
const Cluster* Segment::GetLast() const
{
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
const long idx = m_clusterCount - 1;
Cluster* const pCluster = m_clusters[idx];
assert(pCluster);
return pCluster;
}
unsigned long Segment::GetCount() const
{
return m_clusterCount;
}
const Cluster* Segment::GetNext(const Cluster* pCurr)
{
assert(pCurr);
assert(pCurr != &m_eos);
assert(m_clusters);
long idx = pCurr->m_index;
if (idx >= 0)
{
assert(m_clusterCount > 0);
assert(idx < m_clusterCount);
assert(pCurr == m_clusters[idx]);
++idx;
if (idx >= m_clusterCount)
return &m_eos; //caller will LoadCluster as desired
Cluster* const pNext = m_clusters[idx];
assert(pNext);
assert(pNext->m_index >= 0);
assert(pNext->m_index == idx);
return pNext;
}
assert(m_clusterPreloadCount > 0);
//const long long off_ = pCurr->m_pos;
//const long long off = off_ * ((off_ < 0) ? -1 : 1);
//long long pos = m_start + off;
long long pos = pCurr->m_element_start;
assert(m_size >= 0); //TODO
const long long stop = m_start + m_size; //end of segment
{
long len;
long long result = GetUIntLength(m_pReader, pos, len);
assert(result == 0); //TODO
assert((pos + len) <= stop); //TODO
const long long id = ReadUInt(m_pReader, pos, len);
assert(id == 0x0F43B675); //Cluster ID //TODO
pos += len; //consume ID
//Read Size
result = GetUIntLength(m_pReader, pos, len);
assert(result == 0); //TODO
assert((pos + len) <= stop); //TODO
const long long size = ReadUInt(m_pReader, pos, len);
assert(size > 0); //TODO
//assert((pCurr->m_size <= 0) || (pCurr->m_size == size));
pos += len; //consume length of size of element
assert((pos + size) <= stop); //TODO
//Pos now points to start of payload
pos += size; //consume payload
}
long long off_next = 0;
//long long element_start_next = 0;
long long element_size_next = 0;
while (pos < stop)
{
long len;
long long result = GetUIntLength(m_pReader, pos, len);
assert(result == 0); //TODO
assert((pos + len) <= stop); //TODO
const long long idpos = pos; //pos of next (potential) cluster
const long long id = ReadUInt(m_pReader, idpos, len);
assert(id > 0); //TODO
pos += len; //consume ID
//Read Size
result = GetUIntLength(m_pReader, pos, len);
assert(result == 0); //TODO
assert((pos + len) <= stop); //TODO
const long long size = ReadUInt(m_pReader, pos, len);
assert(size >= 0); //TODO
pos += len; //consume length of size of element
assert((pos + size) <= stop); //TODO
const long long element_size = size + pos - idpos;
//Pos now points to start of payload
if (size == 0) //weird
continue;
if (id == 0x0F43B675) //Cluster ID
{
const long long off_next_ = idpos - m_start;
long long pos_;
long len_;
const long status = Cluster::HasBlockEntries(
this,
off_next_,
pos_,
len_);
assert(status >= 0);
if (status > 0)
{
off_next = off_next_;
//element_start_next = idpos;
element_size_next = element_size;
break;
}
}
pos += size; //consume payload
}
if (off_next <= 0)
return 0;
Cluster** const ii = m_clusters + m_clusterCount;
Cluster** i = ii;
Cluster** const jj = ii + m_clusterPreloadCount;
Cluster** j = jj;
while (i < j)
{
//INVARIANT:
//[0, i) < pos_next
//[i, j) ?
//[j, jj) > pos_next
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
Cluster* const pNext = *k;
assert(pNext);
assert(pNext->m_index < 0);
//const long long pos_ = pNext->m_pos;
//assert(pos_);
//pos = pos_ * ((pos_ < 0) ? -1 : 1);
pos = pNext->GetPosition();
if (pos < off_next)
i = k + 1;
else if (pos > off_next)
j = k;
else
return pNext;
}
assert(i == j);
Cluster* const pNext = Cluster::Create(this,
-1,
off_next);
//element_size_next);
assert(pNext);
const ptrdiff_t idx_next = i - m_clusters; //insertion position
PreloadCluster(pNext, idx_next);
assert(m_clusters);
assert(idx_next < m_clusterSize);
assert(m_clusters[idx_next] == pNext);
return pNext;
}
long Segment::ParseNext(
const Cluster* pCurr,
const Cluster*& pResult,
long long& pos,
long& len)
{
assert(pCurr);
assert(!pCurr->EOS());
assert(m_clusters);
pResult = 0;
if (pCurr->m_index >= 0) //loaded (not merely preloaded)
{
assert(m_clusters[pCurr->m_index] == pCurr);
const long next_idx = pCurr->m_index + 1;
if (next_idx < m_clusterCount)
{
pResult = m_clusters[next_idx];
return 0; //success
}
//curr cluster is last among loaded
const long result = LoadCluster(pos, len);
if (result < 0) //error or underflow
return result;
if (result > 0) //no more clusters
{
//pResult = &m_eos;
return 1;
}
pResult = GetLast();
return 0; //success
}
assert(m_pos > 0);
long long total, avail;
long status = m_pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
//interrogate curr cluster
pos = pCurr->m_element_start;
if (pCurr->m_element_size >= 0)
pos += pCurr->m_element_size;
else
{
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(m_pReader, pos, len);
if (id != 0x0F43B675) //weird: not Cluster ID
return -1;
pos += len; //consume ID
//Read Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume size field
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size) //TODO: should never happen
return E_FILE_FORMAT_INVALID; //TODO: resolve this
//assert((pCurr->m_size <= 0) || (pCurr->m_size == size));
if ((segment_stop >= 0) && ((pos + size) > segment_stop))
return E_FILE_FORMAT_INVALID;
//Pos now points to start of payload
pos += size; //consume payload (that is, the current cluster)
assert((segment_stop < 0) || (pos <= segment_stop));
//By consuming the payload, we are assuming that the curr
//cluster isn't interesting. That is, we don't bother checking
//whether the payload of the curr cluster is less than what
//happens to be available (obtained via IMkvReader::Length).
//Presumably the caller has already dispensed with the current
//cluster, and really does want the next cluster.
}
//pos now points to just beyond the last fully-loaded cluster
for (;;)
{
const long status = DoParseNext(pResult, pos, len);
if (status <= 1)
return status;
}
}
long Segment::DoParseNext(
const Cluster*& pResult,
long long& pos,
long& len)
{
long long total, avail;
long status = m_pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size;
//Parse next cluster. This is strictly a parsing activity.
//Creation of a new cluster object happens later, after the
//parsing is done.
long long off_next = 0;
long long cluster_size = -1;
for (;;)
{
if ((total >= 0) && (pos >= total))
return 1; //EOF
if ((segment_stop >= 0) && (pos >= segment_stop))
return 1; //EOF
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos; //absolute
const long long idoff = pos - m_start; //relative
const long long id = ReadUInt(m_pReader, idpos, len); //absolute
if (id < 0) //error
return static_cast<long>(id);
if (id == 0) //weird
return -1; //generic error
pos += len; //consume ID
//Read Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume length of size of element
//Pos now points to start of payload
if (size == 0) //weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if ((segment_stop >= 0) &&
(size != unknown_size) &&
((pos + size) > segment_stop))
{
return E_FILE_FORMAT_INVALID;
}
if (id == 0x0C53BB6B) //Cues ID
{
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
const long long element_stop = pos + size;
if ((segment_stop >= 0) && (element_stop > segment_stop))
return E_FILE_FORMAT_INVALID;
const long long element_start = idpos;
const long long element_size = element_stop - element_start;
if (m_pCues == NULL)
{
m_pCues = new Cues(this,
pos,
size,
element_start,
element_size);
assert(m_pCues); //TODO
}
pos += size; //consume payload
assert((segment_stop < 0) || (pos <= segment_stop));
continue;
}
if (id != 0x0F43B675) //not a Cluster ID
{
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
pos += size; //consume payload
assert((segment_stop < 0) || (pos <= segment_stop));
continue;
}
#if 0 //this is commented-out to support incremental cluster parsing
len = static_cast<long>(size);
if (element_stop > avail)
return E_BUFFER_NOT_FULL;
#endif
//We have a cluster.
off_next = idoff;
if (size != unknown_size)
cluster_size = size;
break;
}
assert(off_next > 0); //have cluster
//We have parsed the next cluster.
//We have not created a cluster object yet. What we need
//to do now is determine whether it has already be preloaded
//(in which case, an object for this cluster has already been
//created), and if not, create a new cluster object.
Cluster** const ii = m_clusters + m_clusterCount;
Cluster** i = ii;
Cluster** const jj = ii + m_clusterPreloadCount;
Cluster** j = jj;
while (i < j)
{
//INVARIANT:
//[0, i) < pos_next
//[i, j) ?
//[j, jj) > pos_next
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
const Cluster* const pNext = *k;
assert(pNext);
assert(pNext->m_index < 0);
pos = pNext->GetPosition();
assert(pos >= 0);
if (pos < off_next)
i = k + 1;
else if (pos > off_next)
j = k;
else
{
pResult = pNext;
return 0; //success
}
}
assert(i == j);
long long pos_;
long len_;
status = Cluster::HasBlockEntries(this, off_next, pos_, len_);
if (status < 0) //error or underflow
{
pos = pos_;
len = len_;
return status;
}
if (status > 0) //means "found at least one block entry"
{
Cluster* const pNext = Cluster::Create(this,
-1, //preloaded
off_next);
//element_size);
assert(pNext);
const ptrdiff_t idx_next = i - m_clusters; //insertion position
PreloadCluster(pNext, idx_next);
assert(m_clusters);
assert(idx_next < m_clusterSize);
assert(m_clusters[idx_next] == pNext);
pResult = pNext;
return 0; //success
}
//status == 0 means "no block entries found"
if (cluster_size < 0) //unknown size
{
const long long payload_pos = pos; //absolute pos of cluster payload
for (;;) //determine cluster size
{
if ((total >= 0) && (pos >= total))
break;
if ((segment_stop >= 0) && (pos >= segment_stop))
break; //no more clusters
//Read ID
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
if (id < 0) //error (or underflow)
return static_cast<long>(id);
//This is the distinguished set of ID's we use to determine
//that we have exhausted the sub-element's inside the cluster
//whose ID we parsed earlier.
if (id == 0x0F43B675) //Cluster ID
break;
if (id == 0x0C53BB6B) //Cues ID
break;
pos += len; //consume ID (of sub-element)
//Read Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume size field of element
//pos now points to start of sub-element's payload
if (size == 0) //weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; //not allowed for sub-elements
if ((segment_stop >= 0) && ((pos + size) > segment_stop)) //weird
return E_FILE_FORMAT_INVALID;
pos += size; //consume payload of sub-element
assert((segment_stop < 0) || (pos <= segment_stop));
} //determine cluster size
cluster_size = pos - payload_pos;
assert(cluster_size >= 0); //TODO: handle cluster_size = 0
pos = payload_pos; //reset and re-parse original cluster
}
pos += cluster_size; //consume payload
assert((segment_stop < 0) || (pos <= segment_stop));
return 2; //try to find a cluster that follows next
}
const Cluster* Segment::FindCluster(long long time_ns) const
{
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
{
Cluster* const pCluster = m_clusters[0];
assert(pCluster);
assert(pCluster->m_index == 0);
if (time_ns <= pCluster->GetTime())
return pCluster;
}
//Binary search of cluster array
long i = 0;
long j = m_clusterCount;
while (i < j)
{
//INVARIANT:
//[0, i) <= time_ns
//[i, j) ?
