8f709400a2
For the new stereo mode, see https://github.com/google/spatial-media/blob/master/docs/spherical-video-v2-rfc.md#webm-matroska For the new color primaries, see ISO/IEC 23001-8:2016 Change-Id: I92c2bb0fedc2b1895d893ad55095d29c811c0dcf |
||
---|---|---|
.. | ||
demo | ||
fuzzing | ||
include/webm | ||
src | ||
test_utils | ||
tests | ||
doxygen.config | ||
README.md |
WebM Parser
Introduction
This WebM parser is a C++11-based parser that aims to be a safe and complete
parser for WebM. It supports all WebM elements (from the old deprecated ones to
the newest ones like Colour
), including recursive elements like ChapterAtom
and SimpleTag
. It supports incremental parsing; parsing may be stopped at any
point and resumed later as needed. It also supports starting at an arbitrary
WebM element, so parsing need not start from the beginning of the file.
The parser (WebmParser
) works by being fed input data from a data source (an
instance of Reader
) that represents a WebM file. The parser will parse the
WebM data into various data structures that represent the encoded WebM elements,
and then call corresponding Callback
event methods as the data structures are
parsed.
Building
CMake support has been added to the root libwebm CMakeLists.txt
file. Simply
enable the ENABLE_WEBM_PARSER
feature if using the interactive CMake builder,
or alternatively pass the -DENABLE_WEBM_PARSER:BOOL=ON
flag from the command
line. By default, this parser is not enabled when building libwebm, so you must
explicitly enable it.
Alternatively, the following illustrates the minimal commands necessary to compile the code into a static library without CMake:
c++ -Iinclude -I. -std=c++11 -c src/*.cc
ar rcs libwebm.a *.o
Using the parser
There are 3 basic components in the parser that are used: Reader
, Callback
,
and WebmParser
.
Reader
The Reader
interface acts as a data source for the parser. You may subclass it
and implement your own data source if you wish. Alternatively, use the
FileReader
, IstreamReader
, or BufferReader
if you wish to read from a
FILE*
, std::istream
, or std::vector<std::uint8_t>
, respectively.
The parser supports Reader
implementations that do short reads. If
Reader::Skip()
or Reader::Read()
do a partial read (returning
Status::kOkPartial
), the parser will call them again in an attempt to read
more data. If no data is available, the Reader
may return some other status
(like Status::kWouldBlock
) to indicate that no data is available. In this
situation, the parser will stop parsing and return the status it received.
Parsing may be resumed later when more data is available.
When the Reader
has reached the end of the WebM document and no more data is
available, it should return Status::kEndOfFile
. This will cause parsing to
stop. If the file ends at a valid location (that is, there aren't any elements
that have specified a size that indicates the file ended prematurely), the
parser will translate Status::kEndOfFile
into Status::kOkCompleted
and
return it. If the file ends prematurely, the parser will return
Status::kEndOfFile
to indicate that.
Note that if the WebM file contains elements that have an unknown size (or a
seek has been performed and the parser doesn't know the size of the root
element(s)), and the parser is parsing them and hits end-of-file, the parser may
still call Reader::Read()
/Reader::Skip()
multiple times (even though they've
already reported Status::kEndOfFile
) as nested parsers terminate parsing.
Because of this, Reader::Read()
/Reader::Skip()
implementations should be
able to handle being called multiple times after the file's end has been
reached, and they should consistently return Status::kEndOfFile
.
The three provided readers (FileReader
, IstreamReader
, and BufferReader
)
are blocking implementations (they won't return Status::kWouldBlock
), so if
you're using them the parser will run until it entirely consumes all their data
(unless, of course, you request the parser to stop via Callback
... see the
next section).
Callback
As the parser progresses through the file, it builds objects (see
webm/dom_types.h
) that represent parsed data structures. The parser then
notifies the Callback
implementation as objects complete parsing. For some
data structures (like frames or Void elements), the parser notifies the
Callback
and requests it to consume the data directly from the Reader
(this
is done for structures that can be large/frequent binary blobs in order to allow
you to read the data directly into the object/type of your choice, rather than
just reading them into a std::vector<std::uint8_t>
and making you copy it into
a different object if you wanted to work with something other than
std::vector<std::uint8_t>
).
The parser was designed to parse the data into objects that are small enough
that the Callback
can be quickly and frequently notified as soon as the object
is ready, but large enough that the objects received by the Callback
are still
useful. Having Callback
events for every tiny integer/float/string/etc.
element would require too much assembly and work to be useful to most users, and
pasing the file into a single DOM tree (or a small handful of large conglomerate
structures) would unnecessarily delay video playback or consume too much memory
on smaller devices.
