webm/webvttparser.cc

672 lines
13 KiB
C++
Raw Normal View History

// Copyright (c) 2012 The WebM project authors. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
#include "webvttparser.h" // NOLINT
#include <climits>
using std::string;
namespace libwebvtt {
enum {
kNUL = '\x00',
kSPACE = ' ',
kTAB = '\x09',
kLF = '\x0A',
kCR = '\x0D'
};
Reader::Reader() {
}
Reader::~Reader() {
}
Parser::Parser(Reader* r)
: reader_(r), unget_(-1) {
}
int Parser::Init() {
int e = ParseBOM();
if (e < 0) // error
return e;
if (e > 0) // EOF
return -1;
// Parse "WEBVTT". We read from the stream one character at-a-time, in
// order to defend against non-WebVTT streams (e.g. binary files) that don't
// happen to comprise lines of text demarcated with line terminators.
const char idstr[] = "WEBVTT";
const char* p = idstr;
while (*p) {
char c;
e = GetChar(&c);
if (e < 0) // error
return e;
if (e > 0) // EOF
return -1;
if (c != *p)
return -1;
++p;
}
string line;
e = ParseLine(&line);
if (e < 0) // error
return e;
if (e > 0) // EOF
return 0; // weird but valid
if (!line.empty()) {
// Parse optional characters that follow "WEBVTT"
const char c = line[0];
if (c != kSPACE && c != kTAB)
return -1;
}
// The WebVTT spec requires that the "WEBVTT" line
// be followed by an empty line (to separate it from
// first cue).
e = ParseLine(&line);
if (e < 0) // error
return e;
if (e > 0) // EOF
return 0; // weird but we allow it
if (!line.empty())
return -1;
return 0; // success
}
int Parser::Parse(Cue* cue) {
if (cue == NULL)
return -1;
// Parse first non-blank line
string line;
int e;
for (;;) {
e = ParseLine(&line);
if (e)
return e;
if (!line.empty())
break;
}
// A WebVTT cue comprises an optional cue identifier line followed
// by a (non-optional) timings line. You determine whether you have
// a timings line by scanning for the arrow token, the lexeme of which
// may not appear in the cue identifier line.
string::size_type off = line.find("-->");
if (off != string::npos) { // timings line
cue->identifier.clear();
} else {
cue->identifier.swap(line);
e = ParseLine(&line);
if (e)
return e;
off = line.find("-->");
if (off == string::npos) // not a timings line
return -1;
}
e = ParseTimingsLine(line,
off,
&cue->start_time,
&cue->stop_time,
&cue->settings);
if (e)
return e;
// The cue payload comprises all the non-empty
// lines that follow the timings line.
Cue::payload_t& p = cue->payload;
p.clear();
for (;;) {
e = ParseLine(&line);
if (e < 0) // error
return e;
if (line.empty())
break;
p.push_back(line);
}
if (p.empty())
return -1;
return 0; // success
}
int Parser::GetChar(char* c) {
if (unget_ >= 0) {
*c = static_cast<char>(unget_);
unget_ = -1;
return 0;
}
return reader_->GetChar(c);
}
void Parser::UngetChar(char c) {
unget_ = static_cast<unsigned char>(c);
}
int Parser::ParseBOM() {
// Explanation of UTF-8 BOM:
// http://en.wikipedia.org/wiki/Byte_order_mark
static const char BOM[] = "\xEF\xBB\xBF"; // UTF-8 BOM
for (int i = 0; i < 3; ++i) {
char c;
int e = GetChar(&c);
if (e < 0) // error
return e;
if (e > 0) // EOF
return 1;
if (c != BOM[i]) {
if (i == 0) { // we don't have a BOM
UngetChar(c);
return 0; // success
}
// We started a BOM, so we must finish the BOM.
return -1; // error
}
}
return 0; // success
}
int Parser::ParseLineTerminator(char c) {
// The WebVTT spec states that lines may be
// terminated in any of these three ways:
// LF
// CR
// CR LF
if (c == kLF)
return 0; // success
if (c != kCR)
return -1; // error
// We detected a CR. We must interrogate the next character
// in the stream, to determine whether we have a LF.
int e = GetChar(&c);
if (e < 0) // error
return e;
if (e > 0) // EOF
return 0; // success
if (c == kLF)
return 0; // success
// The next character in the stream is not a LF, so
// return it to the stream; this completes this line.