//[j, m_clusterCount) > time_ns
const long k = i + (j - i) / 2;
assert(k < m_clusterCount);
Cluster* const pCluster = m_clusters[k];
assert(pCluster);
assert(pCluster->m_index == k);
const long long t = pCluster->GetTime();
if (t <= time_ns)
i = k + 1;
else
j = k;
assert(i <= j);
}
assert(i == j);
assert(i > 0);
assert(i <= m_clusterCount);
const long k = i - 1;
Cluster* const pCluster = m_clusters[k];
assert(pCluster);
assert(pCluster->m_index == k);
assert(pCluster->GetTime() <= time_ns);
return pCluster;
}
#if 0
const BlockEntry* Segment::Seek(
long long time_ns,
const Track* pTrack) const
{
assert(pTrack);
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return pTrack->GetEOS();
Cluster** const i = m_clusters;
assert(i);
{
Cluster* const pCluster = *i;
assert(pCluster);
assert(pCluster->m_index == 0); //m_clusterCount > 0
assert(pCluster->m_pSegment == this);
if (time_ns <= pCluster->GetTime())
return pCluster->GetEntry(pTrack);
}
Cluster** const j = i + m_clusterCount;
if (pTrack->GetType() == 2) //audio
{
//TODO: we could decide to use cues for this, as we do for video.
//But we only use it for video because looking around for a keyframe
//can get expensive. Audio doesn't require anything special so a
//straight cluster search is good enough (we assume).
Cluster** lo = i;
Cluster** hi = j;
while (lo < hi)
{
//INVARIANT:
//[i, lo) <= time_ns
//[lo, hi) ?
//[hi, j) > time_ns
Cluster** const mid = lo + (hi - lo) / 2;
assert(mid < hi);
Cluster* const pCluster = *mid;
assert(pCluster);
assert(pCluster->m_index == long(mid - m_clusters));
assert(pCluster->m_pSegment == this);
const long long t = pCluster->GetTime();
if (t <= time_ns)
lo = mid + 1;
else
hi = mid;
assert(lo <= hi);
}
assert(lo == hi);
assert(lo > i);
assert(lo <= j);
while (lo > i)
{
Cluster* const pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
const BlockEntry* const pBE = pCluster->GetEntry(pTrack);
if ((pBE != 0) && !pBE->EOS())
return pBE;
//landed on empty cluster (no entries)
}
return pTrack->GetEOS(); //weird
}
assert(pTrack->GetType() == 1); //video
Cluster** lo = i;
Cluster** hi = j;
while (lo < hi)
{
//INVARIANT:
//[i, lo) <= time_ns
//[lo, hi) ?
//[hi, j) > time_ns
Cluster** const mid = lo + (hi - lo) / 2;
assert(mid < hi);
Cluster* const pCluster = *mid;
assert(pCluster);
const long long t = pCluster->GetTime();
if (t <= time_ns)
lo = mid + 1;
else
hi = mid;
assert(lo <= hi);
}
assert(lo == hi);
assert(lo > i);
assert(lo <= j);
Cluster* pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
{
const BlockEntry* const pBE = pCluster->GetEntry(pTrack, time_ns);
if ((pBE != 0) && !pBE->EOS()) //found a keyframe
return pBE;
}
const VideoTrack* const pVideo = static_cast<const VideoTrack*>(pTrack);
while (lo != i)
{
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
const BlockEntry* const pBlockEntry = pCluster->GetMaxKey(pVideo);
if ((pBlockEntry != 0) && !pBlockEntry->EOS())
return pBlockEntry;
}
//weird: we're on the first cluster, but no keyframe found
//should never happen but we must return something anyway
return pTrack->GetEOS();
}
#endif
#if 0
bool Segment::SearchCues(
long long time_ns,
Track* pTrack,
Cluster*& pCluster,
const BlockEntry*& pBlockEntry,
const CuePoint*& pCP,
const CuePoint::TrackPosition*& pTP)
{
if (pTrack->GetType() != 1) //not video
return false; //TODO: for now, just handle video stream
if (m_pCues == NULL)
return false;
if (!m_pCues->Find(time_ns, pTrack, pCP, pTP))
return false; //weird
assert(pCP);
assert(pTP);
assert(pTP->m_track == pTrack->GetNumber());
//We have the cue point and track position we want,
//so we now need to search for the cluster having
//the indicated position.
return GetCluster(pCP, pTP, pCluster, pBlockEntry);
}
#endif
const Tracks* Segment::GetTracks() const
{
return m_pTracks;
}
const SegmentInfo* Segment::GetInfo() const
{
return m_pInfo;
}
const Cues* Segment::GetCues() const
{
return m_pCues;
}
const SeekHead* Segment::GetSeekHead() const
{
return m_pSeekHead;
}
long long Segment::GetDuration() const
{
assert(m_pInfo);
return m_pInfo->GetDuration();
}
SegmentInfo::SegmentInfo(
Segment* pSegment,
long long start,
long long size_,
long long element_start,
long long element_size) :
m_pSegment(pSegment),
m_start(start),
m_size(size_),
m_element_start(element_start),
m_element_size(element_size),
m_pMuxingAppAsUTF8(NULL),
m_pWritingAppAsUTF8(NULL),
m_pTitleAsUTF8(NULL)
{
}
SegmentInfo::~SegmentInfo()
{
delete[] m_pMuxingAppAsUTF8;
m_pMuxingAppAsUTF8 = NULL;
delete[] m_pWritingAppAsUTF8;
m_pWritingAppAsUTF8 = NULL;
delete[] m_pTitleAsUTF8;
m_pTitleAsUTF8 = NULL;
}
long SegmentInfo::Parse()
{
assert(m_pMuxingAppAsUTF8 == NULL);
assert(m_pWritingAppAsUTF8 == NULL);
assert(m_pTitleAsUTF8 == NULL);
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = m_start;
const long long stop = m_start + m_size;
m_timecodeScale = 1000000;
m_duration = -1;
while (pos < stop)
{
long long id, size;
const long status = ParseElementHeader(
pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x0AD7B1) //Timecode Scale
{
m_timecodeScale = UnserializeUInt(pReader, pos, size);
if (m_timecodeScale <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x0489) //Segment duration
{
const long status = UnserializeFloat(
pReader,
pos,
size,
m_duration);
if (status < 0)
return status;
if (m_duration < 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x0D80) //MuxingApp
{
const long status = UnserializeString(
pReader,
pos,
size,
m_pMuxingAppAsUTF8);
if (status)
return status;
}
else if (id == 0x1741) //WritingApp
{
const long status = UnserializeString(
pReader,
pos,
size,
m_pWritingAppAsUTF8);
if (status)
return status;
}
else if (id == 0x3BA9) //Title
{
const long status = UnserializeString(
pReader,
pos,
size,
m_pTitleAsUTF8);
if (status)
return status;
}
pos += size;
assert(pos <= stop);
}
assert(pos == stop);
return 0;
}
long long SegmentInfo::GetTimeCodeScale() const
{
return m_timecodeScale;
}
long long SegmentInfo::GetDuration() const
{
if (m_duration < 0)
return -1;
assert(m_timecodeScale >= 1);
const double dd = double(m_duration) * double(m_timecodeScale);
const long long d = static_cast<long long>(dd);
return d;
}
const char* SegmentInfo::GetMuxingAppAsUTF8() const
{
return m_pMuxingAppAsUTF8;
}
const char* SegmentInfo::GetWritingAppAsUTF8() const
{
return m_pWritingAppAsUTF8;
}
const char* SegmentInfo::GetTitleAsUTF8() const
{
return m_pTitleAsUTF8;
}
///////////////////////////////////////////////////////////////
// ContentEncoding element
ContentEncoding::ContentCompression::ContentCompression()
: algo(0),
settings(NULL) {
}
ContentEncoding::ContentCompression::~ContentCompression() {
delete [] settings;
}
ContentEncoding::ContentEncryption::ContentEncryption()
: algo(0),
key_id(NULL),
key_id_len(0),
signature(NULL),
signature_len(0),
sig_key_id(NULL),
sig_key_id_len(0),
sig_algo(0),
sig_hash_algo(0) {
}
ContentEncoding::ContentEncryption::~ContentEncryption() {
delete [] key_id;
delete [] signature;
delete [] sig_key_id;
}
ContentEncoding::ContentEncoding()
: compression_entries_(NULL),
compression_entries_end_(NULL),
encryption_entries_(NULL),
encryption_entries_end_(NULL),
encoding_order_(0),
encoding_scope_(1),
encoding_type_(0) {
}
ContentEncoding::~ContentEncoding() {
ContentCompression** comp_i = compression_entries_;
ContentCompression** const comp_j = compression_entries_end_;
while (comp_i != comp_j) {
ContentCompression* const comp = *comp_i++;
delete comp;
}
delete [] compression_entries_;
ContentEncryption** enc_i = encryption_entries_;
ContentEncryption** const enc_j = encryption_entries_end_;
while (enc_i != enc_j) {
ContentEncryption* const enc = *enc_i++;
delete enc;
}
delete [] encryption_entries_;
}
const ContentEncoding::ContentCompression*
ContentEncoding::GetCompressionByIndex(unsigned long idx) const {
const ptrdiff_t count = compression_entries_end_ - compression_entries_;
assert(count >= 0);
if (idx >= static_cast<unsigned long>(count))
return NULL;
return compression_entries_[idx];
}
unsigned long ContentEncoding::GetCompressionCount() const {
const ptrdiff_t count = compression_entries_end_ - compression_entries_;
assert(count >= 0);
return static_cast<unsigned long>(count);
}
const ContentEncoding::ContentEncryption*
ContentEncoding::GetEncryptionByIndex(unsigned long idx) const {
const ptrdiff_t count = encryption_entries_end_ - encryption_entries_;
assert(count >= 0);
if (idx >= static_cast<unsigned long>(count))
return NULL;
return encryption_entries_[idx];
}
unsigned long ContentEncoding::GetEncryptionCount() const {
const ptrdiff_t count = encryption_entries_end_ - encryption_entries_;
assert(count >= 0);
return static_cast<unsigned long>(count);
}
long ContentEncoding::ParseContentEncAESSettingsEntry(
long long start,
long long size,
IMkvReader* pReader,
ContentEncAESSettings* aes) {
assert(pReader);
assert(aes);
long long pos = start;
const long long stop = start + size;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x7E8) {
// AESSettingsCipherMode
aes->cipher_mode = UnserializeUInt(pReader, pos, size);
if (aes->cipher_mode != 1)
return E_FILE_FORMAT_INVALID;
}
pos += size; //consume payload
assert(pos <= stop);
}
return 0;
}
long ContentEncoding::ParseContentEncodingEntry(long long start,
long long size,
IMkvReader* pReader) {
assert(pReader);
long long pos = start;
const long long stop = start + size;
// Count ContentCompression and ContentEncryption elements.
int compression_count = 0;
int encryption_count = 0;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x1034) // ContentCompression ID
++compression_count;
if (id == 0x1035) // ContentEncryption ID
++encryption_count;
pos += size; //consume payload
assert(pos <= stop);
}
if (compression_count <= 0 && encryption_count <= 0)
return -1;
if (compression_count > 0) {
compression_entries_ =
new (std::nothrow) ContentCompression*[compression_count];
if (!compression_entries_)
return -1;
compression_entries_end_ = compression_entries_;
}
if (encryption_count > 0) {
encryption_entries_ =
new (std::nothrow) ContentEncryption*[encryption_count];
if (!encryption_entries_) {
delete [] compression_entries_;
return -1;
}
encryption_entries_end_ = encryption_entries_;
}
pos = start;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x1031) {
// ContentEncodingOrder
encoding_order_ = UnserializeUInt(pReader, pos, size);
} else if (id == 0x1032) {
// ContentEncodingScope
encoding_scope_ = UnserializeUInt(pReader, pos, size);
if (encoding_scope_ < 1)
return -1;
} else if (id == 0x1033) {
// ContentEncodingType
encoding_type_ = UnserializeUInt(pReader, pos, size);
} else if (id == 0x1034) {
// ContentCompression ID
// TODO(fgaligan): Add code to parse ContentCompression elements.