The parser may call the following methods while nearly anywhere in the file:
Callback::OnElementBegin()
: This is called for every element that the parser encounters. This is primarily useful if you want to skip some elements or build a map of every element in the file.Callback::OnUnknownElement()
: This is called when an element is either not a valid/recognized WebM element, or it is a WebM element but is improperly nested (e.g. an EBMLVersion element inside of a Segment element). The parser doesn't know how to handle the element; it could just skip it but instead defers to theCallback
to decide how it should be handled. The default implementation just skips the element.Callback::OnVoid()
: Void elements can appear anywhere in any master element. This method will be called to handle the Void element.
The parser may call the following methods in the proper nesting order, as shown
in the list. A *Begin()
method will always be matched up with its
corresponding *End()
method (unless a seek has been performed). The parser
will only call the methods in the proper nesting order as specified in the WebM
DOM. For example, Callback::OnEbml()
will never be called in between
Callback::OnSegmentBegin()
/Callback::OnSegmentEnd()
(since the EBML element
is not a child of the Segment element), and Callback::OnTrackEntry()
will only
ever be called in between
Callback::OnSegmentBegin()
/Callback::OnSegmentEnd()
(since the TrackEntry
element is a (grand-)child of the Segment element and must be contained by a
Segment element). Callback::OnFrame()
is listed twice because it will be
called to handle frames contained in both SimpleBlock and Block elements.
Callback::OnEbml()
Callback::OnSegmentBegin()
Callback::OnSeek()
Callback::OnInfo()
Callback::OnClusterBegin()
Callback::OnSimpleBlockBegin()
Callback::OnFrame()
Callback::OnSimpleBlockEnd()
Callback::OnBlockGroupBegin()
Callback::OnBlockBegin()
Callback::OnFrame()
Callback::OnBlockEnd()
Callback::OnBlockGroupEnd()
Callback::OnClusterEnd()
Callback::OnTrackEntry()
Callback::OnCuePoint()
Callback::OnEditionEntry()
Callback::OnTag()
Callback::OnSegmentEnd()
Only Callback::OnFrame()
(and no other Callback
methods) will be called in
between Callback::OnSimpleBlockBegin()
/Callback::OnSimpleBlockEnd()
or
Callback::OnBlockBegin()
/Callback::OnBlockEnd()
, since the SimpleBlock and
Block elements are not master elements only contain frames.
Note that seeking into the middle of the file may cause the parser to skip some
*Begin()
methods. For example, if a seek is performed to a SimpleBlock
element, Callback::OnSegmentBegin()
and Callback::OnClusterBegin()
will not
be called. In this situation, the full sequence of callback events would be
(assuming the file ended after the SimpleBlock):
Callback::OnSimpleBlockBegin()
, Callback::OnFrame()
(for every frame in the
SimpleBlock), Callback::OnSimpleBlockEnd()
, Callback::OnClusterEnd()
, and
Callback::OnSegmentEnd()
. Since the Cluster and Segment elements were skipped,
the Cluster
DOM object may have some members marked as absent, and the
*End()
events for the Cluster and Segment elements will have metadata with
unknown header position, header length, and body size (see kUnknownHeaderSize
,
kUnknownElementSize
, and kUnknownElementPosition
).
When a Callback
method has completed, it should return Status::kOkCompleted
to allow parsing to continue. If you would like parsing to stop, return any
other status code (except Status::kEndOfFile
, since that's treated somewhat
specially and is intended for Reader
s to use), which the parser will return.
If you return a non-parsing-error status code (.e.g. Status::kOkPartial
,
Status::kWouldBlock
, etc. or your own status code with a value > 0), parsing
may be resumed again. When parsing is resumed, the parser will call the same
callback method again (and once again, you may return Status::kOkCompleted
to
let parsing continue or some other value to stop parsing).
You may subclass the Callback
element and override methods which you are
interested in receiving events for. By default, methods taking an Action
parameter will set it to Action::kRead
so the entire file is parsed. The
Callback::OnFrame()
method will just skip over the frame bytes by default.
WebmParser
The actual parsing work is done with WebmParser
. Simply construct a
WebmParser
and call WebmParser::Feed()
(providing it a Callback
and
Reader
instance) to parse a file. It will return Status::kOkCompleted
when
the entire file has been successfully parsed. WebmParser::Feed()
doesn't store
any internal references to the Callback
or Reader
.
If you wish to start parsing from the middle of a file, call
WebmParser::DidSeek()
before calling WebmParser::Feed()
to prepare the
parser to receive data starting at an arbitrary point in the file. When seeking,
you should seek to the beginning of a WebM element; seeking to a location that
is not the start of a WebM element (e.g. seeking to a frame, rather than its
containing SimpleBlock/Block element) will cause parsing to fail. Calling
WebmParser::DidSeek()
will reset the state of the parser and clear any
internal errors, so a WebmParser
instance may be reused (even if it has
previously failed to parse a file).
