8aae246089
This is the final commit in the series converting to the new RTCD system. It removes the encoder csystemdependent files and the remaining global function pointers that didn't conform to the old RTCD system. Change-Id: I9649706f1bb89f0cbf431ab0e3e7552d37be4d8e
5222 lines
169 KiB
C
5222 lines
169 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vpx_config.h"
|
|
#include "vp8/common/onyxc_int.h"
|
|
#include "onyx_int.h"
|
|
#include "vp8/common/systemdependent.h"
|
|
#include "quantize.h"
|
|
#include "vp8/common/alloccommon.h"
|
|
#include "mcomp.h"
|
|
#include "firstpass.h"
|
|
#include "psnr.h"
|
|
#include "vpx_scale/vpxscale.h"
|
|
#include "vp8/common/extend.h"
|
|
#include "ratectrl.h"
|
|
#include "vp8/common/quant_common.h"
|
|
#include "segmentation.h"
|
|
#include "vpx_scale/yv12extend.h"
|
|
#if CONFIG_POSTPROC
|
|
#include "vp8/common/postproc.h"
|
|
#endif
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp8/common/swapyv12buffer.h"
|
|
#include "vp8/common/threading.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
#if ARCH_ARM
|
|
#include "vpx_ports/arm.h"
|
|
#endif
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
#include "mr_dissim.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
|
|
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
|
|
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
|
|
|
|
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
|
|
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
|
|
extern unsigned int vp8_get_processor_freq();
|
|
extern void print_tree_update_probs();
|
|
extern void vp8cx_create_encoder_threads(VP8_COMP *cpi);
|
|
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
|
|
#if HAVE_NEON
|
|
extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
|
|
extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
|
|
#endif
|
|
|
|
int vp8_estimate_entropy_savings(VP8_COMP *cpi);
|
|
|
|
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest);
|
|
|
|
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance);
|
|
|
|
static void set_default_lf_deltas(VP8_COMP *cpi);
|
|
|
|
extern const int vp8_gf_interval_table[101];
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
#include "math.h"
|
|
|
|
extern double vp8_calc_ssim
|
|
(
|
|
YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest,
|
|
int lumamask,
|
|
double *weight
|
|
);
|
|
|
|
|
|
extern double vp8_calc_ssimg
|
|
(
|
|
YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest,
|
|
double *ssim_y,
|
|
double *ssim_u,
|
|
double *ssim_v
|
|
);
|
|
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
FILE *yuv_file;
|
|
#endif
|
|
|
|
#if 0
|
|
FILE *framepsnr;
|
|
FILE *kf_list;
|
|
FILE *keyfile;
|
|
#endif
|
|
|
|
#if 0
|
|
extern int skip_true_count;
|
|
extern int skip_false_count;
|
|
#endif
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
extern int intra_mode_stats[10][10][10];
|
|
#endif
|
|
|
|
#ifdef SPEEDSTATS
|
|
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
unsigned int tot_pm = 0;
|
|
unsigned int cnt_pm = 0;
|
|
unsigned int tot_ef = 0;
|
|
unsigned int cnt_ef = 0;
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
extern unsigned __int64 Sectionbits[50];
|
|
extern int y_modes[5] ;
|
|
extern int uv_modes[4] ;
|
|
extern int b_modes[10] ;
|
|
|
|
extern int inter_y_modes[10] ;
|
|
extern int inter_uv_modes[4] ;
|
|
extern unsigned int inter_b_modes[15];
|
|
#endif
|
|
|
|
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
|
|
|
|
extern const int qrounding_factors[129];
|
|
extern const int qzbin_factors[129];
|
|
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
|
|
extern const int vp8cx_base_skip_false_prob[128];
|
|
|
|
// Tables relating active max Q to active min Q
|
|
static const int kf_low_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
|
|
3,3,3,3,3,3,4,4,4,5,5,5,5,5,6,6,
|
|
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
|
|
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
|
|
16,16,17,17,18,18,18,18,19,20,20,21,21,22,23,23
|
|
};
|
|
static const int kf_high_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,
|
|
3,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6,
|
|
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
|
|
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
|
|
16,16,17,17,18,18,18,18,19,19,20,20,20,20,21,21,
|
|
21,21,22,22,23,23,24,25,25,26,26,27,28,28,29,30
|
|
};
|
|
static const int gf_low_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
|
|
3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,
|
|
7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,
|
|
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,
|
|
19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,
|
|
27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,
|
|
35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,
|
|
43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58
|
|
};
|
|
static const int gf_mid_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,4,
|
|
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
|
|
9,10,10,10,10,11,11,11,12,12,12,12,13,13,13,14,
|
|
14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,
|
|
22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,
|
|
30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,
|
|
38,39,39,40,40,41,41,42,42,43,43,44,45,46,47,48,
|
|
49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64
|
|
};
|
|
static const int gf_high_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,4,
|
|
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
|
|
9,10,10,10,11,11,12,12,13,13,14,14,15,15,16,16,
|
|
17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,
|
|
25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,
|
|
33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40,
|
|
41,41,42,42,43,44,45,46,47,48,49,50,51,52,53,54,
|
|
55,56,57,58,59,60,62,64,66,68,70,72,74,76,78,80
|
|
};
|
|
static const int inter_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,
|
|
9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20,
|
|
20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31,
|
|
32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43,
|
|
44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56,
|
|
57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70,
|
|
71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85,
|
|
86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
|
|
};
|
|
|
|
void vp8_initialize()
|
|
{
|
|
static int init_done = 0;
|
|
|
|
if (!init_done)
|
|
{
|
|
vp8_scale_machine_specific_config();
|
|
vp8_initialize_common();
|
|
vp8_tokenize_initialize();
|
|
|
|
init_done = 1;
|
|
}
|
|
}
|
|
#ifdef PACKET_TESTING
|
|
extern FILE *vpxlogc;
|
|
#endif
|
|
|
|
static void save_layer_context(VP8_COMP *cpi)
|
|
{
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer];
|
|
|
|
// Save layer dependent coding state
|
|
lc->target_bandwidth = cpi->target_bandwidth;
|
|
//lc->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
lc->starting_buffer_level = cpi->oxcf.starting_buffer_level;
|
|
lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level;
|
|
lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size;
|
|
lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms;
|
|
lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms;
|
|
lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms;
|
|
lc->buffer_level = cpi->buffer_level;
|
|
lc->bits_off_target = cpi->bits_off_target;
|
|
lc->total_actual_bits = cpi->total_actual_bits;
|
|
lc->worst_quality = cpi->worst_quality;
|
|
lc->active_worst_quality = cpi->active_worst_quality;
|
|
lc->best_quality = cpi->best_quality;
|
|
lc->active_best_quality = cpi->active_best_quality;
|
|
lc->ni_av_qi = cpi->ni_av_qi;
|
|
lc->ni_tot_qi = cpi->ni_tot_qi;
|
|
lc->ni_frames = cpi->ni_frames;
|
|
lc->avg_frame_qindex = cpi->avg_frame_qindex;
|
|
lc->rate_correction_factor = cpi->rate_correction_factor;
|
|
lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor;
|
|
lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor;
|
|
lc->zbin_over_quant = cpi->zbin_over_quant;
|
|
lc->inter_frame_target = cpi->inter_frame_target;
|
|
lc->total_byte_count = cpi->total_byte_count;
|
|
lc->filter_level = cpi->common.filter_level;
|
|
|
|
lc->last_frame_percent_intra = cpi->last_frame_percent_intra;
|
|
|
|
memcpy (lc->count_mb_ref_frame_usage,
|
|
cpi->count_mb_ref_frame_usage,
|
|
sizeof(cpi->count_mb_ref_frame_usage));
|
|
}
|
|
|
|
static void restore_layer_context(VP8_COMP *cpi, const int layer)
|
|
{
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
|
|
|
|
// Restore layer dependent coding state
|
|
cpi->current_layer = layer;
|
|
cpi->target_bandwidth = lc->target_bandwidth;
|
|
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
|
|
cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
|
|
cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
|
|
cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
|
|
cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms;
|
|
cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms;
|
|
cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms;
|
|
cpi->buffer_level = lc->buffer_level;
|
|
cpi->bits_off_target = lc->bits_off_target;
|
|
cpi->total_actual_bits = lc->total_actual_bits;
|
|
//cpi->worst_quality = lc->worst_quality;
|
|
cpi->active_worst_quality = lc->active_worst_quality;
|
|
//cpi->best_quality = lc->best_quality;
|
|
cpi->active_best_quality = lc->active_best_quality;
|
|
cpi->ni_av_qi = lc->ni_av_qi;
|
|
cpi->ni_tot_qi = lc->ni_tot_qi;
|
|
cpi->ni_frames = lc->ni_frames;
|
|
cpi->avg_frame_qindex = lc->avg_frame_qindex;
|
|
cpi->rate_correction_factor = lc->rate_correction_factor;
|
|
cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor;
|
|
cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor;
|
|
cpi->zbin_over_quant = lc->zbin_over_quant;
|
|
cpi->inter_frame_target = lc->inter_frame_target;
|
|
cpi->total_byte_count = lc->total_byte_count;
|
|
cpi->common.filter_level = lc->filter_level;
|
|
|
|
cpi->last_frame_percent_intra = lc->last_frame_percent_intra;
|
|
|
|
memcpy (cpi->count_mb_ref_frame_usage,
|
|
lc->count_mb_ref_frame_usage,
|
|
sizeof(cpi->count_mb_ref_frame_usage));
|
|
}
|
|
|
|
static void setup_features(VP8_COMP *cpi)
|
|
{
|
|
// Set up default state for MB feature flags
|
|
cpi->mb.e_mbd.segmentation_enabled = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
vpx_memset(cpi->mb.e_mbd.mb_segment_tree_probs, 255, sizeof(cpi->mb.e_mbd.mb_segment_tree_probs));
|
|
vpx_memset(cpi->mb.e_mbd.segment_feature_data, 0, sizeof(cpi->mb.e_mbd.segment_feature_data));
|
|
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
set_default_lf_deltas(cpi);
|
|
|
|
}
|
|
|
|
|
|
static void dealloc_compressor_data(VP8_COMP *cpi)
|
|
{
|
|
vpx_free(cpi->tplist);
|
|
cpi->tplist = NULL;
|
|
|
|
// Delete last frame MV storage buffers
|
|
vpx_free(cpi->lfmv);
|
|
cpi->lfmv = 0;
|
|
|
|
vpx_free(cpi->lf_ref_frame_sign_bias);
|
|
cpi->lf_ref_frame_sign_bias = 0;
|
|
|
|
vpx_free(cpi->lf_ref_frame);
|
|
cpi->lf_ref_frame = 0;
|
|
|
|
// Delete sementation map
|
|
vpx_free(cpi->segmentation_map);
|
|
cpi->segmentation_map = 0;
|
|
|
|
vpx_free(cpi->active_map);
|
|
cpi->active_map = 0;
|
|
|
|
vp8_de_alloc_frame_buffers(&cpi->common);
|
|
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame);
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
|
|
#endif
|
|
vp8_lookahead_destroy(cpi->lookahead);
|
|
|
|
vpx_free(cpi->tok);
|
|
cpi->tok = 0;
|
|
|
|
// Structure used to monitor GF usage
|
|
vpx_free(cpi->gf_active_flags);
|
|
cpi->gf_active_flags = 0;
|
|
|
|
// Activity mask based per mb zbin adjustments
|
|
vpx_free(cpi->mb_activity_map);
|
|
cpi->mb_activity_map = 0;
|
|
vpx_free(cpi->mb_norm_activity_map);
|
|
cpi->mb_norm_activity_map = 0;
|
|
|
|
vpx_free(cpi->mb.pip);
|
|
cpi->mb.pip = 0;
|
|
}
|
|
|
|
static void enable_segmentation(VP8_COMP *cpi)
|
|
{
|
|
// Set the appropriate feature bit
|
|
cpi->mb.e_mbd.segmentation_enabled = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
static void disable_segmentation(VP8_COMP *cpi)
|
|
{
|
|
// Clear the appropriate feature bit
|
|
cpi->mb.e_mbd.segmentation_enabled = 0;
|
|
}
|
|
|
|
// Valid values for a segment are 0 to 3
|
|
// Segmentation map is arrange as [Rows][Columns]
|
|
static void set_segmentation_map(VP8_COMP *cpi, unsigned char *segmentation_map)
|
|
{
|
|
// Copy in the new segmentation map
|
|
vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols));
|
|
|
|
// Signal that the map should be updated.