} else if (id == 0x1035) {
// ContentEncryption ID
ContentEncryption* const encryption =
new (std::nothrow) ContentEncryption();
if (!encryption)
return -1;
status = ParseEncryptionEntry(pos, size, pReader, encryption);
if (status) {
delete encryption;
return status;
}
*encryption_entries_end_++ = encryption;
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
return 0;
}
long ContentEncoding::ParseEncryptionEntry(
long long start,
long long size,
IMkvReader* pReader,
ContentEncryption* encryption) {
assert(pReader);
assert(encryption);
long long pos = start;
const long long stop = start + size;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x7E1) {
// ContentEncAlgo
encryption->algo = UnserializeUInt(pReader, pos, size);
if (encryption->algo != 5)
return E_FILE_FORMAT_INVALID;
} else if (id == 0x7E2) {
// ContentEncKeyID
delete[] encryption->key_id;
encryption->key_id = NULL;
encryption->key_id_len = 0;
if (size <= 0)
return E_FILE_FORMAT_INVALID;
const size_t buflen = static_cast<size_t>(size);
typedef unsigned char* buf_t;
const buf_t buf = new (std::nothrow) unsigned char[buflen];
if (buf == NULL)
return -1;
const int read_status = pReader->Read(pos, buflen, buf);
if (read_status) {
delete [] buf;
return status;
}
encryption->key_id = buf;
encryption->key_id_len = buflen;
} else if (id == 0x7E3) {
// ContentSignature
delete[] encryption->signature;
encryption->signature = NULL;
encryption->signature_len = 0;
if (size <= 0)
return E_FILE_FORMAT_INVALID;
const size_t buflen = static_cast<size_t>(size);
typedef unsigned char* buf_t;
const buf_t buf = new (std::nothrow) unsigned char[buflen];
if (buf == NULL)
return -1;
const int read_status = pReader->Read(pos, buflen, buf);
if (read_status) {
delete [] buf;
return status;
}
encryption->signature = buf;
encryption->signature_len = buflen;
} else if (id == 0x7E4) {
// ContentSigKeyID
delete[] encryption->sig_key_id;
encryption->sig_key_id = NULL;
encryption->sig_key_id_len = 0;
if (size <= 0)
return E_FILE_FORMAT_INVALID;
const size_t buflen = static_cast<size_t>(size);
typedef unsigned char* buf_t;
const buf_t buf = new (std::nothrow) unsigned char[buflen];
if (buf == NULL)
return -1;
const int read_status = pReader->Read(pos, buflen, buf);
if (read_status) {
delete [] buf;
return status;
}
encryption->sig_key_id = buf;
encryption->sig_key_id_len = buflen;
} else if (id == 0x7E5) {
// ContentSigAlgo
encryption->sig_algo = UnserializeUInt(pReader, pos, size);
} else if (id == 0x7E6) {
// ContentSigHashAlgo
encryption->sig_hash_algo = UnserializeUInt(pReader, pos, size);
} else if (id == 0x7E7) {
// ContentEncAESSettings
const long status = ParseContentEncAESSettingsEntry(
pos,
size,
pReader,
&encryption->aes_settings);
if (status)
return status;
}
pos += size; //consume payload
assert(pos <= stop);
}
return 0;
}
Track::Track(
Segment* pSegment,
long long element_start,
long long element_size) :
m_pSegment(pSegment),
m_element_start(element_start),
m_element_size(element_size),
content_encoding_entries_(NULL),
content_encoding_entries_end_(NULL)
{
}
Track::~Track()
{
Info& info = const_cast<Info&>(m_info);
info.Clear();
ContentEncoding** i = content_encoding_entries_;
ContentEncoding** const j = content_encoding_entries_end_;
while (i != j) {
ContentEncoding* const encoding = *i++;
delete encoding;
}
delete [] content_encoding_entries_;
}
long Track::Create(
Segment* pSegment,
const Info& info,
long long element_start,
long long element_size,
Track*& pResult)
{
if (pResult)
return -1;
Track* const pTrack = new (std::nothrow) Track(pSegment,
element_start,
element_size);
if (pTrack == NULL)
return -1; //generic error
const int status = info.Copy(pTrack->m_info);
if (status) // error
{
delete pTrack;
return status;
}
pResult = pTrack;
return 0; //success
}
Track::Info::Info():
nameAsUTF8(NULL),
codecId(NULL),
codecNameAsUTF8(NULL),
codecPrivate(NULL),
codecPrivateSize(0)
{
}
Track::Info::~Info()
{
Clear();
}
void Track::Info::Clear()
{
delete[] nameAsUTF8;
nameAsUTF8 = NULL;
delete[] codecId;
codecId = NULL;
delete[] codecPrivate;
codecPrivate = NULL;
codecPrivateSize = 0;
delete[] codecNameAsUTF8;
codecNameAsUTF8 = NULL;
}
int Track::Info::CopyStr(char* Info::*str, Info& dst_) const
{
if (str == static_cast<char* Info::*>(NULL))
return -1;
char*& dst = dst_.*str;
if (dst) //should be NULL already
return -1;
const char* const src = this->*str;
if (src == NULL)
return 0;
const size_t len = strlen(src);
dst = new (std::nothrow) char[len+1];
if (dst == NULL)
return -1;
strcpy(dst, src);
return 0;
}
int Track::Info::Copy(Info& dst) const
{
if (&dst == this)
return 0;
dst.type = type;
dst.number = number;
dst.uid = uid;
dst.lacing = lacing;
dst.settings = settings;
//We now copy the string member variables from src to dst.
//This involves memory allocation so in principle the operation
//can fail (indeed, that's why we have Info::Copy), so we must
//report this to the caller. An error return from this function
//therefore implies that the copy was only partially successful.
if (int status = CopyStr(&Info::nameAsUTF8, dst))
return status;
if (int status = CopyStr(&Info::codecId, dst))
return status;
if (int status = CopyStr(&Info::codecNameAsUTF8, dst))
return status;
if (codecPrivateSize > 0)
{
if (codecPrivate == NULL)
return -1;
if (dst.codecPrivate)
return -1;
if (dst.codecPrivateSize != 0)
return -1;
dst.codecPrivate = new (std::nothrow) unsigned char[codecPrivateSize];
if (dst.codecPrivate == NULL)
return -1;
memcpy(dst.codecPrivate, codecPrivate, codecPrivateSize);
dst.codecPrivateSize = codecPrivateSize;
}
return 0;
}
const BlockEntry* Track::GetEOS() const
{
return &m_eos;
}
long Track::GetType() const
{
return m_info.type;
}
long Track::GetNumber() const
{
return m_info.number;
}
unsigned long long Track::GetUid() const
{
return m_info.uid;
}
const char* Track::GetNameAsUTF8() const
{
return m_info.nameAsUTF8;
}
const char* Track::GetCodecNameAsUTF8() const
{
return m_info.codecNameAsUTF8;
}
const char* Track::GetCodecId() const
{
return m_info.codecId;
}
const unsigned char* Track::GetCodecPrivate(size_t& size) const
{
size = m_info.codecPrivateSize;
return m_info.codecPrivate;
}
bool Track::GetLacing() const
{
return m_info.lacing;
}
long Track::GetFirst(const BlockEntry*& pBlockEntry) const
{
const Cluster* pCluster = m_pSegment->GetFirst();
for (int i = 0; ; )
{
if (pCluster == NULL)
{
pBlockEntry = GetEOS();
return 1;
}
if (pCluster->EOS())
{
#if 0
if (m_pSegment->Unparsed() <= 0) //all clusters have been loaded
{
pBlockEntry = GetEOS();
return 1;
}
#else
if (m_pSegment->DoneParsing())
{
pBlockEntry = GetEOS();
return 1;
}
#endif
pBlockEntry = 0;
return E_BUFFER_NOT_FULL;
}
long status = pCluster->GetFirst(pBlockEntry);
if (status < 0) //error
return status;
if (pBlockEntry == 0) //empty cluster
{
pCluster = m_pSegment->GetNext(pCluster);
continue;
}
for (;;)
{
const Block* const pBlock = pBlockEntry->GetBlock();
assert(pBlock);
const long long tn = pBlock->GetTrackNumber();
if ((tn == m_info.number) && VetEntry(pBlockEntry))
return 0;
const BlockEntry* pNextEntry;
status = pCluster->GetNext(pBlockEntry, pNextEntry);
if (status < 0) //error
return status;
if (pNextEntry == 0)
break;
pBlockEntry = pNextEntry;
}
++i;
if (i >= 100)
break;
pCluster = m_pSegment->GetNext(pCluster);
}
//NOTE: if we get here, it means that we didn't find a block with
//a matching track number. We interpret that as an error (which
//might be too conservative).
pBlockEntry = GetEOS(); //so we can return a non-NULL value
return 1;
}
long Track::GetNext(
const BlockEntry* pCurrEntry,
const BlockEntry*& pNextEntry) const
{
assert(pCurrEntry);
assert(!pCurrEntry->EOS()); //?
const Block* const pCurrBlock = pCurrEntry->GetBlock();
assert(pCurrBlock->GetTrackNumber() == m_info.number);
const Cluster* pCluster = pCurrEntry->GetCluster();
assert(pCluster);
assert(!pCluster->EOS());
long status = pCluster->GetNext(pCurrEntry, pNextEntry);
if (status < 0) //error
return status;
for (int i = 0; ; )
{
while (pNextEntry)
{
const Block* const pNextBlock = pNextEntry->GetBlock();
assert(pNextBlock);
if (pNextBlock->GetTrackNumber() == m_info.number)
return 0;
pCurrEntry = pNextEntry;
status = pCluster->GetNext(pCurrEntry, pNextEntry);
if (status < 0) //error
return status;
}
pCluster = m_pSegment->GetNext(pCluster);
if (pCluster == NULL)
{
pNextEntry = GetEOS();
return 1;
}
if (pCluster->EOS())
{
#if 0
if (m_pSegment->Unparsed() <= 0) //all clusters have been loaded
{
pNextEntry = GetEOS();
return 1;
}
#else
if (m_pSegment->DoneParsing())
{
pNextEntry = GetEOS();
return 1;
}
#endif
//TODO: there is a potential O(n^2) problem here: we tell the
//caller to (pre)load another cluster, which he does, but then he
//calls GetNext again, which repeats the same search. This is
//a pathological case, since the only way it can happen is if
//there exists a long sequence of clusters none of which contain a
// block from this track. One way around this problem is for the
//caller to be smarter when he loads another cluster: don't call
//us back until you have a cluster that contains a block from this
//track. (Of course, that's not cheap either, since our caller
//would have to scan the each cluster as it's loaded, so that
//would just push back the problem.)
pNextEntry = NULL;
return E_BUFFER_NOT_FULL;
}
status = pCluster->GetFirst(pNextEntry);
if (status < 0) //error
return status;
if (pNextEntry == NULL) //empty cluster
continue;
++i;
if (i >= 100)
break;
}
//NOTE: if we get here, it means that we didn't find a block with
//a matching track number after lots of searching, so we give
//up trying.
pNextEntry = GetEOS(); //so we can return a non-NULL value
return 1;
}
bool Track::VetEntry(const BlockEntry* pBlockEntry) const
{
assert(pBlockEntry);
const Block* const pBlock = pBlockEntry->GetBlock();
assert(pBlock);
assert(pBlock->GetTrackNumber() == m_info.number);
// This function is used during a seek to determine whether the
// frame is a valid seek target. This default function simply
// returns true, which means all frames are valid seek targets.