UngetChar(c);
return 0; // success
}
int Parser::ParseLine(string* line) {
line->clear();
for (;;) {
char c;
int e = GetChar(&c);
if (e < 0) // error
return e;
if (e > 0) // EOF
return (line->empty()) ? 1 : 0;
if (c == kLF || c == kCR) {
e = ParseLineTerminator(c);
if (e < 0) // error
return e;
return 0;
}
line->push_back(c);
}
}
int Parser::ParseTimingsLine(
string& line,
string::size_type arrow_pos,
Time* start_time,
Time* stop_time,
Cue::settings_t* settings) {
//
// Place a NUL character at the start of the arrow token, in
// order to demarcate the start time from remainder of line.
if (arrow_pos == string::npos || arrow_pos >= line.length())
return -1;
line[arrow_pos] = kNUL;
string::size_type idx = 0;
int e = ParseTime(line, idx, start_time);
if (e)
return e;
// Detect any junk that follows the start time,
// but precedes the arrow symbol.
while (char c = line[idx]) {
if (c != kSPACE && c != kTAB)
return -1;
++idx;
}
// Place a NUL character at the end of the line,
// so the scanner has a place to stop, and begin
// the scan just beyond the arrow token.
line.push_back(kNUL);
idx = arrow_pos + 3;
e = ParseTime(line, idx, stop_time);
if (e)
return e;
e = ParseSettings(line, idx, settings);
if (e)
return e;
return 0; // success
}
int Parser::ParseTime(
const string& line,
string::size_type& idx,
Time* time) {
//
// WebVTT timestamp syntax comes in three flavors:
// SS[.sss]
// MM:SS[.sss]
// HH:MM:SS[.sss]
if (idx == string::npos || idx >= line.length())
return -1;
// Consume any whitespace that precedes the timestamp.
while (char c = line[idx]) {
if (c != kSPACE && c != kTAB)
break;
++idx;
}
Time& t = *time;
// Parse a generic number value. We don't know which component
// of the time we have yet, until we do more parsing.
int val = ParseNumber(line, idx);
if (val < 0) // error
return val;
// The presence of a colon character indicates that we have
// an [HH:]MM:SS style syntax.
if (line[idx] == ':') {
// We have either HH:MM:SS or MM:SS
// The value we just parsed is either the hours or minutes.
// It must be followed by another number value (that is
// either minutes or seconds).
const int first_val = val;
++idx; // consume colon
// Parse second value
val = ParseNumber(line, idx);
if (val < 0)
return val;
if (val >= 60) // either MM or SS
return -1;
if (line[idx] == ':') {
// We have HH:MM:SS
t.hours = first_val;
t.minutes = val; // vetted above
++idx; // consume MM:SS colon
// We have parsed the hours and minutes.
// We must now parse the seconds.
val = ParseNumber(line, idx);
if (val < 0)
return val;
if (val >= 60) // SS part of HH:MM:SS
return -1;
t.seconds = val;
} else {
// We have MM:SS
// The implication here is that the hour value was omitted
// from the timestamp (because it was 0).
if (first_val >= 60) // minutes
return -1;
t.hours = 0;
t.minutes = first_val;
t.seconds = val; // vetted above
}
} else {
// We have SS (only)
// The time is expressed as total number of seconds,
// so the seconds value has no upper bound.
t.seconds = val;
// Convert SS to HH:MM:SS
t.minutes = t.seconds / 60;
t.seconds -= t.minutes * 60;
t.hours = t.minutes / 60;
t.minutes -= t.hours * 60;
}
// We have parsed the hours, minutes, and seconds.