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
// The values given for each segment can be either deltas (from the default value chosen for the frame) or absolute values.
|
|
//
|
|
// Valid range for abs values is (0-127 for MB_LVL_ALT_Q) , (0-63 for SEGMENT_ALT_LF)
|
|
// Valid range for delta values are (+/-127 for MB_LVL_ALT_Q) , (+/-63 for SEGMENT_ALT_LF)
|
|
//
|
|
// abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use the absolute values given).
|
|
//
|
|
//
|
|
static void set_segment_data(VP8_COMP *cpi, signed char *feature_data, unsigned char abs_delta)
|
|
{
|
|
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
|
|
vpx_memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data));
|
|
}
|
|
|
|
|
|
static void segmentation_test_function(VP8_COMP *cpi)
|
|
{
|
|
unsigned char *seg_map;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
|
|
// Create a temporary map for segmentation data.
|
|
CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
|
|
// MB loop to set local segmentation map
|
|
/*for ( i = 0; i < cpi->common.mb_rows; i++ )
|
|
{
|
|
for ( j = 0; j < cpi->common.mb_cols; j++ )
|
|
{
|
|
//seg_map[(i*cpi->common.mb_cols) + j] = (j % 2) + ((i%2)* 2);
|
|
//if ( j < cpi->common.mb_cols/2 )
|
|
|
|
// Segment 1 around the edge else 0
|
|
if ( (i == 0) || (j == 0) || (i == (cpi->common.mb_rows-1)) || (j == (cpi->common.mb_cols-1)) )
|
|
seg_map[(i*cpi->common.mb_cols) + j] = 1;
|
|
//else if ( (i < 2) || (j < 2) || (i > (cpi->common.mb_rows-3)) || (j > (cpi->common.mb_cols-3)) )
|
|
// seg_map[(i*cpi->common.mb_cols) + j] = 2;
|
|
//else if ( (i < 5) || (j < 5) || (i > (cpi->common.mb_rows-6)) || (j > (cpi->common.mb_cols-6)) )
|
|
// seg_map[(i*cpi->common.mb_cols) + j] = 3;
|
|
else
|
|
seg_map[(i*cpi->common.mb_cols) + j] = 0;
|
|
}
|
|
}*/
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map(cpi, seg_map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation(cpi);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = 0;
|
|
feature_data[MB_LVL_ALT_Q][1] = 4;
|
|
feature_data[MB_LVL_ALT_Q][2] = 0;
|
|
feature_data[MB_LVL_ALT_Q][3] = 0;
|
|
// Set up the loop segment data
|
|
feature_data[MB_LVL_ALT_LF][0] = 0;
|
|
feature_data[MB_LVL_ALT_LF][1] = 0;
|
|
feature_data[MB_LVL_ALT_LF][2] = 0;
|
|
feature_data[MB_LVL_ALT_LF][3] = 0;
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
// Delete sementation map
|
|
vpx_free(seg_map);
|
|
|
|
seg_map = 0;
|
|
|
|
}
|
|
|
|
// A simple function to cyclically refresh the background at a lower Q
|
|
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment)
|
|
{
|
|
unsigned char *seg_map;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
int i;
|
|
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
|
|
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
|
|
|
|
// Create a temporary map for segmentation data.
|
|
CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
|
|
cpi->cyclic_refresh_q = Q;
|
|
|
|
for (i = Q; i > 0; i--)
|
|
{
|
|
if (vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*(Q + 128)) / 64))
|
|
//if ( vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*((2*Q)+96))/64) )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
cpi->cyclic_refresh_q = i;
|
|
|
|
// Only update for inter frames
|
|
if (cpi->common.frame_type != KEY_FRAME)
|
|
{
|
|
// Cycle through the macro_block rows
|
|
// MB loop to set local segmentation map
|
|
for (i = cpi->cyclic_refresh_mode_index; i < mbs_in_frame; i++)
|
|
{
|
|
// If the MB is as a candidate for clean up then mark it for possible boost/refresh (segment 1)
|
|
// The segment id may get reset to 0 later if the MB gets coded anything other than last frame 0,0
|
|
// as only (last frame 0,0) MBs are eligable for refresh : that is to say Mbs likely to be background blocks.
|
|
if (cpi->cyclic_refresh_map[i] == 0)
|
|
{
|
|
seg_map[i] = 1;
|
|
}
|
|
else
|
|
{
|
|
seg_map[i] = 0;
|
|
|
|
// Skip blocks that have been refreshed recently anyway.
|
|
if (cpi->cyclic_refresh_map[i] < 0)
|
|
//cpi->cyclic_refresh_map[i] = cpi->cyclic_refresh_map[i] / 16;
|
|
cpi->cyclic_refresh_map[i]++;
|
|
}
|
|
|
|
|
|
if (block_count > 0)
|
|
block_count--;
|
|
else
|
|
break;
|
|
|
|
}
|
|
|
|
// If we have gone through the frame reset to the start
|
|
cpi->cyclic_refresh_mode_index = i;
|
|
|
|
if (cpi->cyclic_refresh_mode_index >= mbs_in_frame)
|
|
cpi->cyclic_refresh_mode_index = 0;
|
|
}
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map(cpi, seg_map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation(cpi);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = 0;
|
|
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
|
|
feature_data[MB_LVL_ALT_Q][2] = 0;
|
|
feature_data[MB_LVL_ALT_Q][3] = 0;
|
|
|
|
// Set up the loop segment data
|
|
feature_data[MB_LVL_ALT_LF][0] = 0;
|
|
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
|
|
feature_data[MB_LVL_ALT_LF][2] = 0;
|
|
feature_data[MB_LVL_ALT_LF][3] = 0;
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
// Delete sementation map
|
|
vpx_free(seg_map);
|
|
|
|
seg_map = 0;
|
|
|
|
}
|
|
|
|
static void set_default_lf_deltas(VP8_COMP *cpi)
|
|
{
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
|
|
|
|
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
// Test of ref frame deltas
|
|
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
|
|
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
|
|
|
|
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED
|
|
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero
|
|
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv
|
|
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv
|
|
}
|
|
|
|
/* Convenience macros for mapping speed and mode into a continuous
|
|
* range
|
|
*/
|
|
#define GOOD(x) (x+1)
|
|
#define RT(x) (x+7)
|
|
|
|
static int speed_map(int speed, int *map)
|
|
{
|
|
int res;
|
|
|
|
do
|
|
{
|
|
res = *map++;
|
|
} while(speed >= *map++);
|
|
return res;
|
|
}
|
|
|
|
static int thresh_mult_map_znn[] = {
|
|
/* map common to zero, nearest, and near */
|
|
0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX
|
|
};
|
|
|
|
static int thresh_mult_map_vhpred[] = {
|
|
1000, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(1), 2000,
|
|
RT(7), INT_MAX, INT_MAX
|
|
};
|
|
|
|
static int thresh_mult_map_bpred[] = {
|
|
2000, GOOD(0), 2500, GOOD(2), 5000, GOOD(3), 7500, RT(0), 2500, RT(1), 5000,
|
|
RT(6), INT_MAX, INT_MAX
|
|
};
|
|
|
|
static int thresh_mult_map_tm[] = {
|
|
1000, GOOD(2), 1500, GOOD(3), 2000, RT(0), 0, RT(1), 1000, RT(2), 2000,
|
|
RT(7), INT_MAX, INT_MAX
|
|
};
|
|
|
|
static int thresh_mult_map_new1[] = {
|
|
1000, GOOD(2), 2000, RT(0), 2000, INT_MAX
|
|
};
|
|
|
|
static int thresh_mult_map_new2[] = {
|
|
1000, GOOD(2), 2000, GOOD(3), 2500, GOOD(5), 4000, RT(0), 2000, RT(2), 2500,
|
|
RT(5), 4000, INT_MAX
|
|
};
|
|
|
|
static int thresh_mult_map_split1[] = {
|
|
2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX,
|
|
RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX
|
|
};
|
|
|
|
static int thresh_mult_map_split2[] = {
|
|
5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX,
|
|
RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX
|
|
};
|
|
|
|
static int mode_check_freq_map_zn2[] = {
|
|
/* {zero,nearest}{2,3} */
|
|
0, RT(10), 1<<1, RT(11), 1<<2, RT(12), 1<<3, INT_MAX
|
|
};
|
|
|
|
static int mode_check_freq_map_vhbpred[] = {
|
|
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX
|
|
};
|
|
|
|
static int mode_check_freq_map_near2[] = {
|
|
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(10), 1<<2, RT(11), 1<<3, RT(12), 1<<4,
|
|
INT_MAX
|
|
};
|
|
|
|
static int mode_check_freq_map_new1[] = {
|
|
0, RT(10), 1<<1, RT(11), 1<<2, RT(12), 1<<3, INT_MAX
|
|
};
|
|
|
|
static int mode_check_freq_map_new2[] = {
|
|
0, GOOD(5), 4, RT(0), 0, RT(3), 4, RT(10), 1<<3, RT(11), 1<<4, RT(12), 1<<5,
|
|
INT_MAX
|
|
};
|
|
|
|
static int mode_check_freq_map_split1[] = {
|
|
0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX
|
|
};
|
|
|
|
static int mode_check_freq_map_split2[] = {
|
|
0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX
|
|
};
|
|
|
|
void vp8_set_speed_features(VP8_COMP *cpi)
|
|
{
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
int Mode = cpi->compressor_speed;
|
|
int Speed = cpi->Speed;
|
|
int i;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int last_improved_quant = sf->improved_quant;
|
|
int ref_frames;
|
|
|
|
// Initialise default mode frequency sampling variables
|
|
for (i = 0; i < MAX_MODES; i ++)
|
|
{
|
|
cpi->mode_check_freq[i] = 0;
|
|
cpi->mode_test_hit_counts[i] = 0;
|
|
cpi->mode_chosen_counts[i] = 0;
|
|
}
|
|
|
|
cpi->mbs_tested_so_far = 0;
|
|
|
|
// best quality defaults
|
|
sf->RD = 1;
|
|
sf->search_method = NSTEP;
|
|
sf->improved_quant = 1;
|
|
sf->improved_dct = 1;
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 1;
|
|
sf->quarter_pixel_search = 1;
|
|
sf->half_pixel_search = 1;
|
|
sf->iterative_sub_pixel = 1;
|
|
sf->optimize_coefficients = 1;
|
|
sf->use_fastquant_for_pick = 0;
|
|
sf->no_skip_block4x4_search = 1;
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
sf->improved_mv_pred = 1;
|
|
|
|
// default thresholds to 0
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
sf->thresh_mult[i] = 0;
|
|
|
|
/* Count enabled references */
|
|
ref_frames = 1;
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
ref_frames++;
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
ref_frames++;
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
ref_frames++;
|
|
|
|
/* Convert speed to continuous range, with clamping */
|
|
if (Mode == 0)
|
|
Speed = 0;
|
|
else if (Mode == 2)
|
|
Speed = RT(Speed);
|
|
else
|
|
{
|
|
if (Speed > 5)
|
|
Speed = 5;
|
|
Speed = GOOD(Speed);
|
|
}
|
|
|
|
sf->thresh_mult[THR_ZERO1] =
|
|
sf->thresh_mult[THR_NEAREST1] =
|
|
sf->thresh_mult[THR_NEAR1] =
|
|
sf->thresh_mult[THR_DC] = 0; /* always */
|
|
|
|
sf->thresh_mult[THR_ZERO2] =
|
|
sf->thresh_mult[THR_ZERO3] =
|
|
sf->thresh_mult[THR_NEAREST2] =
|
|
sf->thresh_mult[THR_NEAREST3] =
|
|
sf->thresh_mult[THR_NEAR2] =
|
|
sf->thresh_mult[THR_NEAR3] = speed_map(Speed, thresh_mult_map_znn);
|
|
|
|
sf->thresh_mult[THR_V_PRED] =
|
|
sf->thresh_mult[THR_H_PRED] = speed_map(Speed, thresh_mult_map_vhpred);
|
|
sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred);
|
|
sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm);
|
|
sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1);
|
|
sf->thresh_mult[THR_NEW2] =
|
|
sf->thresh_mult[THR_NEW3] = speed_map(Speed, thresh_mult_map_new2);
|
|
sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1);
|
|
sf->thresh_mult[THR_SPLIT2] =
|
|
sf->thresh_mult[THR_SPLIT3] = speed_map(Speed, thresh_mult_map_split2);
|
|
|
|
cpi->mode_check_freq[THR_ZERO1] =
|
|
cpi->mode_check_freq[THR_NEAREST1] =
|
|
cpi->mode_check_freq[THR_NEAR1] =
|
|
cpi->mode_check_freq[THR_TM] =
|
|
cpi->mode_check_freq[THR_DC] = 0; /* always */
|
|
|
|
cpi->mode_check_freq[THR_ZERO2] =
|
|
cpi->mode_check_freq[THR_ZERO3] =
|
|
cpi->mode_check_freq[THR_NEAREST2] =
|
|
cpi->mode_check_freq[THR_NEAREST3] = speed_map(Speed,
|
|
mode_check_freq_map_zn2);
|
|
|
|
cpi->mode_check_freq[THR_NEAR2] =
|
|
cpi->mode_check_freq[THR_NEAR3] = speed_map(Speed,
|
|
mode_check_freq_map_near2);
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] =
|
|
cpi->mode_check_freq[THR_H_PRED] =