// It gets overridden by the VideoTrack class, because only video
// keyframes can be used as seek target.
return true;
}
long Track::Seek(
long long /* time_ns */ ,
const BlockEntry*& pResult) const
{
// TODO(matthewjheaney): need to implement this?
pResult = NULL;
return -1; // generic error
}
const ContentEncoding*
Track::GetContentEncodingByIndex(unsigned long idx) const {
const ptrdiff_t count =
content_encoding_entries_end_ - content_encoding_entries_;
assert(count >= 0);
if (idx >= static_cast<unsigned long>(count))
return NULL;
return content_encoding_entries_[idx];
}
unsigned long Track::GetContentEncodingCount() const {
const ptrdiff_t count =
content_encoding_entries_end_ - content_encoding_entries_;
assert(count >= 0);
return static_cast<unsigned long>(count);
}
long Track::ParseContentEncodingsEntry(long long start, long long size) {
IMkvReader* const pReader = m_pSegment->m_pReader;
assert(pReader);
long long pos = start;
const long long stop = start + size;
// Count ContentEncoding elements.
int count = 0;
while (pos < stop) {
long long id, size;
const long status = ParseElementHeader(pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
//pos now designates start of element
if (id == 0x2240) // ContentEncoding ID
++count;
pos += size; //consume payload
assert(pos <= stop);
}
if (count <= 0)
return -1;
content_encoding_entries_ = new (std::nothrow) ContentEncoding*[count];
if (!content_encoding_entries_)
return -1;
content_encoding_entries_end_ = content_encoding_entries_;
pos = start;
while (pos < stop) {
long long id, size;
long status = ParseElementHeader(pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
//pos now designates start of element
if (id == 0x2240) { // ContentEncoding ID
ContentEncoding* const content_encoding =
new (std::nothrow) ContentEncoding();
if (!content_encoding)
return -1;
status = content_encoding->ParseContentEncodingEntry(pos,
size,
pReader);
if (status) {
delete content_encoding;
return status;
}
*content_encoding_entries_end_++ = content_encoding;
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
return 0;
}
Track::EOSBlock::EOSBlock() :
BlockEntry(NULL, LONG_MIN)
{
}
BlockEntry::Kind Track::EOSBlock::GetKind() const
{
return kBlockEOS;
}
const Block* Track::EOSBlock::GetBlock() const
{
return NULL;
}
VideoTrack::VideoTrack(
Segment* pSegment,
long long element_start,
long long element_size) :
Track(pSegment, element_start, element_size)
{
}
long VideoTrack::Parse(
Segment* pSegment,
const Info& info,
long long element_start,
long long element_size,
VideoTrack*& pResult)
{
if (pResult)
return -1;
if (info.type != Track::kVideo)
return -1;
long long width = 0;
long long height = 0;
double rate = 0.0;
IMkvReader* const pReader = pSegment->m_pReader;
const Settings& s = info.settings;
assert(s.start >= 0);
assert(s.size >= 0);
long long pos = s.start;
assert(pos >= 0);
const long long stop = pos + s.size;
while (pos < stop)
{
long long id, size;
const long status = ParseElementHeader(
pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x30) //pixel width
{
width = UnserializeUInt(pReader, pos, size);
if (width <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x3A) //pixel height
{
height = UnserializeUInt(pReader, pos, size);
if (height <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x0383E3) //frame rate
{
const long status = UnserializeFloat(
pReader,
pos,
size,
rate);
if (status < 0)
return status;
if (rate <= 0)
return E_FILE_FORMAT_INVALID;
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
VideoTrack* const pTrack = new (std::nothrow) VideoTrack(pSegment,
element_start,
element_size);
if (pTrack == NULL)
return -1; //generic error
const int status = info.Copy(pTrack->m_info);
if (status) // error
{
delete pTrack;
return status;
}
pTrack->m_width = width;
pTrack->m_height = height;
pTrack->m_rate = rate;
pResult = pTrack;
return 0; //success
}
bool VideoTrack::VetEntry(const BlockEntry* pBlockEntry) const
{
return Track::VetEntry(pBlockEntry) && pBlockEntry->GetBlock()->IsKey();
}
long VideoTrack::Seek(
long long time_ns,
const BlockEntry*& pResult) const
{
const long status = GetFirst(pResult);
if (status < 0) //buffer underflow, etc
return status;
assert(pResult);
if (pResult->EOS())
return 0;
const Cluster* pCluster = pResult->GetCluster();
assert(pCluster);
assert(pCluster->GetIndex() >= 0);
if (time_ns <= pResult->GetBlock()->GetTime(pCluster))
return 0;
Cluster** const clusters = m_pSegment->m_clusters;
assert(clusters);
const long count = m_pSegment->GetCount(); //loaded only, not pre-loaded
assert(count > 0);
Cluster** const i = clusters + pCluster->GetIndex();
assert(i);
assert(*i == pCluster);
assert(pCluster->GetTime() <= time_ns);
Cluster** const j = clusters + count;
Cluster** lo = i;
Cluster** hi = j;
while (lo < hi)
{
//INVARIANT:
//[i, lo) <= time_ns
//[lo, hi) ?
//[hi, j) > time_ns
Cluster** const mid = lo + (hi - lo) / 2;
assert(mid < hi);
pCluster = *mid;
assert(pCluster);
assert(pCluster->GetIndex() >= 0);
assert(pCluster->GetIndex() == long(mid - m_pSegment->m_clusters));
const long long t = pCluster->GetTime();
if (t <= time_ns)
lo = mid + 1;
else
hi = mid;
assert(lo <= hi);
}
assert(lo == hi);
assert(lo > i);
assert(lo <= j);
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
pResult = pCluster->GetEntry(this, time_ns);
if ((pResult != 0) && !pResult->EOS()) //found a keyframe
return 0;
while (lo != i)
{
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
#if 0
//TODO:
//We need to handle the case when a cluster
//contains multiple keyframes. Simply returning
//the largest keyframe on the cluster isn't
//good enough.
pResult = pCluster->GetMaxKey(this);
#else
pResult = pCluster->GetEntry(this, time_ns);
#endif
if ((pResult != 0) && !pResult->EOS())
return 0;
}
//weird: we're on the first cluster, but no keyframe found
//should never happen but we must return something anyway
pResult = GetEOS();
return 0;
}
long long VideoTrack::GetWidth() const
{
return m_width;
}
long long VideoTrack::GetHeight() const
{
return m_height;
}
double VideoTrack::GetFrameRate() const
{
return m_rate;
}
AudioTrack::AudioTrack(
Segment* pSegment,
long long element_start,
long long element_size) :
Track(pSegment, element_start, element_size)
{
}
long AudioTrack::Parse(
Segment* pSegment,
const Info& info,
long long element_start,
long long element_size,
AudioTrack*& pResult)
{
if (pResult)
return -1;
if (info.type != Track::kAudio)
return -1;
IMkvReader* const pReader = pSegment->m_pReader;
const Settings& s = info.settings;
assert(s.start >= 0);
assert(s.size >= 0);
long long pos = s.start;
assert(pos >= 0);
const long long stop = pos + s.size;
double rate = 8000.0; // MKV default
long long channels = 1;
long long bit_depth = 0;
while (pos < stop)
{
long long id, size;
long status = ParseElementHeader(
pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (id == 0x35) //Sample Rate
{
status = UnserializeFloat(pReader, pos, size, rate);
if (status < 0)
return status;
if (rate <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x1F) //Channel Count
{
channels = UnserializeUInt(pReader, pos, size);
if (channels <= 0)
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x2264) //Bit Depth
{
bit_depth = UnserializeUInt(pReader, pos, size);
if (bit_depth <= 0)
return E_FILE_FORMAT_INVALID;
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
AudioTrack* const pTrack = new (std::nothrow) AudioTrack(pSegment,
element_start,
element_size);
if (pTrack == NULL)
return -1; //generic error
const int status = info.Copy(pTrack->m_info);
if (status)
{
delete pTrack;
return status;
}
pTrack->m_rate = rate;
pTrack->m_channels = channels;
pTrack->m_bitDepth = bit_depth;
pResult = pTrack;
return 0; //success
}
long AudioTrack::Seek(
long long time_ns,
const BlockEntry*& pResult) const
{
const long status = GetFirst(pResult);
if (status < 0) //buffer underflow, etc
return status;
assert(pResult);
if (pResult->EOS())
return 0;
const Cluster* pCluster = pResult->GetCluster();
assert(pCluster);
assert(pCluster->GetIndex() >= 0);
if (time_ns <= pResult->GetBlock()->GetTime(pCluster))
return 0;
Cluster** const clusters = m_pSegment->m_clusters;
assert(clusters);
const long count = m_pSegment->GetCount(); //loaded only, not preloaded
assert(count > 0);
Cluster** const i = clusters + pCluster->GetIndex();
assert(i);
assert(*i == pCluster);
assert(pCluster->GetTime() <= time_ns);
Cluster** const j = clusters + count;
Cluster** lo = i;
Cluster** hi = j;
while (lo < hi)
{
//INVARIANT:
//[i, lo) <= time_ns
//[lo, hi) ?