Building your program
The following program is a small program that completely parses a file from stdin:
#include <webm/callback.h>
#include <webm/file_reader.h>
#include <webm/webm_parser.h>
int main() {
video_webm_parser::Callback callback;
video_webm_parser::FileReader reader(std::freopen(nullptr, "rb", stdin));
video_webm_parser::WebmParser parser;
parser.Feed(&callback, &reader);
}
It completely parses the input file, but we need to make a new class that
derives from Callback
if we want to receive any parsing events. So if we
change it to:
#include <iomanip>
#include <iostream>
#include <webm/callback.h>
#include <webm/file_reader.h>
#include <webm/status.h>
#include <webm/webm_parser.h>
class MyCallback : public video_webm_parser::Callback {
public:
video_webm_parser::Status OnElementBegin(const video_webm_parser::ElementMetadata& metadata,
video_webm_parser::Action* action) override {
std::cout << "Element ID = 0x"
<< std::hex << static_cast<std::uint32_t>(metadata.id);
std::cout << std::dec; // Reset to decimal mode.
std::cout << " at position ";
if (metadata.position == video_webm_parser::kUnknownElementPosition) {
// The position will only be unknown if we've done a seek. But since we
// aren't seeking in this demo, this will never be the case. However, this
// if-statement is included for completeness.
std::cout << "<unknown>";
} else {
std::cout << metadata.position;
}
std::cout << " with header size ";
if (metadata.header_size == video_webm_parser::kUnknownHeaderSize) {
// The header size will only be unknown if we've done a seek. But since we
// aren't seeking in this demo, this will never be the case. However, this
// if-statement is included for completeness.
std::cout << "<unknown>";
} else {
std::cout << metadata.header_size;
}
std::cout << " and body size ";
if (metadata.size == video_webm_parser::kUnknownElementSize) {
// WebM master elements may have an unknown size, though this is rare.
std::cout << "<unknown>";
} else {
std::cout << metadata.size;
}
std::cout << '\n';
*action = video_webm_parser::Action::kRead;
return video_webm_parser::Status(video_webm_parser::Status::kOkCompleted);
}
};
int main() {
MyCallback callback;
video_webm_parser::FileReader reader(std::freopen(nullptr, "rb", stdin));
video_webm_parser::WebmParser parser;
video_webm_parser::Status status = parser.Feed(&callback, &reader);
if (status.completed_ok()) {
std::cout << "Parsing successfully completed\n";
} else {
std::cout << "Parsing failed with status code: " << status.code << '\n';
}
}
This will output information about every element in the entire file: it's ID, position, header size, and body size. The status of the parse is also checked and reported.
For a more complete example, see demo/demo.cc
, which parses an entire file and
prints out all of its information. That example overrides every Callback
method to show exactly what information is available while parsing and how to
access it. The example is verbose, but that's primarily due to pretty-printing
and string formatting operations.
When compiling your program, add the include
directory to your compiler's
header search paths and link to the compiled library. Be sure your compiler has
C++11 mode enabled (-std=c++11
in clang++ or g++).
Testing
Unit tests are located in the tests
directory. Google Test and Google Mock are
used as testing frameworks. Building and running the tests will be supported in
the upcoming CMake scripts, but they can currently be built and run by manually
compiling them (and linking to Google Test and Google Mock).
Fuzzing
The parser has been fuzzed with AFL and
libFuzzer. If you wish to fuzz the parser
with AFL or libFuzzer but don't want to write an executable that exercises the
parsing API, you may use fuzzing/webm_fuzzer.cc
.
When compiling for fuzzing, define the macro
WEBM_FUZZER_BYTE_ELEMENT_SIZE_LIMIT
to be some integer in order to limit the
maximum size of ASCII/UTF-8/binary elements. It's too easy for the fuzzer to
generate elements that claim to have a ridiculously massive size, which will
cause allocations to fail or the program to allocate too much memory. AFL will
terminate the process if it allocates too much memory (by default, 50 MB), and
the [Address Sanitizer doesn't throw std::bad_alloc
when an allocation fails]
(https://github.com/google/sanitizers/issues/295). Defining
WEBM_FUZZER_BYTE_ELEMENT_SIZE_LIMIT
to a low number (say, 1024) will cause the
ASCII/UTF-8/binary element parsers to return Status::kNotEnoughMemory
if the
element's size exceeds WEBM_FUZZER_BYTE_ELEMENT_SIZE_LIMIT
, which will avoid
false positives when fuzzing. The parser expects std::string
and std::vector
to throw std::bad_alloc
when an allocation fails, which doesn't necessarily
happen due to the fuzzers' limitations.
You may also define the macro WEBM_FUZZER_SEEK_FIRST
to have
fuzzing/webm_fuzzer.cc
call WebmParser::DidSeek()
before doing any parsing.
This will test the seeking code paths.