|
|
cpi->mode_check_freq[THR_B_PRED] = speed_map(Speed,
|
|
mode_check_freq_map_vhbpred);
|
|
cpi->mode_check_freq[THR_NEW1] = speed_map(Speed,
|
|
mode_check_freq_map_new1);
|
|
cpi->mode_check_freq[THR_NEW2] =
|
|
cpi->mode_check_freq[THR_NEW3] = speed_map(Speed,
|
|
mode_check_freq_map_new2);
|
|
cpi->mode_check_freq[THR_SPLIT1] = speed_map(Speed,
|
|
mode_check_freq_map_split1);
|
|
cpi->mode_check_freq[THR_SPLIT2] =
|
|
cpi->mode_check_freq[THR_SPLIT3] = speed_map(Speed,
|
|
mode_check_freq_map_split2);
|
|
Speed = cpi->Speed;
|
|
switch (Mode)
|
|
{
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
case 0: // best quality mode
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
break;
|
|
case 1:
|
|
case 3:
|
|
if (Speed > 0)
|
|
{
|
|
/* Disable coefficient optimization above speed 0 */
|
|
sf->optimize_coefficients = 0;
|
|
sf->use_fastquant_for_pick = 1;
|
|
sf->no_skip_block4x4_search = 0;
|
|
|
|
sf->first_step = 1;
|
|
}
|
|
|
|
if (Speed > 2)
|
|
{
|
|
sf->improved_quant = 0;
|
|
sf->improved_dct = 0;
|
|
|
|
// Only do recode loop on key frames, golden frames and
|
|
// alt ref frames
|
|
sf->recode_loop = 2;
|
|
|
|
}
|
|
|
|
if (Speed > 3)
|
|
{
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 0; // recode loop off
|
|
sf->RD = 0; // Turn rd off
|
|
|
|
}
|
|
|
|
if (Speed > 4)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
}
|
|
|
|
break;
|
|
#endif
|
|
case 2:
|
|
sf->optimize_coefficients = 0;
|
|
sf->recode_loop = 0;
|
|
sf->auto_filter = 1;
|
|
sf->iterative_sub_pixel = 1;
|
|
sf->search_method = NSTEP;
|
|
|
|
if (Speed > 0)
|
|
{
|
|
sf->improved_quant = 0;
|
|
sf->improved_dct = 0;
|
|
|
|
sf->use_fastquant_for_pick = 1;
|
|
sf->no_skip_block4x4_search = 0;
|
|
sf->first_step = 1;
|
|
}
|
|
|
|
if (Speed > 2)
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
|
|
if (Speed > 3)
|
|
{
|
|
sf->RD = 0;
|
|
sf->auto_filter = 1;
|
|
}
|
|
|
|
if (Speed > 4)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
sf->search_method = HEX;
|
|
sf->iterative_sub_pixel = 0;
|
|
}
|
|
|
|
if (Speed > 6)
|
|
{
|
|
unsigned int sum = 0;
|
|
unsigned int total_mbs = cm->MBs;
|
|
int i, thresh;
|
|
unsigned int total_skip;
|
|
|
|
int min = 2000;
|
|
|
|
if (cpi->oxcf.encode_breakout > 2000)
|
|
min = cpi->oxcf.encode_breakout;
|
|
|
|
min >>= 7;
|
|
|
|
for (i = 0; i < min; i++)
|
|
{
|
|
sum += cpi->error_bins[i];
|
|
}
|
|
|
|
total_skip = sum;
|
|
sum = 0;
|
|
|
|
// i starts from 2 to make sure thresh started from 2048
|
|
for (; i < 1024; i++)
|
|
{
|
|
sum += cpi->error_bins[i];
|
|
|
|
if (10 * sum >= (unsigned int)(cpi->Speed - 6)*(total_mbs - total_skip))
|
|
break;
|
|
}
|
|
|
|
i--;
|
|
thresh = (i << 7);
|
|
|
|
if (thresh < 2000)
|
|
thresh = 2000;
|
|
|
|
if (ref_frames > 1)
|
|
{
|
|
sf->thresh_mult[THR_NEW1 ] = thresh;
|
|
sf->thresh_mult[THR_NEAREST1 ] = thresh >> 1;
|
|
sf->thresh_mult[THR_NEAR1 ] = thresh >> 1;
|
|
}
|
|
|
|
if (ref_frames > 2)
|
|
{
|
|
sf->thresh_mult[THR_NEW2] = thresh << 1;
|
|
sf->thresh_mult[THR_NEAREST2 ] = thresh;
|
|
sf->thresh_mult[THR_NEAR2 ] = thresh;
|
|
}
|
|
|
|
if (ref_frames > 3)
|
|
{
|
|
sf->thresh_mult[THR_NEW3] = thresh << 1;
|
|
sf->thresh_mult[THR_NEAREST3 ] = thresh;
|
|
sf->thresh_mult[THR_NEAR3 ] = thresh;
|
|
}
|
|
|
|
sf->improved_mv_pred = 0;
|
|
}
|
|
|
|
if (Speed > 8)
|
|
sf->quarter_pixel_search = 0;
|
|
|
|
if(cm->version == 0)
|
|
{
|
|
cm->filter_type = NORMAL_LOOPFILTER;
|
|
|
|
if (Speed >= 14)
|
|
cm->filter_type = SIMPLE_LOOPFILTER;
|
|
}
|
|
else
|
|
{
|
|
cm->filter_type = SIMPLE_LOOPFILTER;
|
|
}
|
|
|
|
// This has a big hit on quality. Last resort
|
|
if (Speed >= 15)
|
|
sf->half_pixel_search = 0;
|
|
|
|
vpx_memset(cpi->error_bins, 0, sizeof(cpi->error_bins));
|
|
|
|
}; /* switch */
|
|
|
|
// Slow quant, dct and trellis not worthwhile for first pass
|
|
// so make sure they are always turned off.
|
|
if ( cpi->pass == 1 )
|
|
{
|
|
sf->improved_quant = 0;
|
|
sf->optimize_coefficients = 0;
|
|
sf->improved_dct = 0;
|
|
}
|
|
|
|
if (cpi->sf.search_method == NSTEP)
|
|
{
|
|
vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
}
|
|
else if (cpi->sf.search_method == DIAMOND)
|
|
{
|
|
vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
}
|
|
|
|
if (cpi->sf.improved_dct)
|
|
{
|
|
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
|
|
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
|
|
}
|
|
else
|
|
{
|
|
/* No fast FDCT defined for any platform at this time. */
|
|
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
|
|
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
|
|
}
|
|
|
|
cpi->mb.short_walsh4x4 = vp8_short_walsh4x4;
|
|
|
|
if (cpi->sf.improved_quant)
|
|
{
|
|
cpi->mb.quantize_b = vp8_regular_quantize_b;
|
|
cpi->mb.quantize_b_pair = vp8_regular_quantize_b_pair;
|
|
}
|
|
else
|
|
{
|
|
cpi->mb.quantize_b = vp8_fast_quantize_b;
|
|
cpi->mb.quantize_b_pair = vp8_fast_quantize_b_pair;
|
|
}
|
|
if (cpi->sf.improved_quant != last_improved_quant)
|
|
vp8cx_init_quantizer(cpi);
|
|
|
|
if (cpi->sf.iterative_sub_pixel == 1)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
|
|
}
|
|
else if (cpi->sf.quarter_pixel_search)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
|
|
}
|
|
else if (cpi->sf.half_pixel_search)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
|
|
}
|
|
else
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
|
|
}
|
|
|
|
if (cpi->sf.optimize_coefficients == 1 && cpi->pass!=1)
|
|
cpi->mb.optimize = 1;
|
|
else
|
|
cpi->mb.optimize = 0;
|
|
|
|
if (cpi->common.full_pixel)
|
|
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
|
|
|
|
#ifdef SPEEDSTATS
|
|
frames_at_speed[cpi->Speed]++;
|
|
#endif
|
|
}
|
|
#undef GOOD
|
|
#undef RT
|
|
|
|
static void alloc_raw_frame_buffers(VP8_COMP *cpi)
|
|
{
|
|
int width = (cpi->oxcf.Width + 15) & ~15;
|
|
int height = (cpi->oxcf.Height + 15) & ~15;
|
|
|
|
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
|
|
cpi->oxcf.lag_in_frames);
|
|
if(!cpi->lookahead)
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate lag buffers");
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer,
|
|
width, height, VP8BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate altref buffer");
|
|
|
|
#endif
|
|
}
|
|
|
|
static int vp8_alloc_partition_data(VP8_COMP *cpi)
|
|
{
|
|
vpx_free(cpi->mb.pip);
|
|
|
|
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
|
|
(cpi->common.mb_rows + 1),
|
|
sizeof(PARTITION_INFO));
|
|
if(!cpi->mb.pip)
|
|
return 1;
|
|
|
|
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vp8_alloc_compressor_data(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = & cpi->common;
|
|
|
|
int width = cm->Width;
|
|
int height = cm->Height;
|
|
|
|
if (vp8_alloc_frame_buffers(cm, width, height))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffers");
|
|
|
|
if (vp8_alloc_partition_data(cpi))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate partition data");
|
|
|
|
|
|
if ((width & 0xf) != 0)
|
|
width += 16 - (width & 0xf);
|
|
|
|
if ((height & 0xf) != 0)
|
|
height += 16 - (height & 0xf);
|
|
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame,
|
|
width, height, VP8BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate last frame buffer");
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source,
|
|
width, height, VP8BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled source buffer");
|
|
|
|
|
|
vpx_free(cpi->tok);
|
|
|
|
{
|
|
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
|
|
|
|
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
|
|
}
|
|
|
|
// Data used for real time vc mode to see if gf needs refreshing
|
|
cpi->inter_zz_count = 0;
|
|
cpi->gf_bad_count = 0;
|
|
cpi->gf_update_recommended = 0;
|
|
|
|
|
|
// Structures used to minitor GF usage
|
|
vpx_free(cpi->gf_active_flags);
|
|
CHECK_MEM_ERROR(cpi->gf_active_flags,
|
|
vpx_calloc(1, cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
vpx_free(cpi->mb_activity_map);
|
|
CHECK_MEM_ERROR(cpi->mb_activity_map,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cm->mb_rows * cm->mb_cols));
|
|
|
|
vpx_free(cpi->mb_norm_activity_map);
|
|
CHECK_MEM_ERROR(cpi->mb_norm_activity_map,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cm->mb_rows * cm->mb_cols));
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (width < 640)
|
|
cpi->mt_sync_range = 1;
|
|
else if (width <= 1280)
|
|
cpi->mt_sync_range = 4;
|
|
else if (width <= 2560)
|
|
cpi->mt_sync_range = 8;
|
|
else
|
|
cpi->mt_sync_range = 16;
|
|
#endif
|
|
|
|
vpx_free(cpi->tplist);
|
|
|
|
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cpi->common.mb_rows));
|
|
}
|
|
|
|
|
|
// Quant MOD
|
|
static const int q_trans[] =
|
|
{
|
|
0, 1, 2, 3, 4, 5, 7, 8,
|
|
9, 10, 12, 13, 15, 17, 18, 19,
|
|
20, 21, 23, 24, 25, 26, 27, 28,
|
|
29, 30, 31, 33, 35, 37, 39, 41,
|
|
43, 45, 47, 49, 51, 53, 55, 57,
|
|
59, 61, 64, 67, 70, 73, 76, 79,
|
|
82, 85, 88, 91, 94, 97, 100, 103,
|
|
106, 109, 112, 115, 118, 121, 124, 127,
|
|
};
|
|
|
|
int vp8_reverse_trans(int x)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 64; i++)
|
|
if (q_trans[i] >= x)
|
|
return i;
|
|
|
|
return 63;
|
|
};
|
|
void vp8_new_frame_rate(VP8_COMP *cpi, double framerate)
|
|
{
|
|
if(framerate < .1)
|
|
framerate = 30;
|
|
|
|
cpi->frame_rate = framerate;
|
|
cpi->output_frame_rate = framerate;
|
|
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth /
|
|
cpi->output_frame_rate);
|
|
cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth;
|
|
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth *
|
|
cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
// Set Maximum gf/arf interval
|
|
cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2);
|
|
|
|
if(cpi->max_gf_interval < 12)
|
|
cpi->max_gf_interval = 12;
|
|
|
|
// Extended interval for genuinely static scenes
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
|
|
|
|
// Special conditions when altr ref frame enabled in lagged compress mode
|
|
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames)
|
|
{
|
|
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
|
|
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
}
|
|
|
|
if ( cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval )
|
|
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
|
|
}
|
|
|
|
|
|
static int
|
|
rescale(int val, int num, int denom)
|
|
{
|
|
int64_t llnum = num;
|
|
int64_t llden = denom;
|
|
int64_t llval = val;
|
|
|
|
return llval * llnum / llden;
|
|
}
|
|
|
|
|
|
static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
cpi->auto_gold = 1;
|
|
cpi->auto_adjust_gold_quantizer = 1;
|
|
cpi->goldfreq = 7;
|
|
|
|
cm->version = oxcf->Version;
|
|
vp8_setup_version(cm);
|
|
|
|
/* frame rate is not available on the first frame, as it's derived from
|
|
* the observed timestamps. The actual value used here doesn't matter
|
|
* too much, as it will adapt quickly. If the reciprocal of the timebase
|
|
* seems like a reasonable framerate, then use that as a guess, otherwise
|
|
* use 30.
|
|
*/
|
|
cpi->frame_rate = (double)(oxcf->timebase.den) /
|
|
(double)(oxcf->timebase.num);
|
|
|
|
if (cpi->frame_rate > 180)
|
|
cpi->frame_rate = 30;
|
|
|
|
cpi->ref_frame_rate = cpi->frame_rate;
|
|
|
|
// change includes all joint functionality
|
|
vp8_change_config(cpi, oxcf);
|
|
|
|
// Initialize active best and worst q and average q values.