//[hi, j) > time_ns
Cluster** const mid = lo + (hi - lo) / 2;
assert(mid < hi);
pCluster = *mid;
assert(pCluster);
assert(pCluster->GetIndex() >= 0);
assert(pCluster->GetIndex() == long(mid - m_pSegment->m_clusters));
const long long t = pCluster->GetTime();
if (t <= time_ns)
lo = mid + 1;
else
hi = mid;
assert(lo <= hi);
}
assert(lo == hi);
assert(lo > i);
assert(lo <= j);
while (lo > i)
{
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
pResult = pCluster->GetEntry(this);
if ((pResult != 0) && !pResult->EOS())
return 0;
//landed on empty cluster (no entries)
}
pResult = GetEOS(); //weird
return 0;
}
double AudioTrack::GetSamplingRate() const
{
return m_rate;
}
long long AudioTrack::GetChannels() const
{
return m_channels;
}
long long AudioTrack::GetBitDepth() const
{
return m_bitDepth;
}
Tracks::Tracks(
Segment* pSegment,
long long start,
long long size_,
long long element_start,
long long element_size) :
m_pSegment(pSegment),
m_start(start),
m_size(size_),
m_element_start(element_start),
m_element_size(element_size),
m_trackEntries(NULL),
m_trackEntriesEnd(NULL)
{
}
long Tracks::Parse()
{
assert(m_trackEntries == NULL);
assert(m_trackEntriesEnd == NULL);
const long long stop = m_start + m_size;
IMkvReader* const pReader = m_pSegment->m_pReader;
int count = 0;
long long pos = m_start;
while (pos < stop)
{
long long id, size;
const long status = ParseElementHeader(
pReader,
pos,
stop,
id,
size);
if (status < 0) //error
return status;
if (size == 0) //weird
continue;
if (id == 0x2E) //TrackEntry ID
++count;
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
if (count <= 0)
return 0; //success
m_trackEntries = new (std::nothrow) Track*[count];
if (m_trackEntries == NULL)
return -1;
m_trackEntriesEnd = m_trackEntries;
pos = m_start;
while (pos < stop)
{
const long long element_start = pos;
long long id, payload_size;
const long status = ParseElementHeader(
pReader,
pos,
stop,
id,
payload_size);
if (status < 0) //error
return status;
if (payload_size == 0) //weird
continue;
const long long payload_stop = pos + payload_size;
assert(payload_stop <= stop); //checked in ParseElement
const long long element_size = payload_stop - element_start;
if (id == 0x2E) //TrackEntry ID
{
Track*& pTrack = *m_trackEntriesEnd;
pTrack = NULL;
const long status = ParseTrackEntry(
pos,
payload_size,
element_start,
element_size,
pTrack);
if (status)
return status;
if (pTrack)
++m_trackEntriesEnd;
}
pos = payload_stop;
assert(pos <= stop);
}
assert(pos == stop);
return 0; //success
}
unsigned long Tracks::GetTracksCount() const
{
const ptrdiff_t result = m_trackEntriesEnd - m_trackEntries;
assert(result >= 0);
return static_cast<unsigned long>(result);
}
long Tracks::ParseTrackEntry(
long long track_start,
long long track_size,
long long element_start,
long long element_size,
Track*& pResult) const
{
if (pResult)
return -1;
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = track_start;
const long long track_stop = track_start + track_size;
Track::Info info;
info.type = 0;
info.number = 0;
info.uid = 0;
Track::Settings v;
v.start = -1;
v.size = -1;
Track::Settings a;
a.start = -1;
a.size = -1;
Track::Settings e; //content_encodings_settings;
e.start = -1;
e.size = -1;
long long lacing = 1; //default is true
while (pos < track_stop)
{
long long id, size;
const long status = ParseElementHeader(
pReader,
pos,
track_stop,
id,
size);
if (status < 0) //error
return status;
const long long start = pos;
if (id == 0x60) // VideoSettings ID
{
if (size <= 0)
return E_FILE_FORMAT_INVALID;
v.start = start;
v.size = size;
}
else if (id == 0x61) // AudioSettings ID
{
if (size <= 0)
return E_FILE_FORMAT_INVALID;
a.start = start;
a.size = size;
}
else if (id == 0x2D80) // ContentEncodings ID
{
if (size <= 0)
return E_FILE_FORMAT_INVALID;
e.start = start;
e.size = size;
}
else if (id == 0x33C5) //Track UID
{
if ((size <= 0) || (size > 8))
return E_FILE_FORMAT_INVALID;
info.uid = 0;
long long pos_ = start;
const long long pos_end = start + size;
while (pos_ != pos_end)
{
unsigned char b;
const int status = pReader->Read(pos_, 1, &b);
if (status)
return status;
info.uid <<= 8;
info.uid |= b;
++pos_;
}
}
else if (id == 0x57) //Track Number
{
const long long num = UnserializeUInt(pReader, pos, size);
if ((num <= 0) || (num > 127))
return E_FILE_FORMAT_INVALID;
info.number = static_cast<long>(num);
}
else if (id == 0x03) //Track Type
{
const long long type = UnserializeUInt(pReader, pos, size);
if ((type <= 0) || (type > 254))
return E_FILE_FORMAT_INVALID;
info.type = static_cast<long>(type);
}
else if (id == 0x136E) //Track Name
{
const long status = UnserializeString(
pReader,
pos,
size,
info.nameAsUTF8);
if (status)
return status;
}
else if (id == 0x06) //CodecID
{
const long status = UnserializeString(
pReader,
pos,
size,
info.codecId);
if (status)
return status;
}
else if (id == 0x1C) //lacing
{
lacing = UnserializeUInt(pReader, pos, size);
if ((lacing < 0) || (lacing > 1))
return E_FILE_FORMAT_INVALID;
}
else if (id == 0x23A2) //Codec Private
{
delete[] info.codecPrivate;
info.codecPrivate = NULL;
info.codecPrivateSize = 0;
if (size <= 0)
return E_FILE_FORMAT_INVALID;
const size_t buflen = static_cast<size_t>(size);
typedef unsigned char* buf_t;
const buf_t buf = new (std::nothrow) unsigned char[buflen];
if (buf == NULL)
return -1;
const int status = pReader->Read(pos, buflen, buf);
if (status)
{
delete[] buf;
return status;
}
info.codecPrivate = buf;
info.codecPrivateSize = buflen;
}
else if (id == 0x058688) //Codec Name
{
const long status = UnserializeString(
pReader,
pos,
size,
info.codecNameAsUTF8);
if (status)
return status;
}
pos += size; //consume payload
assert(pos <= track_stop);
}
assert(pos == track_stop);
if (info.number <= 0) //not specified
return E_FILE_FORMAT_INVALID;
if (GetTrackByNumber(info.number))
return E_FILE_FORMAT_INVALID;
if (info.type <= 0) //not specified
return E_FILE_FORMAT_INVALID;
info.lacing = (lacing > 0) ? true : false;
if (info.type == Track::kVideo)
{
if (v.start < 0)
return E_FILE_FORMAT_INVALID;
if (a.start >= 0)
return E_FILE_FORMAT_INVALID;
info.settings = v;
VideoTrack* pTrack = NULL;
const long status = VideoTrack::Parse(m_pSegment,
info,
element_start,
element_size,
pTrack);
if (status)
return status;
pResult = pTrack;
assert(pResult);
if (e.start >= 0)
pResult->ParseContentEncodingsEntry(e.start, e.size);
}
else if (info.type == Track::kAudio)
{
if (a.start < 0)
return E_FILE_FORMAT_INVALID;
if (v.start >= 0)
return E_FILE_FORMAT_INVALID;
info.settings = a;
AudioTrack* pTrack = NULL;
const long status = AudioTrack::Parse(m_pSegment,
info,
element_start,
element_size,
pTrack);
if (status)
return status;
pResult = pTrack;
assert(pResult);
if (e.start >= 0)
pResult->ParseContentEncodingsEntry(e.start, e.size);
}
else
{
// neither video nor audio - probably metadata
if (a.start >= 0)
return E_FILE_FORMAT_INVALID;
if (v.start >= 0)
return E_FILE_FORMAT_INVALID;
if (e.start >= 0)
return E_FILE_FORMAT_INVALID;
info.settings.start = -1;
info.settings.size = 0;
Track* pTrack = NULL;
const long status = Track::Create(m_pSegment,
info,
element_start,
element_size,
pTrack);
if (status)
return status;
pResult = pTrack;
assert(pResult);
}
return 0; //success
}
Tracks::~Tracks()
{
Track** i = m_trackEntries;
Track** const j = m_trackEntriesEnd;
while (i != j)
{
Track* const pTrack = *i++;
delete pTrack;
}
delete[] m_trackEntries;
}
const Track* Tracks::GetTrackByNumber(long tn) const
{
if (tn < 0)
return NULL;
Track** i = m_trackEntries;
Track** const j = m_trackEntriesEnd;
while (i != j)
{
Track* const pTrack = *i++;
if (pTrack == NULL)
continue;
if (tn == pTrack->GetNumber())
return pTrack;
}
return NULL; //not found
}
const Track* Tracks::GetTrackByIndex(unsigned long idx) const
{
const ptrdiff_t count = m_trackEntriesEnd - m_trackEntries;
if (idx >= static_cast<unsigned long>(count))
return NULL;
return m_trackEntries[idx];
}
#if 0
long long Cluster::Unparsed() const
{
if (m_timecode < 0) //not even partially loaded
return LLONG_MAX;
assert(m_pos >= m_element_start);
//assert(m_element_size > m_size);
const long long element_stop = m_element_start + m_element_size;
assert(m_pos <= element_stop);
const long long result = element_stop - m_pos;
assert(result >= 0);
return result;
}
#endif
long Cluster::Load(long long& pos, long& len) const
{
assert(m_pSegment);
assert(m_pos >= m_element_start);
if (m_timecode >= 0) //at least partially loaded
return 0;
assert(m_pos == m_element_start);
assert(m_element_size < 0);
IMkvReader* const pReader = m_pSegment->m_pReader;
long long total, avail;
const int status = pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
assert((total < 0) || (m_pos <= total)); //TODO: verify this
pos = m_pos;
long long cluster_size = -1;
{
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error or underflow
return static_cast<long>(result);
if (result > 0) //underflow (weird)
return E_BUFFER_NOT_FULL;
//if ((pos + len) > segment_stop)
// return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id_ = ReadUInt(pReader, pos, len);
if (id_ < 0) //error
return static_cast<long>(id_);
if (id_ != 0x0F43B675) //Cluster ID
return E_FILE_FORMAT_INVALID;
pos += len; //consume id
//read cluster size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
//if ((pos + len) > segment_stop)
// return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return static_cast<long>(cluster_size);
if (size == 0)
return E_FILE_FORMAT_INVALID; //TODO: verify this
pos += len; //consume length of size of element
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size != unknown_size)
cluster_size = size;
}
//pos points to start of payload
#if 0
len = static_cast<long>(size_);
if (cluster_stop > avail)
return E_BUFFER_NOT_FULL;
#endif
long long timecode = -1;
long long new_pos = -1;
bool bBlock = false;
long long cluster_stop = (cluster_size < 0) ? -1 : pos + cluster_size;
for (;;)
{
if ((cluster_stop >= 0) && (pos >= cluster_stop))
break;
//Parse ID
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return static_cast<long>(id);
if (id == 0)
return E_FILE_FORMAT_INVALID;
//This is the distinguished set of ID's we use to determine
//that we have exhausted the sub-element's inside the cluster
//whose ID we parsed earlier.
if (id == 0x0F43B675) //Cluster ID
break;
if (id == 0x0C53BB6B) //Cues ID
break;
pos += len; //consume ID field
//Parse Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
pos += len; //consume size field
if ((cluster_stop >= 0) && (pos > cluster_stop))
return E_FILE_FORMAT_INVALID;
//pos now points to start of payload
if (size == 0) //weird
continue;
if ((cluster_stop >= 0) && ((pos + size) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if (id == 0x67) //TimeCode ID
{
len = static_cast<long>(size);
if ((pos + size) > avail)
return E_BUFFER_NOT_FULL;
timecode = UnserializeUInt(pReader, pos, size);
if (timecode < 0) //error (or underflow)
return static_cast<long>(timecode);
new_pos = pos + size;
if (bBlock)
break;
}
else if (id == 0x20) //BlockGroup ID
{
bBlock = true;
break;
}
else if (id == 0x23) //SimpleBlock ID
{
bBlock = true;
break;
}
pos += size; //consume payload
assert((cluster_stop < 0) || (pos <= cluster_stop));
}
assert((cluster_stop < 0) || (pos <= cluster_stop));
if (timecode < 0) //no timecode found
return E_FILE_FORMAT_INVALID;
if (!bBlock)
return E_FILE_FORMAT_INVALID;
m_pos = new_pos; //designates position just beyond timecode payload
m_timecode = timecode; // m_timecode >= 0 means we're partially loaded
if (cluster_size >= 0)
m_element_size = cluster_stop - m_element_start;
return 0;
}
long Cluster::Parse(long long& pos, long& len) const
{
long status = Load(pos, len);
if (status < 0)
return status;
assert(m_pos >= m_element_start);
assert(m_timecode >= 0);
//assert(m_size > 0);
//assert(m_element_size > m_size);
const long long cluster_stop =
(m_element_size < 0) ? -1 : m_element_start + m_element_size;
if ((cluster_stop >= 0) && (m_pos >= cluster_stop))
return 1; //nothing else to do
IMkvReader* const pReader = m_pSegment->m_pReader;
long long total, avail;
status = pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
pos = m_pos;
for (;;)
{
if ((cluster_stop >= 0) && (pos >= cluster_stop))
break;
if ((total >= 0) && (pos >= total))
{
if (m_element_size < 0)
m_element_size = pos - m_element_start;
break;
}
//Parse ID
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return static_cast<long>(id);
if (id == 0) //weird
return E_FILE_FORMAT_INVALID;
//This is the distinguished set of ID's we use to determine
//that we have exhausted the sub-element's inside the cluster
//whose ID we parsed earlier.