// We must now parse the milliseconds.
if (line[idx] != '.') { // no milliseconds
t.milliseconds = 0;
} else {
++idx; // consume FULL STOP
val = ParseNumber(line, idx);
if (val < 0)
return val;
if (val >= 1000)
return -1;
if (val < 10)
t.milliseconds = val * 100;
else if (val < 100)
t.milliseconds = val * 10;
else
t.milliseconds = val;
}
// We have parsed the time proper. We must check for any
// junk that immediately follows the time specifier.
const char c = line[idx];
if (c != kNUL && c != kSPACE && c != kTAB)
return -1;
return 0; // success
}
int Parser::ParseSettings(
const string& line,
string::size_type idx,
Cue::settings_t* settings) {
//
// Scanning starts at position idx, and stops when
// we consume a NUL character.
settings->clear();
if (idx == string::npos || idx >= line.length())
return -1;
for (;;) {
// Parse the whitespace that precedes the NAME:VALUE pair.
for (;;) {
const char c = line[idx];
if (c == kNUL)
return 0; // success
if (c != kSPACE && c != kTAB)
break;
++idx; // consume whitespace
}
// There is something on the line for us to scan.
settings->push_back(Setting());
Setting& s = settings->back();
// Parse the NAME part of the settings pair.
for (;;) {
const char c = line[idx];
if (c == ':') // we have reached end of NAME part
break;
if (c == kNUL || c == kSPACE || c == kTAB)
return -1;
s.name.push_back(c);
++idx;
}
if (s.name.empty())
return -1;
++idx; // consume colon
// Parse the VALUE part of the settings pair.
for (;;) {
const char c = line[idx];
if (c == kNUL || c == kSPACE || c == kTAB)
break;
if (c == ':') // suspicious when part of VALUE
return -1; // TODO(matthewjheaney): verify this behavior
s.value.push_back(c);
++idx;
}
if (s.value.empty())
return -1;
}
}
int Parser::ParseNumber(const std::string& line,
std::string::size_type& idx) {
if (idx == string::npos || idx >= line.length())
return -1;
if (!isdigit(line[idx]))
return -1;
long long val = 0; // NOLINT
while (isdigit(line[idx])) {
val *= 10;
val += static_cast<int>(line[idx] - '0');
if (val > INT_MAX)
return -1;
++idx;
}
return static_cast<int>(val);
}
bool Time::operator==(const Time& rhs) const {
if (hours != rhs.hours)
return false;
if (minutes != rhs.minutes)
return false;
if (seconds != rhs.seconds)
return false;
return (milliseconds == rhs.milliseconds);
}
bool Time::operator<(const Time& rhs) const {
if (hours < rhs.hours)
return true;
if (hours > rhs.hours)
return false;
if (minutes < rhs.minutes)
return true;
if (minutes > rhs.minutes)
return false;
if (seconds < rhs.seconds)
return true;
if (seconds > rhs.seconds)
return false;
return (milliseconds < rhs.milliseconds);
}
bool Time::operator>(const Time& rhs) const {
return rhs.operator<(*this);
}
bool Time::operator<=(const Time& rhs) const {
return !this->operator>(rhs);
}
bool Time::operator>=(const Time& rhs) const {
return !this->operator<(rhs);
}
presentation_t Time::presentation() const {
const presentation_t h = 1000LL * 3600LL * presentation_t(hours);
const presentation_t m = 1000LL * 60LL * presentation_t(minutes);
const presentation_t s = 1000LL * presentation_t(seconds);
const presentation_t result = h + m + s + milliseconds;
return result;
}
Time& Time::presentation(presentation_t d) {
if (d < 0) { // error
hours = 0;
minutes = 0;
seconds = 0;
milliseconds = 0;
return *this;
}
seconds = d / 1000;
milliseconds = d - 1000 * seconds;
minutes = seconds / 60;
seconds -= 60 * minutes;
hours = minutes / 60;
minutes -= 60 * hours;
return *this;
}
Time& Time::operator+=(presentation_t rhs) {
const presentation_t d = this->presentation();
const presentation_t dd = d + rhs;
this->presentation(dd);
return *this;
}
Time Time::operator+(presentation_t d) const {
Time t(*this);
t += d;
return t;
}
Time& Time::operator-=(presentation_t d) {
return this->operator+=(-d);
}
presentation_t Time::operator-(const Time& t) const {
const presentation_t rhs = t.presentation();
const presentation_t lhs = this->presentation();
const presentation_t result = lhs - rhs;
return result;
}
} // namespace libwebvtt