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
|
|
// Initialise the starting buffer levels
|
|
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
|
|
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
|
|
|
|
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
|
|
cpi->total_actual_bits = 0;
|
|
cpi->total_target_vs_actual = 0;
|
|
|
|
// Temporal scalabilty
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
unsigned int i;
|
|
double prev_layer_frame_rate=0;
|
|
|
|
for (i=0; i<cpi->oxcf.number_of_layers; i++)
|
|
{
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
|
|
// Layer configuration
|
|
lc->frame_rate =
|
|
cpi->output_frame_rate / cpi->oxcf.rate_decimator[i];
|
|
lc->target_bandwidth = cpi->oxcf.target_bitrate[i] * 1000;
|
|
|
|
lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level;
|
|
lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level;
|
|
lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size;
|
|
|
|
lc->starting_buffer_level =
|
|
rescale(oxcf->starting_buffer_level,
|
|
lc->target_bandwidth, 1000);
|
|
|
|
if (oxcf->optimal_buffer_level == 0)
|
|
lc->optimal_buffer_level = lc->target_bandwidth / 8;
|
|
else
|
|
lc->optimal_buffer_level =
|
|
rescale(oxcf->optimal_buffer_level,
|
|
lc->target_bandwidth, 1000);
|
|
|
|
if (oxcf->maximum_buffer_size == 0)
|
|
lc->maximum_buffer_size = lc->target_bandwidth / 8;
|
|
else
|
|
lc->maximum_buffer_size =
|
|
rescale(oxcf->maximum_buffer_size,
|
|
lc->target_bandwidth, 1000);
|
|
|
|
// Work out the average size of a frame within this layer
|
|
if (i > 0)
|
|
lc->avg_frame_size_for_layer = (cpi->oxcf.target_bitrate[i] -
|
|
cpi->oxcf.target_bitrate[i-1]) * 1000 /
|
|
(lc->frame_rate - prev_layer_frame_rate);
|
|
|
|
lc->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
lc->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
|
|
lc->buffer_level = lc->starting_buffer_level;
|
|
lc->bits_off_target = lc->starting_buffer_level;
|
|
|
|
lc->total_actual_bits = 0;
|
|
lc->ni_av_qi = 0;
|
|
lc->ni_tot_qi = 0;
|
|
lc->ni_frames = 0;
|
|
lc->rate_correction_factor = 1.0;
|
|
lc->key_frame_rate_correction_factor = 1.0;
|
|
lc->gf_rate_correction_factor = 1.0;
|
|
lc->inter_frame_target = 0.0;
|
|
|
|
prev_layer_frame_rate = lc->frame_rate;
|
|
}
|
|
}
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
{
|
|
int i;
|
|
|
|
cpi->fixed_divide[0] = 0;
|
|
|
|
for (i = 1; i < 512; i++)
|
|
cpi->fixed_divide[i] = 0x80000 / i;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void update_layer_contexts (VP8_COMP *cpi)
|
|
{
|
|
VP8_CONFIG *oxcf = &cpi->oxcf;
|
|
|
|
/* Update snapshots of the layer contexts to reflect new parameters */
|
|
if (oxcf->number_of_layers > 1)
|
|
{
|
|
unsigned int i;
|
|
double prev_layer_frame_rate=0;
|
|
|
|
for (i=0; i<oxcf->number_of_layers; i++)
|
|
{
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
|
|
lc->frame_rate =
|
|
cpi->ref_frame_rate / oxcf->rate_decimator[i];
|
|
lc->target_bandwidth = oxcf->target_bitrate[i] * 1000;
|
|
|
|
lc->starting_buffer_level = rescale(
|
|
oxcf->starting_buffer_level_in_ms,
|
|
lc->target_bandwidth, 1000);
|
|
|
|
if (oxcf->optimal_buffer_level == 0)
|
|
lc->optimal_buffer_level = lc->target_bandwidth / 8;
|
|
else
|
|
lc->optimal_buffer_level = rescale(
|
|
oxcf->optimal_buffer_level_in_ms,
|
|
lc->target_bandwidth, 1000);
|
|
|
|
if (oxcf->maximum_buffer_size == 0)
|
|
lc->maximum_buffer_size = lc->target_bandwidth / 8;
|
|
else
|
|
lc->maximum_buffer_size = rescale(
|
|
oxcf->maximum_buffer_size_in_ms,
|
|
lc->target_bandwidth, 1000);
|
|
|
|
// Work out the average size of a frame within this layer
|
|
if (i > 0)
|
|
lc->avg_frame_size_for_layer = (oxcf->target_bitrate[i] -
|
|
oxcf->target_bitrate[i-1]) * 1000 /
|
|
(lc->frame_rate - prev_layer_frame_rate);
|
|
|
|
lc->active_worst_quality = oxcf->worst_allowed_q;
|
|
lc->active_best_quality = oxcf->best_allowed_q;
|
|
lc->avg_frame_qindex = oxcf->worst_allowed_q;
|
|
|
|
prev_layer_frame_rate = lc->frame_rate;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (!oxcf)
|
|
return;
|
|
|
|
if (cm->version != oxcf->Version)
|
|
{
|
|
cm->version = oxcf->Version;
|
|
vp8_setup_version(cm);
|
|
}
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
switch (cpi->oxcf.Mode)
|
|
{
|
|
|
|
case MODE_REALTIME:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 2;
|
|
|
|
if (cpi->oxcf.cpu_used < -16)
|
|
{
|
|
cpi->oxcf.cpu_used = -16;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 16)
|
|
cpi->oxcf.cpu_used = 16;
|
|
|
|
break;
|
|
|
|
case MODE_GOODQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5)
|
|
{
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
|
|
case MODE_BESTQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
|
|
case MODE_FIRSTPASS:
|
|
cpi->pass = 1;
|
|
cpi->compressor_speed = 1;
|
|
break;
|
|
case MODE_SECONDPASS:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5)
|
|
{
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
case MODE_SECONDPASS_BEST:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
}
|
|
|
|
if (cpi->pass == 0)
|
|
cpi->auto_worst_q = 1;
|
|
|
|
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
|
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
|
|
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
|
|
|
|
if (oxcf->fixed_q >= 0)
|
|
{
|
|
if (oxcf->worst_allowed_q < 0)
|
|
cpi->oxcf.fixed_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
|
|
|
|
if (oxcf->alt_q < 0)
|
|
cpi->oxcf.alt_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
|
|
|
|
if (oxcf->key_q < 0)
|
|
cpi->oxcf.key_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.key_q = q_trans[oxcf->key_q];
|
|
|
|
if (oxcf->gold_q < 0)
|
|
cpi->oxcf.gold_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
|
|
|
|
}
|
|
|
|
cpi->baseline_gf_interval =
|
|
cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
|
|
|
|
//cpi->use_golden_frame_only = 0;
|
|
//cpi->use_last_frame_only = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->refresh_entropy_probs = 1;
|
|
|
|
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3)
|
|
cm->multi_token_partition =
|
|
(TOKEN_PARTITION) cpi->oxcf.token_partitions;
|
|
|
|
setup_features(cpi);
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++)
|
|
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
|
|
}
|
|
|
|
// At the moment the first order values may not be > MAXQ
|
|
if (cpi->oxcf.fixed_q > MAXQ)
|
|
cpi->oxcf.fixed_q = MAXQ;
|
|
|
|
// local file playback mode == really big buffer
|
|
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
|
|
{
|
|
cpi->oxcf.starting_buffer_level = 60000;
|
|
cpi->oxcf.optimal_buffer_level = 60000;
|
|
cpi->oxcf.maximum_buffer_size = 240000;
|
|
cpi->oxcf.starting_buffer_level_in_ms = 60000;
|
|
cpi->oxcf.optimal_buffer_level_in_ms = 60000;
|
|
cpi->oxcf.maximum_buffer_size_in_ms = 240000;
|
|
}
|
|
|
|
// Convert target bandwidth from Kbit/s to Bit/s
|
|
cpi->oxcf.target_bandwidth *= 1000;
|
|
|
|
cpi->oxcf.starting_buffer_level =
|
|
rescale(cpi->oxcf.starting_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
// Set or reset optimal and maximum buffer levels.
|
|
if (cpi->oxcf.optimal_buffer_level == 0)
|
|
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.optimal_buffer_level =
|
|
rescale(cpi->oxcf.optimal_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
if (cpi->oxcf.maximum_buffer_size == 0)
|
|
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.maximum_buffer_size =
|
|
rescale(cpi->oxcf.maximum_buffer_size,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
// Set up frame rate and related parameters rate control values.
|
|
vp8_new_frame_rate(cpi, cpi->frame_rate);
|
|
|
|
// Set absolute upper and lower quality limits
|
|
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->best_quality = cpi->oxcf.best_allowed_q;
|
|
|
|
// active values should only be modified if out of new range
|
|
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q)
|
|
{
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
}
|
|
// less likely
|
|
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q)
|
|
{
|
|
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
|
|
}
|
|
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q)
|
|
{
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
}
|
|
// less likely
|
|
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q)
|
|
{
|
|
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
|
|
}
|
|
|
|
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
|
|
|
|
cpi->cq_target_quality = cpi->oxcf.cq_level;
|
|
|
|
// Only allow dropped frames in buffered mode
|
|
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
|
|
|
|
if (!cm->use_bilinear_mc_filter)
|
|
cm->mcomp_filter_type = SIXTAP;
|
|
else
|
|
cm->mcomp_filter_type = BILINEAR;
|
|
|
|
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
|
|
cm->Width = cpi->oxcf.Width;
|
|
cm->Height = cpi->oxcf.Height;
|
|
|
|
cm->horiz_scale = cpi->horiz_scale;
|
|
cm->vert_scale = cpi->vert_scale;
|
|
|
|
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
|
|
if (cpi->oxcf.Sharpness > 7)
|
|
cpi->oxcf.Sharpness = 7;
|
|
|
|
cm->sharpness_level = cpi->oxcf.Sharpness;
|
|
|
|
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
|
|
{
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
// always go to the next whole number
|
|
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
|
|
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
|
|
}
|
|
|
|
if (((cm->Width + 15) & 0xfffffff0) !=
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width ||
|
|
((cm->Height + 15) & 0xfffffff0) !=
|
|
cm->yv12_fb[cm->lst_fb_idx].y_height ||
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
|
|
{
|
|
alloc_raw_frame_buffers(cpi);
|
|
vp8_alloc_compressor_data(cpi);
|
|
}
|
|
|
|
if (cpi->oxcf.fixed_q >= 0)
|
|
{
|
|
cpi->last_q[0] = cpi->oxcf.fixed_q;
|
|
cpi->last_q[1] = cpi->oxcf.fixed_q;
|
|
}
|
|
|
|
cpi->Speed = cpi->oxcf.cpu_used;
|
|
|
|
// force to allowlag to 0 if lag_in_frames is 0;
|
|
if (cpi->oxcf.lag_in_frames == 0)
|
|
{
|
|
cpi->oxcf.allow_lag = 0;
|
|
}
|
|
// Limit on lag buffers as these are not currently dynamically allocated
|
|
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
|
|
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
|
|
|
|
// YX Temp
|
|
cpi->alt_ref_source = NULL;
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
|
|
|
|
#if 0
|
|
// Experimental RD Code
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_frame_distortion = 0;
|
|
#endif
|
|
|
|
}
|
|
|
|
#define M_LOG2_E 0.693147180559945309417
|
|
#define log2f(x) (log (x) / (float) M_LOG2_E)
|
|
static void cal_mvsadcosts(int *mvsadcost[2])
|
|
{
|
|
int i = 1;
|
|
|
|
mvsadcost [0] [0] = 300;
|
|
mvsadcost [1] [0] = 300;
|
|
|
|
do
|
|
{
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost [0][i] = (int) z;
|
|
mvsadcost [1][i] = (int) z;
|
|
mvsadcost [0][-i] = (int) z;
|
|
mvsadcost [1][-i] = (int) z;
|
|
}
|
|
while (++i <= mvfp_max);
|
|
}
|
|
|
|
struct VP8_COMP* vp8_create_compressor(VP8_CONFIG *oxcf)
|
|
{
|
|
int i;
|
|
|
|
VP8_COMP *cpi;
|
|
VP8_COMMON *cm;
|
|
|
|
cpi = vpx_memalign(32, sizeof(VP8_COMP));
|
|
// Check that the CPI instance is valid
|
|
if (!cpi)
|
|
return 0;
|
|
|
|
cm = &cpi->common;
|
|
|
|
vpx_memset(cpi, 0, sizeof(VP8_COMP));
|
|
|
|
if (setjmp(cm->error.jmp))
|
|
{
|
|
cpi->common.error.setjmp = 0;
|
|
vp8_remove_compressor(&cpi);
|
|
return 0;
|
|
}
|
|
|
|
cpi->common.error.setjmp = 1;
|
|
|
|
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
|
|
|
|
vp8_create_common(&cpi->common);
|
|
|
|
init_config(cpi, oxcf);
|
|
|
|
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob));
|
|
cpi->common.current_video_frame = 0;
|
|
cpi->kf_overspend_bits = 0;
|
|
cpi->kf_bitrate_adjustment = 0;
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->gf_overspend_bits = 0;
|
|
cpi->non_gf_bitrate_adjustment = 0;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
cpi->prob_intra_coded = 63;
|
|
|
|
// Prime the recent reference frame usage counters.