if ((id == 0x0F43B675) || (id == 0x0C53BB6B)) //Cluster or Cues ID
{
if (m_element_size < 0)
m_element_size = pos - m_element_start;
break;
}
pos += len; //consume ID field
//Parse Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
pos += len; //consume size field
if ((cluster_stop >= 0) && (pos > cluster_stop))
return E_FILE_FORMAT_INVALID;
//pos now points to start of payload
if (size == 0) //weird
continue;
//const long long block_start = pos;
const long long block_stop = pos + size;
if (cluster_stop >= 0)
{
if (block_stop > cluster_stop)
return E_FILE_FORMAT_INVALID;
}
else if ((total >= 0) && (block_stop > total))
{
m_element_size = total - m_element_start;
pos = total;
break;
}
else if (block_stop > avail)
{
len = static_cast<long>(size);
return E_BUFFER_NOT_FULL;
}
Cluster* const this_ = const_cast<Cluster*>(this);
if (id == 0x20) //BlockGroup
return this_->ParseBlockGroup(size, pos, len);
if (id == 0x23) //SimpleBlock
return this_->ParseSimpleBlock(size, pos, len);
pos += size; //consume payload
assert((cluster_stop < 0) || (pos <= cluster_stop));
}
assert(m_element_size > 0);
m_pos = pos;
assert((cluster_stop < 0) || (m_pos <= cluster_stop));
if (m_entries_count > 0)
{
const long idx = m_entries_count - 1;
const BlockEntry* const pLast = m_entries[idx];
assert(pLast);
const Block* const pBlock = pLast->GetBlock();
assert(pBlock);
const long long start = pBlock->m_start;
if ((total >= 0) && (start > total))
return -1; //defend against trucated stream
const long long size = pBlock->m_size;
const long long stop = start + size;
assert((cluster_stop < 0) || (stop <= cluster_stop));
if ((total >= 0) && (stop > total))
return -1; //defend against trucated stream
}
return 1; //no more entries
}
long Cluster::ParseSimpleBlock(
long long block_size,
long long& pos,
long& len)
{
const long long block_start = pos;
const long long block_stop = pos + block_size;
IMkvReader* const pReader = m_pSegment->m_pReader;
long long total, avail;
long status = pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
//parse track number
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((pos + len) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long track = ReadUInt(pReader, pos, len);
if (track < 0) //error
return static_cast<long>(track);
if (track == 0)
return E_FILE_FORMAT_INVALID;
#if 0
//TODO(matthewjheaney)
//This turned out to be too conservative. The problem is that
//if we see a track header in the tracks element with an unsupported
//track type, we throw that track header away, so it is not present
//in the track map. But even though we don't understand the track
//header, there are still blocks in the cluster with that track
//number. It was our decision to ignore that track header, so it's
//up to us to deal with blocks associated with that track -- we
//cannot simply report an error since technically there's nothing
//wrong with the file.
//
//For now we go ahead and finish the parse, creating a block entry
//for this block. This is somewhat wasteful, because without a
//track header there's nothing you can do with the block. What
//we really need here is a special return value that indicates to
//the caller that he should ignore this particular block, and
//continue parsing.
const Tracks* const pTracks = m_pSegment->GetTracks();
assert(pTracks);
const long tn = static_cast<long>(track);
const Track* const pTrack = pTracks->GetTrackByNumber(tn);
if (pTrack == NULL)
return E_FILE_FORMAT_INVALID;
#endif
pos += len; //consume track number
if ((pos + 2) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + 2) > avail)
{
len = 2;
return E_BUFFER_NOT_FULL;
}
pos += 2; //consume timecode
if ((pos + 1) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
unsigned char flags;
status = pReader->Read(pos, 1, &flags);
if (status < 0) //error or underflow
{
len = 1;
return status;
}
++pos; //consume flags byte
assert(pos <= avail);
if (pos >= block_stop)
return E_FILE_FORMAT_INVALID;
const int lacing = int(flags & 0x06) >> 1;
if ((lacing != 0) && (block_stop > avail))
{
len = static_cast<long>(block_stop - pos);
return E_BUFFER_NOT_FULL;
}
status = CreateBlock(0x23, block_start, block_size); //simple block id
if (status != 0)
return status;
m_pos = block_stop;
return 0; //success
}
long Cluster::ParseBlockGroup(
long long payload_size,
long long& pos,
long& len)
{
const long long payload_start = pos;
const long long payload_stop = pos + payload_size;
IMkvReader* const pReader = m_pSegment->m_pReader;
long long total, avail;
long status = pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
if ((total >= 0) && (payload_stop > total))
return E_FILE_FORMAT_INVALID;
if (payload_stop > avail)
{
len = static_cast<long>(payload_size);
return E_BUFFER_NOT_FULL;
}
while (pos < payload_stop)
{
//parse sub-block element ID
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((pos + len) > payload_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return static_cast<long>(id);
if (id == 0) //not a value ID
return E_FILE_FORMAT_INVALID;
pos += len; //consume ID field
//Parse Size
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((pos + len) > payload_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume size field
//pos now points to start of sub-block group payload
if (pos > payload_stop)
return E_FILE_FORMAT_INVALID;
if (size == 0) //weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID;
if (id != 0x21) //sub-part of BlockGroup is not a Block
{
pos += size; //consume sub-part of block group
if (pos > payload_stop)
return E_FILE_FORMAT_INVALID;
continue;
}
const long long block_stop = pos + size;
if (block_stop > payload_stop)
return E_FILE_FORMAT_INVALID;
//parse track number
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((pos + len) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long track = ReadUInt(pReader, pos, len);
if (track < 0) //error
return static_cast<long>(track);
if (track == 0)
return E_FILE_FORMAT_INVALID;
#if 0
//TODO(matthewjheaney)
//This turned out to be too conservative. The problem is that
//if we see a track header in the tracks element with an unsupported
//track type, we throw that track header away, so it is not present
//in the track map. But even though we don't understand the track
//header, there are still blocks in the cluster with that track
//number. It was our decision to ignore that track header, so it's
//up to us to deal with blocks associated with that track -- we
//cannot simply report an error since technically there's nothing
//wrong with the file.
//
//For now we go ahead and finish the parse, creating a block entry
//for this block. This is somewhat wasteful, because without a
//track header there's nothing you can do with the block. What
//we really need here is a special return value that indicates to
//the caller that he should ignore this particular block, and
//continue parsing.
const Tracks* const pTracks = m_pSegment->GetTracks();
assert(pTracks);
const long tn = static_cast<long>(track);
const Track* const pTrack = pTracks->GetTrackByNumber(tn);
if (pTrack == NULL)
return E_FILE_FORMAT_INVALID;
#endif
pos += len; //consume track number
if ((pos + 2) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + 2) > avail)
{
len = 2;
return E_BUFFER_NOT_FULL;
}
pos += 2; //consume timecode
if ((pos + 1) > block_stop)
return E_FILE_FORMAT_INVALID;
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
unsigned char flags;
status = pReader->Read(pos, 1, &flags);
if (status < 0) //error or underflow
{
len = 1;
return status;
}
++pos; //consume flags byte
assert(pos <= avail);
if (pos >= block_stop)
return E_FILE_FORMAT_INVALID;
const int lacing = int(flags & 0x06) >> 1;
if ((lacing != 0) && (block_stop > avail))
{
len = static_cast<long>(block_stop - pos);
return E_BUFFER_NOT_FULL;
}
pos = block_stop; //consume block-part of block group
assert(pos <= payload_stop);
}
assert(pos == payload_stop);
status = CreateBlock(0x20, payload_start, payload_size); //BlockGroup ID
if (status != 0)
return status;
m_pos = payload_stop;
return 0; //success
}
long Cluster::GetEntry(long index, const mkvparser::BlockEntry*& pEntry) const
{
assert(m_pos >= m_element_start);
pEntry = NULL;
if (index < 0)
return -1; //generic error
if (m_entries_count < 0)
return E_BUFFER_NOT_FULL;
assert(m_entries);
assert(m_entries_size > 0);
assert(m_entries_count <= m_entries_size);
if (index < m_entries_count)
{
pEntry = m_entries[index];
assert(pEntry);
return 1; //found entry
}
if (m_element_size < 0) //we don't know cluster end yet
return E_BUFFER_NOT_FULL; //underflow
const long long element_stop = m_element_start + m_element_size;
if (m_pos >= element_stop)
return 0; //nothing left to parse
return E_BUFFER_NOT_FULL; //underflow, since more remains to be parsed
}
Cluster* Cluster::Create(
Segment* pSegment,
long idx,
long long off)
//long long element_size)
{
assert(pSegment);
assert(off >= 0);
const long long element_start = pSegment->m_start + off;
Cluster* const pCluster = new Cluster(pSegment,
idx,
element_start);
//element_size);
assert(pCluster);
return pCluster;
}
Cluster::Cluster() :
m_pSegment(NULL),
m_element_start(0),
m_index(0),
m_pos(0),
m_element_size(0),
m_timecode(0),
m_entries(NULL),
m_entries_size(0),
m_entries_count(0) //means "no entries"
{
}
Cluster::Cluster(
Segment* pSegment,
long idx,
long long element_start
/* long long element_size */ ) :
m_pSegment(pSegment),
m_element_start(element_start),
m_index(idx),
m_pos(element_start),
m_element_size(-1 /* element_size */ ),
m_timecode(-1),
m_entries(NULL),
m_entries_size(0),
m_entries_count(-1) //means "has not been parsed yet"
{
}
Cluster::~Cluster()
{
if (m_entries_count <= 0)
return;
BlockEntry** i = m_entries;
BlockEntry** const j = m_entries + m_entries_count;
while (i != j)
{
BlockEntry* p = *i++;
assert(p);
delete p;
}
delete[] m_entries;
}
bool Cluster::EOS() const
{
return (m_pSegment == NULL);
}
long Cluster::GetIndex() const
{
return m_index;
}
long long Cluster::GetPosition() const
{
const long long pos = m_element_start - m_pSegment->m_start;
assert(pos >= 0);
return pos;
}
long long Cluster::GetElementSize() const
{
return m_element_size;
}
#if 0
bool Cluster::HasBlockEntries(
const Segment* pSegment,
long long off) //relative to start of segment payload
{
assert(pSegment);
assert(off >= 0); //relative to segment
IMkvReader* const pReader = pSegment->m_pReader;
long long pos = pSegment->m_start + off; //absolute
long long size;
{
long len;
const long long id = ReadUInt(pReader, pos, len);
(void)id;
assert(id >= 0);
assert(id == 0x0F43B675); //Cluster ID
pos += len; //consume id
size = ReadUInt(pReader, pos, len);
assert(size > 0);
pos += len; //consume size
//pos now points to start of payload
}
const long long stop = pos + size;
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume size
if (id == 0x20) //BlockGroup ID
return true;
if (id == 0x23) //SimpleBlock ID
return true;
pos += size; //consume payload
assert(pos <= stop);
}
return false;
}
#endif
long Cluster::HasBlockEntries(
const Segment* pSegment,
long long off, //relative to start of segment payload
long long& pos,
long& len)
{
assert(pSegment);
assert(off >= 0); //relative to segment
IMkvReader* const pReader = pSegment->m_pReader;
long long total, avail;
long status = pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
pos = pSegment->m_start + off; //absolute
if ((total >= 0) && (pos >= total))
return 0; //we don't even have a complete cluster
const long long segment_stop =
(pSegment->m_size < 0) ? -1 : pSegment->m_start + pSegment->m_size;
long long cluster_stop = -1; //interpreted later to mean "unknown size"
{
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //need more data
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((pos + len) > total))
return 0;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return static_cast<long>(id);
if (id != 0x0F43B675) //weird: not cluster ID
return -1; //generic error
pos += len; //consume Cluster ID field
//read size field
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((pos + len) > total))
return 0;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
if (size == 0)
return 0; //cluster does not have entries
pos += len; //consume size field
//pos now points to start of payload
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size != unknown_size)
{
cluster_stop = pos + size;
assert(cluster_stop >= 0);
if ((segment_stop >= 0) && (cluster_stop > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && (cluster_stop > total))
//return E_FILE_FORMAT_INVALID; //too conservative
return 0; //cluster does not have any entries
}
}
for (;;)
{
if ((cluster_stop >= 0) && (pos >= cluster_stop))
return 0; //no entries detected
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //need more data
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return static_cast<long>(id);
//This is the distinguished set of ID's we use to determine
//that we have exhausted the sub-element's inside the cluster
//whose ID we parsed earlier.
if (id == 0x0F43B675) //Cluster ID
return 0; //no entries found
if (id == 0x0C53BB6B) //Cues ID
return 0; //no entries found
pos += len; //consume id field
if ((cluster_stop >= 0) && (pos >= cluster_stop))
return E_FILE_FORMAT_INVALID;
//read size field
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //underflow
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume size field
//pos now points to start of payload
if ((cluster_stop >= 0) && (pos > cluster_stop))
return E_FILE_FORMAT_INVALID;
if (size == 0) //weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; //not supported inside cluster
if ((cluster_stop >= 0) && ((pos + size) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if (id == 0x20) //BlockGroup ID
return 1; //have at least one entry
if (id == 0x23) //SimpleBlock ID
return 1; //have at least one entry
pos += size; //consume payload
assert((cluster_stop < 0) || (pos <= cluster_stop));
}
}
long long Cluster::GetTimeCode() const
{
long long pos;
long len;
const long status = Load(pos, len);
if (status < 0) //error
return status;
return m_timecode;
}
long long Cluster::GetTime() const
{
const long long tc = GetTimeCode();
if (tc < 0)
return tc;
const SegmentInfo* const pInfo = m_pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long t = m_timecode * scale;
return t;
}
long long Cluster::GetFirstTime() const
{
const BlockEntry* pEntry;
const long status = GetFirst(pEntry);
if (status < 0) //error
return status;
if (pEntry == NULL) //empty cluster
return GetTime();
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
return pBlock->GetTime(this);
}
long long Cluster::GetLastTime() const
{
const BlockEntry* pEntry;
const long status = GetLast(pEntry);
if (status < 0) //error
return status;
if (pEntry == NULL) //empty cluster
return GetTime();
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
return pBlock->GetTime(this);
}
long Cluster::CreateBlock(
long long id,
long long pos, //absolute pos of payload
long long size)
{
assert((id == 0x20) || (id == 0x23)); //BlockGroup or SimpleBlock
if (m_entries_count < 0) //haven't parsed anything yet
{
assert(m_entries == NULL);
assert(m_entries_size == 0);
m_entries_size = 1024;
m_entries = new BlockEntry*[m_entries_size];
m_entries_count = 0;
}
else
{
assert(m_entries);
assert(m_entries_size > 0);
assert(m_entries_count <= m_entries_size);
if (m_entries_count >= m_entries_size)
{
const long entries_size = 2 * m_entries_size;
BlockEntry** const entries = new BlockEntry*[entries_size];
assert(entries);
BlockEntry** src = m_entries;
BlockEntry** const src_end = src + m_entries_count;
BlockEntry** dst = entries;
while (src != src_end)
*dst++ = *src++;
delete[] m_entries;
m_entries = entries;
m_entries_size = entries_size;
}
}
if (id == 0x20) //BlockGroup ID
return CreateBlockGroup(pos, size);
else //SimpleBlock ID
return CreateSimpleBlock(pos, size);
}
long Cluster::CreateBlockGroup(
long long st,
long long sz)
{
assert(m_entries);
assert(m_entries_size > 0);
assert(m_entries_count >= 0);
assert(m_entries_count < m_entries_size);
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = st;
const long long stop = st + sz;
//For WebM files, there is a bias towards previous reference times
//(in order to support alt-ref frames, which refer back to the previous
//keyframe). Normally a 0 value is not possible, but here we tenatively
//allow 0 as the value of a reference frame, with the interpretation
//that this is a "previous" reference time.
long long prev = 1; //nonce
long long next = 0; //nonce
long long duration = -1; //really, this is unsigned
long long bpos = -1;
long long bsize = -1;
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume size
if (id == 0x21) //Block ID
{
if (bpos < 0) //Block ID
{
bpos = pos;
bsize = size;
}
}
else if (id == 0x1B) //Duration ID
{
assert(size <= 8);
duration = UnserializeUInt(pReader, pos, size);
assert(duration >= 0); //TODO
}
else if (id == 0x7B) //ReferenceBlock
{
assert(size <= 8);
const long size_ = static_cast<long>(size);
long long time;
long status = UnserializeInt(pReader, pos, size_, time);
assert(status == 0); //TODO
if (time <= 0) //see note above
prev = time;
else //weird
next = time;
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
assert(bpos >= 0);
assert(bsize >= 0);
const long idx = m_entries_count;
BlockEntry** const ppEntry = m_entries + idx;
BlockEntry*& pEntry = *ppEntry;
pEntry = new (std::nothrow) BlockGroup(
this,
idx,
bpos,
bsize,
prev,
next,
duration);
if (pEntry == NULL)
return -1; //generic error
BlockGroup* const p = static_cast<BlockGroup*>(pEntry);
const long status = p->Parse();
if (status == 0) //success
{
++m_entries_count;
return 0;
}
delete pEntry;
pEntry = 0;
return status;
}
long Cluster::CreateSimpleBlock(
long long st,
long long sz)
{
assert(m_entries);
assert(m_entries_size > 0);
assert(m_entries_count >= 0);
assert(m_entries_count < m_entries_size);
const long idx = m_entries_count;
BlockEntry** const ppEntry = m_entries + idx;
BlockEntry*& pEntry = *ppEntry;
pEntry = new (std::nothrow) SimpleBlock(this, idx, st, sz);
if (pEntry == NULL)
return -1; //generic error
SimpleBlock* const p = static_cast<SimpleBlock*>(pEntry);
const long status = p->Parse();
if (status == 0)
{
++m_entries_count;
return 0;
}
delete pEntry;
pEntry = 0;
return status;
}
long Cluster::GetFirst(const BlockEntry*& pFirst) const
{
if (m_entries_count <= 0)
{
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) //error
{
pFirst = NULL;
return status;
}
if (m_entries_count <= 0) //empty cluster
{
pFirst = NULL;
return 0;
}
}
assert(m_entries);
pFirst = m_entries[0];
assert(pFirst);
return 0; //success
}
long Cluster::GetLast(const BlockEntry*& pLast) const
{
for (;;)
{
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) //error
{
pLast = NULL;
return status;
}
if (status > 0) //no new block
break;
}
if (m_entries_count <= 0)
{
pLast = NULL;
return 0;
}
assert(m_entries);
const long idx = m_entries_count - 1;
pLast = m_entries[idx];
assert(pLast);
return 0;
}
long Cluster::GetNext(
const BlockEntry* pCurr,
const BlockEntry*& pNext) const
{
assert(pCurr);
assert(m_entries);
assert(m_entries_count > 0);
size_t idx = pCurr->GetIndex();
assert(idx < size_t(m_entries_count));
assert(m_entries[idx] == pCurr);
++idx;
if (idx >= size_t(m_entries_count))
{
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) //error
{
pNext = NULL;
return status;
}
if (status > 0)
{
pNext = NULL;
return 0;
}
assert(m_entries);
assert(m_entries_count > 0);
assert(idx < size_t(m_entries_count));
}
pNext = m_entries[idx];
assert(pNext);
return 0;
}
long Cluster::GetEntryCount() const
{
return m_entries_count;
}
const BlockEntry* Cluster::GetEntry(
const Track* pTrack,
long long time_ns) const
{
assert(pTrack);
if (m_pSegment == NULL) //this is the special EOS cluster
return pTrack->GetEOS();
#if 0
LoadBlockEntries();
if ((m_entries == NULL) || (m_entries_count <= 0))
return NULL; //return EOS here?
const BlockEntry* pResult = pTrack->GetEOS();
BlockEntry** i = m_entries;
assert(i);
BlockEntry** const j = i + m_entries_count;
while (i != j)
{
const BlockEntry* const pEntry = *i++;
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != pTrack->GetNumber())
continue;
if (pTrack->VetEntry(pEntry))
{
if (time_ns < 0) //just want first candidate block
return pEntry;
const long long ns = pBlock->GetTime(this);
if (ns > time_ns)
break;
pResult = pEntry;
}
else if (time_ns >= 0)
{
const long long ns = pBlock->GetTime(this);
if (ns > time_ns)
break;
}
}
return pResult;
#else
const BlockEntry* pResult = pTrack->GetEOS();
long index = 0;
for (;;)
{
if (index >= m_entries_count)
{
long long pos;
long len;
const long status = Parse(pos, len);
assert(status >= 0);
if (status > 0) //completely parsed, and no more entries
return pResult;
if (status < 0) //should never happen
return 0;
assert(m_entries);
assert(index < m_entries_count);
}
const BlockEntry* const pEntry = m_entries[index];
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != pTrack->GetNumber())
{
++index;
continue;
}
if (pTrack->VetEntry(pEntry))
{
if (time_ns < 0) //just want first candidate block
return pEntry;
const long long ns = pBlock->GetTime(this);
if (ns > time_ns)
return pResult;
pResult = pEntry; //have a candidate
}
else if (time_ns >= 0)
{
const long long ns = pBlock->GetTime(this);
if (ns > time_ns)
return pResult;
}
++index;
}
#endif
}
const BlockEntry*
Cluster::GetEntry(
const CuePoint& cp,
const CuePoint::TrackPosition& tp) const
{
assert(m_pSegment);
#if 0
LoadBlockEntries();
if (m_entries == NULL)
return NULL;
const long long count = m_entries_count;
if (count <= 0)
return NULL;
const long long tc = cp.GetTimeCode();
if ((tp.m_block > 0) && (tp.m_block <= count))
{
const size_t block = static_cast<size_t>(tp.m_block);
const size_t index = block - 1;
const BlockEntry* const pEntry = m_entries[index];
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if ((pBlock->GetTrackNumber() == tp.m_track) &&
(pBlock->GetTimeCode(this) == tc))
{
return pEntry;
}
}
const BlockEntry* const* i = m_entries;
const BlockEntry* const* const j = i + count;
while (i != j)
{
#ifdef _DEBUG
const ptrdiff_t idx = i - m_entries;
idx;
#endif
const BlockEntry* const pEntry = *i++;
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != tp.m_track)
continue;
const long long tc_ = pBlock->GetTimeCode(this);
assert(tc_ >= 0);
if (tc_ < tc)
continue;
if (tc_ > tc)
return NULL;
const Tracks* const pTracks = m_pSegment->GetTracks();
assert(pTracks);
const long tn = static_cast<long>(tp.m_track);
const Track* const pTrack = pTracks->GetTrackByNumber(tn);
if (pTrack == NULL)
return NULL;
const long long type = pTrack->GetType();
if (type == 2) //audio
return pEntry;
if (type != 1) //not video
return NULL;
if (!pBlock->IsKey())
return NULL;
return pEntry;
}
return NULL;
#else
const long long tc = cp.GetTimeCode();
if (tp.m_block > 0)
{
const long block = static_cast<long>(tp.m_block);
const long index = block - 1;
while (index >= m_entries_count)
{
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) //TODO: can this happen?
return NULL;
if (status > 0) //nothing remains to be parsed
return NULL;
}
const BlockEntry* const pEntry = m_entries[index];
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if ((pBlock->GetTrackNumber() == tp.m_track) &&
(pBlock->GetTimeCode(this) == tc))
{
return pEntry;
}
}
long index = 0;
for (;;)
{
if (index >= m_entries_count)
{
long long pos;
long len;
const long status = Parse(pos, len);
if (status < 0) //TODO: can this happen?