|
|
// Hereafter they will be maintained as a sort of moving average
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
|
|
// Set reference frame sign bias for ALTREF frame to 1 (for now)
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
|
|
cpi->twopass.gf_decay_rate = 0;
|
|
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->gold_is_last = 0 ;
|
|
cpi->alt_is_last = 0 ;
|
|
cpi->gold_is_alt = 0 ;
|
|
|
|
// allocate memory for storing last frame's MVs for MV prediction.
|
|
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int_mv)));
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int)));
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int)));
|
|
|
|
// Create the encoder segmentation map and set all entries to 0
|
|
CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
vpx_memset(cpi->active_map , 1, (cpi->common.mb_rows * cpi->common.mb_cols));
|
|
cpi->active_map_enabled = 0;
|
|
|
|
#if 0
|
|
// Experimental code for lagged and one pass
|
|
// Initialise one_pass GF frames stats
|
|
// Update stats used for GF selection
|
|
if (cpi->pass == 0)
|
|
{
|
|
cpi->one_pass_frame_index = 0;
|
|
|
|
for (i = 0; i < MAX_LAG_BUFFERS; i++)
|
|
{
|
|
cpi->one_pass_frame_stats[i].frames_so_far = 0;
|
|
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Should we use the cyclic refresh method.
|
|
// Currently this is tied to error resilliant mode
|
|
cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode;
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 40;
|
|
cpi->cyclic_refresh_mode_index = 0;
|
|
cpi->cyclic_refresh_q = 32;
|
|
|
|
if (cpi->cyclic_refresh_mode_enabled)
|
|
{
|
|
CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
|
|
}
|
|
else
|
|
cpi->cyclic_refresh_map = (signed char *) NULL;
|
|
|
|
// Test function for segmentation
|
|
//segmentation_test_function( cpi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
init_context_counters();
|
|
#endif
|
|
|
|
/*Initialize the feed-forward activity masking.*/
|
|
cpi->activity_avg = 90<<12;
|
|
|
|
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
|
|
cpi->key_frame_frequency = cpi->oxcf.key_freq;
|
|
cpi->this_key_frame_forced = 0;
|
|
cpi->next_key_frame_forced = 0;
|
|
|
|
cpi->source_alt_ref_pending = 0;
|
|
cpi->source_alt_ref_active = 0;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
|
|
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->b_calculate_ssimg = 0;
|
|
|
|
cpi->count = 0;
|
|
cpi->bytes = 0;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
cpi->total_sq_error = 0.0;
|
|
cpi->total_sq_error2 = 0.0;
|
|
cpi->total_y = 0.0;
|
|
cpi->total_u = 0.0;
|
|
cpi->total_v = 0.0;
|
|
cpi->total = 0.0;
|
|
cpi->totalp_y = 0.0;
|
|
cpi->totalp_u = 0.0;
|
|
cpi->totalp_v = 0.0;
|
|
cpi->totalp = 0.0;
|
|
cpi->tot_recode_hits = 0;
|
|
cpi->summed_quality = 0;
|
|
cpi->summed_weights = 0;
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
cpi->total_ssimg_y = 0;
|
|
cpi->total_ssimg_u = 0;
|
|
cpi->total_ssimg_v = 0;
|
|
cpi->total_ssimg_all = 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef LLONG_MAX
|
|
#define LLONG_MAX 9223372036854775807LL
|
|
#endif
|
|
cpi->first_time_stamp_ever = LLONG_MAX;
|
|
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->key_frame_count = 1;
|
|
|
|
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
|
|
cpi->ni_tot_qi = 0;
|
|
cpi->ni_frames = 0;
|
|
cpi->total_byte_count = 0;
|
|
|
|
cpi->drop_frame = 0;
|
|
cpi->drop_count = 0;
|
|
cpi->max_drop_count = 0;
|
|
cpi->max_consec_dropped_frames = 4;
|
|
|
|
cpi->rate_correction_factor = 1.0;
|
|
cpi->key_frame_rate_correction_factor = 1.0;
|
|
cpi->gf_rate_correction_factor = 1.0;
|
|
cpi->twopass.est_max_qcorrection_factor = 1.0;
|
|
|
|
cpi->mb.mvcost[0] = &cpi->mb.mvcosts[0][mv_max+1];
|
|
cpi->mb.mvcost[1] = &cpi->mb.mvcosts[1][mv_max+1];
|
|
cpi->mb.mvsadcost[0] = &cpi->mb.mvsadcosts[0][mvfp_max+1];
|
|
cpi->mb.mvsadcost[1] = &cpi->mb.mvsadcosts[1][mvfp_max+1];
|
|
|
|
cal_mvsadcosts(cpi->mb.mvsadcost);
|
|
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
|
|
{
|
|
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
|
|
}
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
yuv_file = fopen("bd.yuv", "ab");
|
|
#endif
|
|
|
|
#if 0
|
|
framepsnr = fopen("framepsnr.stt", "a");
|
|
kf_list = fopen("kf_list.stt", "w");
|
|
#endif
|
|
|
|
cpi->output_pkt_list = oxcf->output_pkt_list;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 1)
|
|
{
|
|
vp8_init_first_pass(cpi);
|
|
}
|
|
else if (cpi->pass == 2)
|
|
{
|
|
size_t packet_sz = sizeof(FIRSTPASS_STATS);
|
|
int packets = oxcf->two_pass_stats_in.sz / packet_sz;
|
|
|
|
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
|
|
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
|
|
cpi->twopass.stats_in_end = (void*)((char *)cpi->twopass.stats_in
|
|
+ (packets - 1) * packet_sz);
|
|
vp8_init_second_pass(cpi);
|
|
}
|
|
|
|
#endif
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
cpi->cpu_freq = 0; //vp8_get_processor_freq();
|
|
cpi->avg_encode_time = 0;
|
|
cpi->avg_pick_mode_time = 0;
|
|
}
|
|
|
|
vp8_set_speed_features(cpi);
|
|
|
|
// Set starting values of RD threshold multipliers (128 = *1)
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
{
|
|
cpi->rd_thresh_mult[i] = 128;
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
init_mv_ref_counts();
|
|
#endif
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
vp8cx_create_encoder_threads(cpi);
|
|
#endif
|
|
|
|
cpi->fn_ptr[BLOCK_16X16].sdf = vp8_sad16x16;
|
|
cpi->fn_ptr[BLOCK_16X16].vf = vp8_variance16x16;
|
|
cpi->fn_ptr[BLOCK_16X16].svf = vp8_sub_pixel_variance16x16;
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = vp8_variance_halfpixvar16x16_h;
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = vp8_variance_halfpixvar16x16_v;
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = vp8_variance_halfpixvar16x16_hv;
|
|
cpi->fn_ptr[BLOCK_16X16].sdx3f = vp8_sad16x16x3;
|
|
cpi->fn_ptr[BLOCK_16X16].sdx8f = vp8_sad16x16x8;
|
|
cpi->fn_ptr[BLOCK_16X16].sdx4df = vp8_sad16x16x4d;
|
|
|
|
cpi->fn_ptr[BLOCK_16X8].sdf = vp8_sad16x8;
|
|
cpi->fn_ptr[BLOCK_16X8].vf = vp8_variance16x8;
|
|
cpi->fn_ptr[BLOCK_16X8].svf = vp8_sub_pixel_variance16x8;
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].sdx3f = vp8_sad16x8x3;
|
|
cpi->fn_ptr[BLOCK_16X8].sdx8f = vp8_sad16x8x8;
|
|
cpi->fn_ptr[BLOCK_16X8].sdx4df = vp8_sad16x8x4d;
|
|
|
|
cpi->fn_ptr[BLOCK_8X16].sdf = vp8_sad8x16;
|
|
cpi->fn_ptr[BLOCK_8X16].vf = vp8_variance8x16;
|
|
cpi->fn_ptr[BLOCK_8X16].svf = vp8_sub_pixel_variance8x16;
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].sdx3f = vp8_sad8x16x3;
|
|
cpi->fn_ptr[BLOCK_8X16].sdx8f = vp8_sad8x16x8;
|
|
cpi->fn_ptr[BLOCK_8X16].sdx4df = vp8_sad8x16x4d;
|
|
|
|
cpi->fn_ptr[BLOCK_8X8].sdf = vp8_sad8x8;
|
|
cpi->fn_ptr[BLOCK_8X8].vf = vp8_variance8x8;
|
|
cpi->fn_ptr[BLOCK_8X8].svf = vp8_sub_pixel_variance8x8;
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].sdx3f = vp8_sad8x8x3;
|
|
cpi->fn_ptr[BLOCK_8X8].sdx8f = vp8_sad8x8x8;
|
|
cpi->fn_ptr[BLOCK_8X8].sdx4df = vp8_sad8x8x4d;
|
|
|
|
cpi->fn_ptr[BLOCK_4X4].sdf = vp8_sad4x4;
|
|
cpi->fn_ptr[BLOCK_4X4].vf = vp8_variance4x4;
|
|
cpi->fn_ptr[BLOCK_4X4].svf = vp8_sub_pixel_variance4x4;
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].sdx3f = vp8_sad4x4x3;
|
|
cpi->fn_ptr[BLOCK_4X4].sdx8f = vp8_sad4x4x8;
|
|
cpi->fn_ptr[BLOCK_4X4].sdx4df = vp8_sad4x4x4d;
|
|
|
|
#if ARCH_X86 || ARCH_X86_64
|
|
cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn;
|
|
cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn;
|
|
cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn;
|
|
cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn;
|
|
cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn;
|
|
#endif
|
|
|
|
cpi->full_search_sad = vp8_full_search_sad;
|
|
cpi->diamond_search_sad = vp8_diamond_search_sad;
|
|
cpi->refining_search_sad = vp8_refining_search_sad;
|
|
|
|
// make sure frame 1 is okay
|
|
cpi->error_bins[0] = cpi->common.MBs;
|
|
|
|
//vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later
|
|
//when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame.