return NULL;
if (status > 0) //nothing remains to be parsed
return NULL;
assert(m_entries);
assert(index < m_entries_count);
}
const BlockEntry* const pEntry = m_entries[index];
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != tp.m_track)
{
++index;
continue;
}
const long long tc_ = pBlock->GetTimeCode(this);
if (tc_ < tc)
{
++index;
continue;
}
if (tc_ > tc)
return NULL;
const Tracks* const pTracks = m_pSegment->GetTracks();
assert(pTracks);
const long tn = static_cast<long>(tp.m_track);
const Track* const pTrack = pTracks->GetTrackByNumber(tn);
if (pTrack == NULL)
return NULL;
const long long type = pTrack->GetType();
if (type == 2) //audio
return pEntry;
if (type != 1) //not video
return NULL;
if (!pBlock->IsKey())
return NULL;
return pEntry;
}
#endif
}
#if 0
const BlockEntry* Cluster::GetMaxKey(const VideoTrack* pTrack) const
{
assert(pTrack);
if (m_pSegment == NULL) //EOS
return pTrack->GetEOS();
LoadBlockEntries();
if ((m_entries == NULL) || (m_entries_count <= 0))
return pTrack->GetEOS();
BlockEntry** i = m_entries + m_entries_count;
BlockEntry** const j = m_entries;
while (i != j)
{
const BlockEntry* const pEntry = *--i;
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != pTrack->GetNumber())
continue;
if (pBlock->IsKey())
return pEntry;
}
return pTrack->GetEOS(); //no satisfactory block found
}
#endif
BlockEntry::BlockEntry(Cluster* p, long idx) :
m_pCluster(p),
m_index(idx)
{
}
BlockEntry::~BlockEntry()
{
}
bool BlockEntry::EOS() const
{
return (GetKind() == kBlockEOS);
}
const Cluster* BlockEntry::GetCluster() const
{
return m_pCluster;
}
long BlockEntry::GetIndex() const
{
return m_index;
}
SimpleBlock::SimpleBlock(
Cluster* pCluster,
long idx,
long long start,
long long size) :
BlockEntry(pCluster, idx),
m_block(start, size)
{
}
long SimpleBlock::Parse()
{
return m_block.Parse(m_pCluster);
}
BlockEntry::Kind SimpleBlock::GetKind() const
{
return kBlockSimple;
}
const Block* SimpleBlock::GetBlock() const
{
return &m_block;
}
BlockGroup::BlockGroup(
Cluster* pCluster,
long idx,
long long block_start,
long long block_size,
long long prev,
long long next,
long long duration) :
BlockEntry(pCluster, idx),
m_block(block_start, block_size),
m_prev(prev),
m_next(next),
m_duration(duration)
{
}
long BlockGroup::Parse()
{
const long status = m_block.Parse(m_pCluster);
if (status)
return status;
m_block.SetKey((m_prev > 0) && (m_next <= 0));
return 0;
}
#if 0
void BlockGroup::ParseBlock(long long start, long long size)
{
IMkvReader* const pReader = m_pCluster->m_pSegment->m_pReader;
Block* const pBlock = new Block(start, size, pReader);
assert(pBlock); //TODO
//TODO: the Matroska spec says you have multiple blocks within the
//same block group, with blocks ranked by priority (the flag bits).
assert(m_pBlock == NULL);
m_pBlock = pBlock;
}
#endif
BlockEntry::Kind BlockGroup::GetKind() const
{
return kBlockGroup;
}
const Block* BlockGroup::GetBlock() const
{
return &m_block;
}
long long BlockGroup::GetPrevTimeCode() const
{
return m_prev;
}
long long BlockGroup::GetNextTimeCode() const
{
return m_next;
}
long long BlockGroup::GetDurationTimeCode() const
{
return m_duration;
}
Block::Block(long long start, long long size_) :
m_start(start),
m_size(size_),
m_track(0),
m_timecode(-1),
m_flags(0),
m_frames(NULL),
m_frame_count(-1)
{
}
Block::~Block()
{
delete[] m_frames;
}
long Block::Parse(const Cluster* pCluster)
{
if (pCluster == NULL)
return -1;
if (pCluster->m_pSegment == NULL)
return -1;
assert(m_start >= 0);
assert(m_size >= 0);
assert(m_track <= 0);
assert(m_frames == NULL);
assert(m_frame_count <= 0);
long long pos = m_start;
const long long stop = m_start + m_size;
long len;
IMkvReader* const pReader = pCluster->m_pSegment->m_pReader;
m_track = ReadUInt(pReader, pos, len);
if (m_track <= 0)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
pos += len; //consume track number
if ((stop - pos) < 2)
return E_FILE_FORMAT_INVALID;
long status;
long long value;
status = UnserializeInt(pReader, pos, 2, value);
if (status)
return E_FILE_FORMAT_INVALID;
if (value < SHRT_MIN)
return E_FILE_FORMAT_INVALID;
if (value > SHRT_MAX)
return E_FILE_FORMAT_INVALID;
m_timecode = static_cast<short>(value);
pos += 2;
if ((stop - pos) <= 0)
return E_FILE_FORMAT_INVALID;
status = pReader->Read(pos, 1, &m_flags);
if (status)
return E_FILE_FORMAT_INVALID;
const int lacing = int(m_flags & 0x06) >> 1;
++pos; //consume flags byte
if (lacing == 0) //no lacing
{
if (pos > stop)
return E_FILE_FORMAT_INVALID;
m_frame_count = 1;
m_frames = new Frame[m_frame_count];
Frame& f = m_frames[0];
f.pos = pos;
const long long frame_size = stop - pos;
if (frame_size > LONG_MAX)
return E_FILE_FORMAT_INVALID;
f.len = static_cast<long>(frame_size);
return 0; //success
}
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
unsigned char biased_count;
status = pReader->Read(pos, 1, &biased_count);
if (status)
return E_FILE_FORMAT_INVALID;
++pos; //consume frame count
assert(pos <= stop);
m_frame_count = int(biased_count) + 1;
m_frames = new Frame[m_frame_count];
assert(m_frames);
if (lacing == 1) //Xiph
{
Frame* pf = m_frames;
Frame* const pf_end = pf + m_frame_count;
long size = 0;
int frame_count = m_frame_count;
while (frame_count > 1)
{
long frame_size = 0;
for (;;)
{
unsigned char val;
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
status = pReader->Read(pos, 1, &val);
if (status)
return E_FILE_FORMAT_INVALID;
++pos; //consume xiph size byte
frame_size += val;
if (val < 255)
break;
}
Frame& f = *pf++;
assert(pf < pf_end);
f.pos = 0; //patch later
f.len = frame_size;
size += frame_size; //contribution of this frame
--frame_count;
}
assert(pf < pf_end);
assert(pos <= stop);
{
Frame& f = *pf++;
if (pf != pf_end)
return E_FILE_FORMAT_INVALID;
f.pos = 0; //patch later
const long long total_size = stop - pos;
if (total_size < size)
return E_FILE_FORMAT_INVALID;
const long long frame_size = total_size - size;
if (frame_size > LONG_MAX)
return E_FILE_FORMAT_INVALID;
f.len = static_cast<long>(frame_size);
}
pf = m_frames;
while (pf != pf_end)
{
Frame& f = *pf++;
assert((pos + f.len) <= stop);
f.pos = pos;
pos += f.len;
}
assert(pos == stop);
}
else if (lacing == 2) //fixed-size lacing
{
const long long total_size = stop - pos;
if ((total_size % m_frame_count) != 0)
return E_FILE_FORMAT_INVALID;
const long long frame_size = total_size / m_frame_count;
if (frame_size > LONG_MAX)
return E_FILE_FORMAT_INVALID;
Frame* pf = m_frames;
Frame* const pf_end = pf + m_frame_count;
while (pf != pf_end)
{
assert((pos + frame_size) <= stop);
Frame& f = *pf++;
f.pos = pos;
f.len = static_cast<long>(frame_size);
pos += frame_size;
}
assert(pos == stop);
}
else
{
assert(lacing == 3); //EBML lacing
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
long size = 0;
int frame_count = m_frame_count;
long long frame_size = ReadUInt(pReader, pos, len);
if (frame_size < 0)
return E_FILE_FORMAT_INVALID;
if (frame_size > LONG_MAX)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
pos += len; //consume length of size of first frame
if ((pos + frame_size) > stop)
return E_FILE_FORMAT_INVALID;
Frame* pf = m_frames;
Frame* const pf_end = pf + m_frame_count;
{
Frame& curr = *pf;
curr.pos = 0; //patch later
curr.len = static_cast<long>(frame_size);
size += curr.len; //contribution of this frame
}
--frame_count;
while (frame_count > 1)
{
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
assert(pf < pf_end);
const Frame& prev = *pf++;
assert(prev.len == frame_size);
assert(pf < pf_end);
Frame& curr = *pf;
curr.pos = 0; //patch later
const long long delta_size_ = ReadUInt(pReader, pos, len);
if (delta_size_ < 0)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
pos += len; //consume length of (delta) size
assert(pos <= stop);
const int exp = 7*len - 1;
const long long bias = (1LL << exp) - 1LL;
const long long delta_size = delta_size_ - bias;
frame_size += delta_size;
if (frame_size < 0)
return E_FILE_FORMAT_INVALID;
if (frame_size > LONG_MAX)
return E_FILE_FORMAT_INVALID;
curr.len = static_cast<long>(frame_size);
size += curr.len; //contribution of this frame
--frame_count;
}
{
assert(pos <= stop);
assert(pf < pf_end);
const Frame& prev = *pf++;
assert(prev.len == frame_size);
assert(pf < pf_end);
Frame& curr = *pf++;
assert(pf == pf_end);
curr.pos = 0; //patch later
const long long total_size = stop - pos;
if (total_size < size)
return E_FILE_FORMAT_INVALID;
frame_size = total_size - size;
if (frame_size > LONG_MAX)
return E_FILE_FORMAT_INVALID;
curr.len = static_cast<long>(frame_size);
}
pf = m_frames;
while (pf != pf_end)
{
Frame& f = *pf++;
assert((pos + f.len) <= stop);
f.pos = pos;
pos += f.len;
}
assert(pos == stop);
}
return 0; //success
}
long long Block::GetTimeCode(const Cluster* pCluster) const
{
if (pCluster == 0)
return m_timecode;
const long long tc0 = pCluster->GetTimeCode();
assert(tc0 >= 0);
const long long tc = tc0 + m_timecode;
return tc; //unscaled timecode units
}
long long Block::GetTime(const Cluster* pCluster) const
{
assert(pCluster);
const long long tc = GetTimeCode(pCluster);
const Segment* const pSegment = pCluster->m_pSegment;
const SegmentInfo* const pInfo = pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long ns = tc * scale;
return ns;
}
long long Block::GetTrackNumber() const
{
return m_track;
}
bool Block::IsKey() const
{
return ((m_flags & static_cast<unsigned char>(1 << 7)) != 0);
}
void Block::SetKey(bool bKey)
{
if (bKey)
m_flags |= static_cast<unsigned char>(1 << 7);
else
m_flags &= 0x7F;
}
bool Block::IsInvisible() const
{
return bool(int(m_flags & 0x08) != 0);
}
Block::Lacing Block::GetLacing() const
{
const int value = int(m_flags & 0x06) >> 1;
return static_cast<Lacing>(value);
}
int Block::GetFrameCount() const
{
return m_frame_count;
}
const Block::Frame& Block::GetFrame(int idx) const
{
assert(idx >= 0);
assert(idx < m_frame_count);
const Frame& f = m_frames[idx];
assert(f.pos > 0);
assert(f.len > 0);
return f;
}
long Block::Frame::Read(IMkvReader* pReader, unsigned char* buf) const
{
assert(pReader);
assert(buf);
const long status = pReader->Read(pos, len, buf);
return status;
}
} //end namespace mkvparser