|
|
vp8cx_init_quantizer(cpi);
|
|
|
|
vp8_loop_filter_init(cm);
|
|
|
|
cpi->common.error.setjmp = 0;
|
|
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
/* Calculate # of MBs in a row in lower-resolution level image. */
|
|
if (cpi->oxcf.mr_encoder_id > 0)
|
|
vp8_cal_low_res_mb_cols(cpi);
|
|
#endif
|
|
|
|
return cpi;
|
|
|
|
}
|
|
|
|
|
|
void vp8_remove_compressor(VP8_COMP **ptr)
|
|
{
|
|
VP8_COMP *cpi = *ptr;
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (cpi && (cpi->common.current_video_frame > 0))
|
|
{
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 2)
|
|
{
|
|
vp8_end_second_pass(cpi);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
print_context_counters();
|
|
print_tree_update_probs();
|
|
print_mode_context();
|
|
#endif
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("opsnr.stt", "a");
|
|
double time_encoded = (cpi->last_end_time_stamp_seen
|
|
- cpi->first_time_stamp_ever) / 10000000.000;
|
|
double total_encode_time = (cpi->time_receive_data +
|
|
cpi->time_compress_data) / 1000.000;
|
|
double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
YV12_BUFFER_CONFIG *lst_yv12 =
|
|
&cpi->common.yv12_fb[cpi->common.lst_fb_idx];
|
|
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
int i;
|
|
|
|
fprintf(f, "Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
|
|
"GLPsnrP\tVPXSSIM\t\n");
|
|
for (i=0; i<cpi->oxcf.number_of_layers; i++)
|
|
{
|
|
double dr = (double)cpi->bytes_in_layer[i] *
|
|
8.0 / 1000.0 / time_encoded;
|
|
double samples = 3.0 / 2 * cpi->frames_in_layer[i] *
|
|
lst_yv12->y_width * lst_yv12->y_height;
|
|
double total_psnr = vp8_mse2psnr(samples, 255.0,
|
|
cpi->total_error2[i]);
|
|
double total_psnr2 = vp8_mse2psnr(samples, 255.0,
|
|
cpi->total_error2_p[i]);
|
|
double total_ssim = 100 * pow(cpi->sum_ssim[i] /
|
|
cpi->sum_weights[i], 8.0);
|
|
|
|
fprintf(f, "%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
|
|
"%7.3f\t%7.3f\n",
|
|
i, dr,
|
|
cpi->sum_psnr[i] / cpi->frames_in_layer[i],
|
|
total_psnr,
|
|
cpi->sum_psnr_p[i] / cpi->frames_in_layer[i],
|
|
total_psnr2, total_ssim);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double samples = 3.0 / 2 * cpi->count *
|
|
lst_yv12->y_width * lst_yv12->y_height;
|
|
double total_psnr = vp8_mse2psnr(samples, 255.0,
|
|
cpi->total_sq_error);
|
|
double total_psnr2 = vp8_mse2psnr(samples, 255.0,
|
|
cpi->total_sq_error2);
|
|
double total_ssim = 100 * pow(cpi->summed_quality /
|
|
cpi->summed_weights, 8.0);
|
|
|
|
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
|
|
"GLPsnrP\tVPXSSIM\t Time(us)\n");
|
|
fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
|
|
"%7.3f\t%8.0f\n",
|
|
dr, cpi->total / cpi->count, total_psnr,
|
|
cpi->totalp / cpi->count, total_psnr2,
|
|
total_ssim, total_encode_time);
|
|
}
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
int i;
|
|
|
|
fprintf(f, "Layer\tBitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t"
|
|
"Time(us)\n");
|
|
for (i=0; i<cpi->oxcf.number_of_layers; i++)
|
|
{
|
|
double dr = (double)cpi->bytes_in_layer[i] *
|
|
8.0 / 1000.0 / time_encoded;
|
|
fprintf(f, "%5d\t%7.3f\t%6.4f\t"
|
|
"%6.4f\t%6.4f\t%6.4f\t%8.0f\n",
|
|
i, dr,
|
|
cpi->total_ssimg_y_in_layer[i] /
|
|
cpi->frames_in_layer[i],
|
|
cpi->total_ssimg_u_in_layer[i] /
|
|
cpi->frames_in_layer[i],
|
|
cpi->total_ssimg_v_in_layer[i] /
|
|
cpi->frames_in_layer[i],
|
|
cpi->total_ssimg_all_in_layer[i] /
|
|
cpi->frames_in_layer[i],
|
|
total_encode_time);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t"
|
|
"Time(us)\n");
|
|
fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
|
|
cpi->total_ssimg_y / cpi->count,
|
|
cpi->total_ssimg_u / cpi->count,
|
|
cpi->total_ssimg_v / cpi->count,
|
|
cpi->total_ssimg_all / cpi->count, total_encode_time);
|
|
}
|
|
}
|
|
|
|
fclose(f);
|
|
#if 0
|
|
f = fopen("qskip.stt", "a");
|
|
fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
|
|
fclose(f);
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef SPEEDSTATS
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
int i;
|
|
FILE *f = fopen("cxspeed.stt", "a");
|
|
cnt_pm /= cpi->common.MBs;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
fprintf(f, "%5d", frames_at_speed[i]);
|
|
|
|
fprintf(f, "\n");
|
|
//fprintf(f, "%10d PM %10d %10d %10d EF %10d %10d %10d\n", cpi->Speed, cpi->avg_pick_mode_time, (tot_pm/cnt_pm), cnt_pm, cpi->avg_encode_time, 0, 0);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef MODE_STATS
|
|
{
|
|
extern int count_mb_seg[4];
|
|
FILE *f = fopen("modes.stt", "a");
|
|
double dr = (double)cpi->frame_rate * (double)bytes * (double)8 / (double)count / (double)1000 ;
|
|
fprintf(f, "intra_mode in Intra Frames:\n");
|
|
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]);
|
|
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]);
|
|
fprintf(f, "B: ");
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++)
|
|
fprintf(f, "%8d, ", b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
|
|
}
|
|
|
|
fprintf(f, "Modes in Inter Frames:\n");
|
|
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
|
|
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4],
|
|
inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]);
|
|
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
|
|
fprintf(f, "B: ");
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 15; i++)
|
|
fprintf(f, "%8d, ", inter_b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
|
|
}
|
|
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
|
|
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
|
|
|
|
|
|
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
{
|
|
int i, j, k;
|
|
FILE *fmode = fopen("modecontext.c", "w");
|
|
|
|
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
|
|
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
|
|
fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
|
|
|
|
for (i = 0; i < 10; i++)
|
|
{
|
|
|
|
fprintf(fmode, " { //Above Mode : %d\n", i);
|
|
|
|
for (j = 0; j < 10; j++)
|
|
{
|
|
|
|
fprintf(fmode, " {");
|
|
|
|
for (k = 0; k < 10; k++)
|
|
{
|
|
if (!intra_mode_stats[i][j][k])
|
|
fprintf(fmode, " %5d, ", 1);
|
|
else
|
|
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
|
|
}
|
|
|
|
fprintf(fmode, "}, // left_mode %d\n", j);
|
|
|
|
}
|
|
|
|
fprintf(fmode, " },\n");
|
|
|
|
}
|
|
|
|
fprintf(fmode, "};\n");
|
|
fclose(fmode);
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
|
|
if (0)
|
|
{
|
|
int i;
|
|
FILE *f = fopen("tokenbits.stt", "a");
|
|
|
|
for (i = 0; i < 28; i++)
|
|
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
|
|
|
|
fprintf(f, "\n");
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
{
|
|
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
|
|
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
|
|
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
vp8cx_remove_encoder_threads(cpi);
|
|
#endif
|
|
|
|
dealloc_compressor_data(cpi);
|
|
vpx_free(cpi->mb.ss);
|
|
vpx_free(cpi->tok);
|
|
vpx_free(cpi->cyclic_refresh_map);
|
|
|
|
vp8_remove_common(&cpi->common);
|
|
vpx_free(cpi);
|
|
*ptr = 0;
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
fclose(yuv_file);
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
if (keyfile)
|
|
fclose(keyfile);
|
|
|
|
if (framepsnr)
|
|
fclose(framepsnr);
|
|
|
|
if (kf_list)
|
|
fclose(kf_list);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
|
|
unsigned char *recon, int recon_stride,
|
|
unsigned int cols, unsigned int rows)
|
|
{
|
|
unsigned int row, col;
|
|
uint64_t total_sse = 0;
|
|
int diff;
|
|
|
|
for (row = 0; row + 16 <= rows; row += 16)
|
|
{
|
|
for (col = 0; col + 16 <= cols; col += 16)
|
|
{
|
|
unsigned int sse;
|
|
|
|
vp8_mse16x16(orig + col, orig_stride,
|
|
recon + col, recon_stride,
|
|
&sse);
|
|
total_sse += sse;
|
|
}
|
|
|
|
/* Handle odd-sized width */
|
|
if (col < cols)
|
|
{
|
|
unsigned int border_row, border_col;
|
|
unsigned char *border_orig = orig;
|
|
unsigned char *border_recon = recon;
|
|
|
|
for (border_row = 0; border_row < 16; border_row++)
|
|
{
|
|
for (border_col = col; border_col < cols; border_col++)
|
|
{
|
|
diff = border_orig[border_col] - border_recon[border_col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
border_orig += orig_stride;
|
|
border_recon += recon_stride;
|
|
}
|
|
}
|
|
|
|
orig += orig_stride * 16;
|
|
recon += recon_stride * 16;
|
|
}
|
|
|
|
/* Handle odd-sized height */
|
|
for (; row < rows; row++)
|
|
{
|
|
for (col = 0; col < cols; col++)
|
|
{
|
|
diff = orig[col] - recon[col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
orig += orig_stride;
|
|
recon += recon_stride;
|
|
}
|
|
|
|
vp8_clear_system_state();
|
|
return total_sse;
|
|
}
|
|
|
|
|
|
static void generate_psnr_packet(VP8_COMP *cpi)
|
|
{
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
struct vpx_codec_cx_pkt pkt;
|
|
uint64_t sse;
|
|
int i;
|
|
unsigned int width = cpi->common.Width;
|
|
unsigned int height = cpi->common.Height;
|
|
|
|
pkt.kind = VPX_CODEC_PSNR_PKT;
|
|
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] = sse;
|
|
pkt.data.psnr.sse[1] = sse;
|
|
pkt.data.psnr.samples[0] = width * height;
|
|
pkt.data.psnr.samples[1] = width * height;
|
|
|
|
width = (width + 1) / 2;
|
|
height = (height + 1) / 2;
|
|
|
|
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[2] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[2] = width * height;
|
|
|
|
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[3] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[3] = width * height;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0,
|
|
pkt.data.psnr.sse[i]);
|
|
|
|
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
|
|
}
|
|
|
|
|
|
int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags)
|
|
{
|
|
if (ref_frame_flags > 7)
|
|
return -1 ;
|
|
|
|
cpi->ref_frame_flags = ref_frame_flags;
|
|
return 0;
|
|
}
|
|
int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags)
|
|
{
|
|
if (ref_frame_flags > 7)
|
|
return -1 ;
|
|
|
|
cpi->common.refresh_golden_frame = 0;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
cpi->common.refresh_last_frame = 0;
|
|
|
|
if (ref_frame_flags & VP8_LAST_FLAG)
|
|
cpi->common.refresh_last_frame = 1;
|
|
|
|
if (ref_frame_flags & VP8_GOLD_FLAG)
|
|
cpi->common.refresh_golden_frame = 1;
|
|
|
|
if (ref_frame_flags & VP8_ALT_FLAG)
|
|
cpi->common.refresh_alt_ref_frame = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_get_reference(VP8_COMP *cpi, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP8_LAST_FLAG)
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
else if (ref_frame_flag == VP8_GOLD_FLAG)
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
else if (ref_frame_flag == VP8_ALT_FLAG)
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd);
|
|
|
|
return 0;
|
|
}
|
|
int vp8_set_reference(VP8_COMP *cpi, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP8_LAST_FLAG)
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
else if (ref_frame_flag == VP8_GOLD_FLAG)
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
else if (ref_frame_flag == VP8_ALT_FLAG)
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]);
|
|
|
|
return 0;
|
|
}
|
|
int vp8_update_entropy(VP8_COMP *cpi, int update)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
cm->refresh_entropy_probs = update;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if OUTPUT_YUV_SRC
|
|
void vp8_write_yuv_frame(const char *name, YV12_BUFFER_CONFIG *s)
|
|
{
|
|
FILE *yuv_file = fopen(name, "ab");
|
|
unsigned char *src = s->y_buffer;
|
|
int h = s->y_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->y_width, 1, yuv_file);
|
|
src += s->y_stride;
|
|
}
|
|
while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = s->uv_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
}
|
|
while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = s->uv_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
}
|
|
while (--h);
|
|
|
|
fclose(yuv_file);
|
|
}
|
|
#endif
|
|
|
|
|
|
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// are we resizing the image
|
|
if (cm->horiz_scale != 0 || cm->vert_scale != 0)
|
|
{
|
|
#if CONFIG_SPATIAL_RESAMPLING
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
int tmp_height;
|
|
|
|
if (cm->vert_scale == 3)
|
|
tmp_height = 9;
|
|
else
|
|
tmp_height = 11;
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
vp8_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
|
|
tmp_height, hs, hr, vs, vr, 0);
|
|
|
|
vp8_yv12_extend_frame_borders(&cpi->scaled_source);
|
|
cpi->Source = &cpi->scaled_source;
|
|
#endif
|
|
}
|
|
else
|
|
cpi->Source = sd;
|
|
}
|
|
|
|
|
|
static void resize_key_frame(VP8_COMP *cpi)
|
|
{
|
|
#if CONFIG_SPATIAL_RESAMPLING
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Do we need to apply resampling for one pass cbr.
|
|
// In one pass this is more limited than in two pass cbr
|
|
// The test and any change is only made one per key frame sequence
|
|
if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER))
|
|
{
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
int new_width, new_height;
|
|
|
|
// If we are below the resample DOWN watermark then scale down a notch.
|
|
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))
|
|
{
|
|
cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
|
|
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
|
|
}
|
|
// Should we now start scaling back up
|
|
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))
|
|
{
|
|
cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
|
|
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
|
|
}
|
|
|
|
// Get the new hieght and width
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
|
|
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
|
|
|
|
// If the image size has changed we need to reallocate the buffers
|
|
// and resample the source image
|
|
if ((cm->Width != new_width) || (cm->Height != new_height))
|
|
{
|
|
cm->Width = new_width;
|
|
cm->Height = new_height;
|
|
vp8_alloc_compressor_data(cpi);
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
static void update_alt_ref_frame_stats(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Select an interval before next GF or altref
|
|
if (!cpi->auto_gold)
|
|
cpi->frames_till_gf_update_due = cpi->goldfreq;
|
|
|
|
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due)
|
|
{
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
// Set the bits per frame that we should try and recover in subsequent inter frames
|
|
// to account for the extra GF spend... note that his does not apply for GF updates
|
|
// that occur coincident with a key frame as the extra cost of key frames is dealt
|
|
// with elsewhere.
|
|
|
|
cpi->gf_overspend_bits += cpi->projected_frame_size;
|
|
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
|
|
}
|
|
|
|
// Update data structure that monitors level of reference to last GF
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cpi->common.frames_since_golden = 0;
|
|
|
|
// Clear the alternate reference update pending flag.
|
|
cpi->source_alt_ref_pending = 0;
|
|
|
|
// Set the alternate refernce frame active flag
|
|
cpi->source_alt_ref_active = 1;
|
|
|
|
|
|
}
|
|
static void update_golden_frame_stats(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Update the Golden frame usage counts.
|
|
if (cm->refresh_golden_frame)
|
|
{
|
|
// Select an interval before next GF
|
|
if (!cpi->auto_gold)
|
|
cpi->frames_till_gf_update_due = cpi->goldfreq;
|
|
|
|
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0))
|
|
{
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
// Set the bits per frame that we should try and recover in subsequent inter frames
|
|
// to account for the extra GF spend... note that his does not apply for GF updates
|
|
// that occur coincident with a key frame as the extra cost of key frames is dealt
|
|
// with elsewhere.
|
|
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active)
|
|
{
|
|
// Calcluate GF bits to be recovered
|
|
// Projected size - av frame bits available for inter frames for clip as a whole
|
|
cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target);
|
|
}
|
|
|
|
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
|
|
|
|
}
|
|
|
|
// Update data structure that monitors level of reference to last GF
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cm->refresh_golden_frame = 0;
|
|
cpi->common.frames_since_golden = 0;
|
|
|
|
//if ( cm->frame_type == KEY_FRAME )
|
|
//{
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
//}
|
|
//else
|
|
//{
|
|
// // Carry a potrtion of count over to begining of next gf sequence
|
|
// cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5;
|
|
//}
|
|
|
|
// ******** Fixed Q test code only ************
|
|
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
|
|
if (cpi->oxcf.fixed_q >= 0 &&
|
|
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->source_alt_ref_pending = 1;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
|
|
if (!cpi->source_alt_ref_pending)
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
}
|
|
else if (!cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
if (cpi->common.frames_till_alt_ref_frame)
|
|
cpi->common.frames_till_alt_ref_frame --;
|
|
|
|
cpi->common.frames_since_golden ++;
|
|
|
|
if (cpi->common.frames_since_golden > 1)
|
|
{
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function updates the reference frame probability estimates that
|
|
// will be used during mode selection
|
|
static void update_rd_ref_frame_probs(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
const int *const rfct = cpi->count_mb_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->prob_intra_coded = 255;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else if (!(rf_intra + rf_inter))
|
|
{
|
|
cpi->prob_intra_coded = 63;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
|
|
// update reference frame costs since we can do better than what we got last frame.
|
|
if (cpi->oxcf.number_of_layers == 1)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->prob_intra_coded += 40;
|
|
cpi->prob_last_coded = 200;
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
else if (cpi->common.frames_since_golden == 0)
|
|
{
|
|
cpi->prob_last_coded = 214;
|
|
}
|
|
else if (cpi->common.frames_since_golden == 1)
|
|
{
|
|
cpi->prob_last_coded = 192;
|
|
cpi->prob_gf_coded = 220;
|
|
}
|
|
else if (cpi->source_alt_ref_active)
|
|
{
|
|
cpi->prob_gf_coded -= 20;
|
|
|
|
if (cpi->prob_gf_coded < 10)
|
|
cpi->prob_gf_coded = 10;
|
|
}
|
|
if (!cpi->source_alt_ref_active)
|
|
cpi->prob_gf_coded = 255;
|
|
}
|
|
}
|
|
|
|
|
|
// 1 = key, 0 = inter
|
|
static int decide_key_frame(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int code_key_frame = 0;
|
|
|
|
cpi->kf_boost = 0;
|
|
|
|
if (cpi->Speed > 11)
|
|
return 0;
|
|
|
|
// Clear down mmx registers
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0))
|
|
{
|
|
double change = 1.0 * abs((int)(cpi->intra_error - cpi->last_intra_error)) / (1 + cpi->last_intra_error);
|
|
double change2 = 1.0 * abs((int)(cpi->prediction_error - cpi->last_prediction_error)) / (1 + cpi->last_prediction_error);
|
|
double minerror = cm->MBs * 256;
|
|
|
|
#if 0
|
|
|
|
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
|
|
&& cpi->prediction_error > minerror
|
|
&& (change > .25 || change2 > .25))
|
|
{
|
|
FILE *f = fopen("intra_inter.stt", "a");
|
|
|
|
if (cpi->prediction_error <= 0)
|
|
cpi->prediction_error = 1;
|
|
|
|
fprintf(f, "%d %d %d %d %14.4f\n",
|
|
cm->current_video_frame,
|
|
(int) cpi->prediction_error,
|
|
(int) cpi->intra_error,
|
|
(int)((10 * cpi->intra_error) / cpi->prediction_error),
|
|
change);
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
cpi->last_intra_error = cpi->intra_error;
|
|
cpi->last_prediction_error = cpi->prediction_error;
|
|
|
|
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
|
|
&& cpi->prediction_error > minerror
|
|
&& (change > .25 || change2 > .25))
|
|
{
|
|
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > cpi->last_frame_percent_intra + 3*/
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
// If the following are true we might as well code a key frame
|
|
if (((cpi->this_frame_percent_intra == 100) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
|
|
((cpi->this_frame_percent_intra > 95) &&
|
|
(cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5))))
|
|
{
|
|
code_key_frame = 1;
|
|
}
|
|
// in addition if the following are true and this is not a golden frame then code a key frame
|
|
// Note that on golden frames there often seems to be a pop in intra useage anyway hence this
|
|
// restriction is designed to prevent spurious key frames. The Intra pop needs to be investigated.
|
|
else if (((cpi->this_frame_percent_intra > 60) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) ||
|
|
((cpi->this_frame_percent_intra > 75) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) ||
|
|
((cpi->this_frame_percent_intra > 90) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10))))
|
|
{
|
|
if (!cm->refresh_golden_frame)
|
|
code_key_frame = 1;
|
|
}
|
|
|
|
return code_key_frame;
|
|
|
|
}
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
|
|
{
|
|
(void) size;
|
|
(void) dest;
|
|
(void) frame_flags;
|
|
vp8_set_quantizer(cpi, 26);
|
|
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
vp8_first_pass(cpi);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
|
|
{
|
|
|
|
// write the frame
|
|
FILE *yframe;
|
|
int i;
|
|
char filename[255];
|
|
|
|
sprintf(filename, "cx\\y%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->y_height; i++)
|
|
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\u%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\v%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
}
|
|
#endif
|
|
// return of 0 means drop frame
|
|
|
|
// Function to test for conditions that indeicate we should loop
|
|
// back and recode a frame.
|
|
static int recode_loop_test( VP8_COMP *cpi,
|
|
int high_limit, int low_limit,
|
|
int q, int maxq, int minq )
|
|
{
|
|
int force_recode = 0;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Is frame recode allowed at all
|
|
// Yes if either recode mode 1 is selected or mode two is selcted
|
|
// and the frame is a key frame. golden frame or alt_ref_frame
|
|
if ( (cpi->sf.recode_loop == 1) ||
|
|
( (cpi->sf.recode_loop == 2) &&
|
|
( (cm->frame_type == KEY_FRAME) ||
|
|
cm->refresh_golden_frame ||
|
|
cm->refresh_alt_ref_frame ) ) )
|
|
{
|
|
// General over and under shoot tests
|
|
if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
|
|
((cpi->projected_frame_size < low_limit) && (q > minq)) )
|
|
{
|
|
force_recode = 1;
|
|
}
|
|
// Special Constrained quality tests
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
|
|
{
|
|
// Undershoot and below auto cq level
|
|
if ( (q > cpi->cq_target_quality) &&
|
|
(cpi->projected_frame_size <
|
|
((cpi->this_frame_target * 7) >> 3)))
|
|
{
|
|
force_recode = 1;
|
|
}
|
|
// Severe undershoot and between auto and user cq level
|
|
else if ( (q > cpi->oxcf.cq_level) &&
|
|
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
|
|
(cpi->active_best_quality > cpi->oxcf.cq_level))
|
|
{
|
|
force_recode = 1;
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
}
|
|
}
|
|
}
|
|
|
|
return force_recode;
|
|
}
|
|
|
|
void update_reference_frames(VP8_COMMON *cm)
|
|
{
|
|
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
|
|
|
|
// At this point the new frame has been encoded.
|
|
// If any buffer copy / swapping is signaled it should be done here.
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG | VP8_ALT_FLAG ;
|
|
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
|
|
|
|
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
|
|
}
|
|
else /* For non key frames */
|
|
{
|
|
if (cm->refresh_alt_ref_frame)
|
|
{
|
|
assert(!cm->copy_buffer_to_arf);
|
|
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALT_FLAG;
|
|
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->new_fb_idx;
|
|
}
|
|
else if (cm->copy_buffer_to_arf)
|
|
{
|
|
assert(!(cm->copy_buffer_to_arf & ~0x3));
|
|
|
|
if (cm->copy_buffer_to_arf == 1)
|
|
{
|
|
if(cm->alt_fb_idx != cm->lst_fb_idx)
|
|
{
|
|
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALT_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->lst_fb_idx;
|
|
}
|
|
}
|
|
else /* if (cm->copy_buffer_to_arf == 2) */
|
|
{
|
|
if(cm->alt_fb_idx != cm->gld_fb_idx)
|
|
{
|
|
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALT_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->gld_fb_idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_golden_frame)
|
|
{
|
|
assert(!cm->copy_buffer_to_gf);
|
|
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG;
|
|
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->new_fb_idx;
|
|
}
|
|
else if (cm->copy_buffer_to_gf)
|
|
{
|
|
assert(!(cm->copy_buffer_to_arf & ~0x3));
|
|
|
|
if (cm->copy_buffer_to_gf == 1)
|
|
{
|
|
if(cm->gld_fb_idx != cm->lst_fb_idx)
|
|
{
|
|
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FLAG;
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->lst_fb_idx;
|
|
}
|
|
}
|
|
else /* if (cm->copy_buffer_to_gf == 2) */
|
|
{
|
|
if(cm->alt_fb_idx != cm->gld_fb_idx)
|
|
{
|
|
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FLAG;
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->alt_fb_idx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_last_frame)
|
|
{
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FLAG;
|
|
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FLAG;
|
|
cm->lst_fb_idx = cm->new_fb_idx;
|
|
}
|
|
}
|
|
|
|
void loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm)
|
|
{
|
|
if (cm->no_lpf)
|
|
{
|
|
cm->filter_level = 0;
|
|
}
|
|
else
|
|
{
|
|
struct vpx_usec_timer timer;
|
|
|
|
vp8_clear_system_state();
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
if (cpi->sf.auto_filter == 0)
|
|
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
|
|
|
|
else
|
|
vp8cx_pick_filter_level(cpi->Source, cpi);
|
|
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
|
|
}
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded)
|
|
sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */
|
|
#endif
|
|
|
|
if (cm->filter_level > 0)
|
|
{
|
|
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
|
|
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd);
|
|
}
|
|
|
|
vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show);
|
|
|
|
}
|
|
|
|
static void encode_frame_to_data_rate
|
|
(
|
|
VP8_COMP *cpi,
|
|
unsigned long *size,
|
|
unsigned char *dest,
|
|
unsigned char* dest_end,
|
|
unsigned int *frame_flags
|
|
)
|
|
{
|
|
int Q;
|
|
int frame_over_shoot_limit;
|
|
int frame_under_shoot_limit;
|
|
|
|
int Loop = 0;
|
|
int loop_count;
|
|
int this_q;
|
|
int last_zbin_oq;
|
|
|
|
int q_low;
|
|
int q_high;
|
|
int zbin_oq_high;
|
|
int zbin_oq_low = 0;
|
|
int top_index;
|
|
int bottom_index;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int active_worst_qchanged = 0;
|
|
|
|
int overshoot_seen = 0;
|
|
int undershoot_seen = 0;
|
|
int drop_mark = cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100;
|
|
int drop_mark75 = drop_mark * 2 / 3;
|
|
int drop_mark50 = drop_mark / 4;
|
|
int drop_mark25 = drop_mark / 8;
|
|
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp8_clear_system_state();
|
|
|
|
// Test code for segmentation of gf/arf (0,0)
|
|
//segmentation_test_function( cpi);
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
if(cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME)
|
|
{
|
|
if(cpi->force_next_frame_intra)
|
|
{
|
|
cm->frame_type = KEY_FRAME; /* delayed intra frame */
|
|
}
|
|
}
|
|
cpi->force_next_frame_intra = 0;
|
|
}
|
|
|
|
// For an alt ref frame in 2 pass we skip the call to the second pass function that sets the target bandwidth
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 2)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // Per frame bit target for the alt ref frame
|
|
cpi->target_bandwidth = cpi->twopass.gf_bits * cpi->output_frame_rate; // per second target bitrate
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_frame_rate);
|
|
|
|
// Default turn off buffer to buffer copying
|
|
cm->copy_buffer_to_gf = 0;
|
|
cm->copy_buffer_to_arf = 0;
|
|
|
|
// Clear zbin over-quant value and mode boost values.
|
|
cpi->zbin_over_quant = 0;
|
|
cpi->zbin_mode_boost = 0;
|
|
|
|
// Enable or disable mode based tweaking of the zbin
|
|
// For 2 Pass Only used where GF/ARF prediction quality
|
|
// is above a threshold
|
|
cpi->zbin_mode_boost_enabled = 1;
|
|
if (cpi->pass == 2)
|
|
{
|
|
if ( cpi->gfu_boost <= 400 )
|
|
{
|
|
cpi->zbin_mode_boost_enabled = 0;
|
|
}
|
|
}
|
|
|
|
// Current default encoder behaviour for the altref sign bias
|
|
if (cpi->source_alt_ref_active)
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
else
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
|
|
|
|
// Check to see if a key frame is signalled
|
|
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
|
|
if ((cm->current_video_frame == 0) ||
|
|
(cm->frame_flags & FRAMEFLAGS_KEY) ||
|
|
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0)))
|
|
{
|
|
// Key frame from VFW/auto-keyframe/first frame
|
|
cm->frame_type = KEY_FRAME;
|
|
}
|
|
|
|
// Set default state for segment and mode based loop filter update flags
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
|
|
// Set various flags etc to special state if it is a key frame
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
int i;
|
|
|
|
// Reset the loop filter deltas and segmentation map
|
|
setup_features(cpi);
|
|
|
|
// If segmentation is enabled force a map update for key frames
|
|
if (cpi->mb.e_mbd.segmentation_enabled)
|
|
{
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
// The alternate reference frame cannot be active for a key frame
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
// Reset the RD threshold multipliers to default of * 1 (128)
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
{
|
|
cpi->rd_thresh_mult[i] = 128;
|
|
}
|
|
}
|
|
|
|
// Test code for segmentation
|
|
//if ( (cm->frame_type == KEY_FRAME) || ((cm->current_video_frame % 2) == 0))
|
|
//if ( (cm->current_video_frame % 2) == 0 )
|
|
// enable_segmentation(cpi);
|
|
//else
|
|
// disable_segmentation(cpi);
|
|
|
|
#if 0
|
|
// Experimental code for lagged compress and one pass
|
|
// Initialise one_pass GF frames stats
|
|
// Update stats used for GF selection
|
|
//if ( cpi->pass == 0 )
|
|
{
|
|
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
|
|
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
|
|
}
|
|
#endif
|
|
|
|
update_rd_ref_frame_probs(cpi);
|
|
|
|
if (cpi->drop_frames_allowed)
|
|
{
|
|
// The reset to decimation 0 is only done here for one pass.
|
|
// Once it is set two pass leaves decimation on till the next kf.
|
|
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0))
|
|
cpi->decimation_factor --;
|
|
|
|
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0)
|
|
cpi->decimation_factor = 1;
|
|
|
|
else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3))
|
|
{
|
|
cpi->decimation_factor = 3;
|
|
}
|
|
else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2))
|
|
{
|
|
cpi->decimation_factor = 2;
|
|
}
|
|
else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1))
|
|
{
|
|
cpi->decimation_factor = 1;
|
|
}
|
|
|
|
//vpx_log("Encoder: Decimation Factor: %d \n",cpi->decimation_factor);
|
|
}
|
|
|
|
// The following decimates the frame rate according to a regular pattern (i.e. to 1/2 or 2/3 frame rate)
|
|
// This can be used to help prevent buffer under-run in CBR mode. Alternatively it might be desirable in
|
|
// some situations to drop frame rate but throw more bits at each frame.
|
|
//
|
|
// Note that dropping a key frame can be problematic if spatial resampling is also active
|
|
if (cpi->decimation_factor > 0)
|
|
{
|
|
switch (cpi->decimation_factor)
|
|
{
|
|
case 1:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
|
|
break;
|
|
case 2:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
|
|
break;
|
|
case 3:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
|
|
break;
|
|
}
|
|
|
|
// Note that we should not throw out a key frame (especially when spatial resampling is enabled).
|
|
if ((cm->frame_type == KEY_FRAME)) // && cpi->oxcf.allow_spatial_resampling )
|
|
{
|
|
cpi->decimation_count = cpi->decimation_factor;
|
|
}
|
|
else if (cpi->decimation_count > 0)
|
|
{
|
|
cpi->decimation_count --;
|
|
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
|
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
|
|
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->count ++;
|
|
#endif
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
unsigned int i;
|
|
|
|
// Propagate bits saved by dropping the frame to higher layers
|
|
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
|
|
{
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
lc->bits_off_target += cpi->av_per_frame_bandwidth;
|
|
if (lc->bits_off_target > lc->maximum_buffer_size)
|
|
lc->bits_off_target = lc->maximum_buffer_size;
|
|
lc->buffer_level = lc->bits_off_target;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
else
|
|
cpi->decimation_count = cpi->decimation_factor;
|
|
}
|
|
|
|
// Decide how big to make the frame
|
|
if (!vp8_pick_frame_size(cpi))
|
|
{
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
return;
|
|
}
|
|
|
|
// Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
|
|
// This has a knock on effect on active best quality as well.
|
|
// For CBR if the buffer reaches its maximum level then we can no longer
|
|
// save up bits for later frames so we might as well use them up
|
|
// on the current frame.
|
|
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
|
|
{
|
|
int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4
|
|
|
|
if (Adjustment)
|
|
{
|
|
int buff_lvl_step;
|
|
|
|
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size)
|
|
{
|
|
buff_lvl_step = (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level) / Adjustment;
|
|
|
|
if (buff_lvl_step)
|
|
Adjustment = (cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / buff_lvl_step;
|
|
else
|
|
Adjustment = 0;
|
|
}
|
|
|
|
cpi->active_worst_quality -= Adjustment;
|
|
|
|
if(cpi->active_worst_quality < cpi->active_best_quality)
|
|
cpi->active_worst_quality = cpi->active_best_quality;
|
|
}
|
|
}
|
|
|
|
// Set an active best quality and if necessary active worst quality
|
|
// There is some odd behavior for one pass here that needs attention.
|
|
if ( (cpi->pass == 2) || (cpi->ni_frames > 150))
|
|
{
|
|
vp8_clear_system_state();
|
|
|
|
Q = cpi->active_worst_quality;
|
|
|
|
if ( cm->frame_type == KEY_FRAME )
|
|
{
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
if (cpi->gfu_boost > 600)
|
|
cpi->active_best_quality = kf_low_motion_minq[Q];
|
|
else
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
|
|
// Special case for key frames forced because we have reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// based on the ambient Q to reduce the risk of popping
|
|
if ( cpi->this_key_frame_forced )
|
|
{
|
|
if ( cpi->active_best_quality > cpi->avg_frame_qindex * 7/8)
|
|
cpi->active_best_quality = cpi->avg_frame_qindex * 7/8;
|
|
else if ( cpi->active_best_quality < cpi->avg_frame_qindex >> 2 )
|
|
cpi->active_best_quality = cpi->avg_frame_qindex >> 2;
|
|
}
|
|
}
|
|
// One pass more conservative
|
|
else
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
}
|
|
|
|
else if (cpi->oxcf.number_of_layers==1 &&
|
|
(cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame))
|
|
{
|
|
// Use the lower of cpi->active_worst_quality and recent
|
|
// average Q as basis for GF/ARF Q limit unless last frame was
|
|
// a key frame.
|
|
if ( (cpi->frames_since_key > 1) &&
|
|
(cpi->avg_frame_qindex < cpi->active_worst_quality) )
|
|
{
|
|
Q = cpi->avg_frame_qindex;
|
|
}
|
|
|
|
// For constrained quality dont allow Q less than the cq level
|
|
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < cpi->cq_target_quality) )
|
|
{
|
|
Q = cpi->cq_target_quality;
|
|
}
|
|
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
if ( cpi->gfu_boost > 1000 )
|
|
cpi->active_best_quality = gf_low_motion_minq[Q];
|
|
else if ( cpi->gfu_boost < 400 )
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
else
|
|
cpi->active_best_quality = gf_mid_motion_minq[Q];
|
|
|
|
// Constrained quality use slightly lower active best.
|
|
if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
|
|
{
|
|
cpi->active_best_quality =
|
|
cpi->active_best_quality * 15/16;
|
|
}
|
|
}
|
|
// One pass more conservative
|
|
else
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
}
|
|
else
|
|
{
|
|
cpi->active_best_quality = inter_minq[Q];
|
|
|
|
// For the constant/constrained quality mode we dont want
|
|
// q to fall below the cq level.
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(cpi->active_best_quality < cpi->cq_target_quality) )
|
|
{
|
|
// If we are strongly undershooting the target rate in the last
|
|
// frames then use the user passed in cq value not the auto
|
|
// cq value.
|
|
if ( cpi->rolling_actual_bits < cpi->min_frame_bandwidth )
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
else
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
// If CBR and the buffer is as full then it is reasonable to allow
|
|
// higher quality on the frames to prevent bits just going to waste.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
// Note that the use of >= here elliminates the risk of a devide
|
|
// by 0 error in the else if clause
|
|
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
|
|
else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)
|
|
{
|
|
int Fraction = ((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) / (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level);
|
|
int min_qadjustment = ((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128;
|
|
|
|
cpi->active_best_quality -= min_qadjustment;
|
|
}
|
|
}
|
|
}
|
|
// Make sure constrained quality mode limits are adhered to for the first
|
|
// few frames of one pass encodes
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
|
|
{
|
|
if ( (cm->frame_type == KEY_FRAME) ||
|
|
cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame )
|
|
{
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
}
|
|
else if (cpi->active_best_quality < cpi->cq_target_quality)
|
|
{
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
// Clip the active best and worst quality values to limits
|
|
if (cpi->active_worst_quality > cpi->worst_quality)
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
|
|
if (cpi->active_best_quality < cpi->best_quality)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
|
|
if ( cpi->active_worst_quality < cpi->active_best_quality )
|
|
cpi->active_worst_quality = cpi->active_best_quality;
|
|
|
|
// Determine initial Q to try
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
last_zbin_oq = cpi->zbin_over_quant;
|
|
|
|
// Set highest allowed value for Zbin over quant
|
|
if (cm->frame_type == KEY_FRAME)
|
|
zbin_oq_high = 0; //ZBIN_OQ_MAX/16
|
|
else if ((cpi->oxcf.number_of_layers == 1) && ((cm->refresh_alt_ref_frame ||
|
|
(cm->refresh_golden_frame && !cpi->source_alt_ref_active))))
|
|
{
|
|
zbin_oq_high = 16;
|
|
}
|
|
else
|
|
zbin_oq_high = ZBIN_OQ_MAX;
|
|
|
|
// Setup background Q adjustment for error resilient mode.
|
|
// For multi-layer encodes only enable this for the base layer.
|
|
if (cpi->cyclic_refresh_mode_enabled && (cpi->current_layer==0))
|
|
cyclic_background_refresh(cpi, Q, 0);
|
|
|
|
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
|
|
|
|
// Limit Q range for the adaptive loop.
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
|
|
vp8_save_coding_context(cpi);
|
|
|
|
loop_count = 0;
|
|
|
|
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC
|
|
|
|
if (cpi->oxcf.noise_sensitivity > 0)
|
|
{
|
|
unsigned char *src;
|
|
int l = 0;
|
|
|
|
switch (cpi->oxcf.noise_sensitivity)
|
|
{
|
|
case 1:
|
|
l = 20;
|
|
break;
|
|
case 2:
|
|
l = 40;
|
|
break;
|
|
case 3:
|
|
l = 60;
|
|
break;
|
|
case 4:
|
|
l = 80;
|
|
break;
|
|
case 5:
|
|
l = 100;
|
|
break;
|
|
case 6:
|
|
l = 150;
|
|
break;
|
|
}
|
|
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0);
|
|
}
|
|
else
|
|
{
|
|
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0);
|
|
|
|
src = cpi->Source->y_buffer;
|
|
|
|
if (cpi->Source->y_stride < 0)
|
|
{
|
|
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
vp8_write_yuv_frame(cpi->Source);
|
|
#endif
|
|
|
|
do
|
|
{
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
/*
|
|
if(cpi->is_src_frame_alt_ref)
|
|
Q = 127;
|
|
*/
|
|
|
|
vp8_set_quantizer(cpi, Q);
|
|
this_q = Q;
|
|
|
|
// setup skip prob for costing in mode/mv decision
|
|
if (cpi->common.mb_no_coeff_skip)
|
|
{
|
|
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
if (cpi->last_skip_false_probs[2] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
|
|
else if (cpi->last_skip_false_probs[2]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
else if (cpi->common.refresh_golden_frame)
|
|
{
|
|
if (cpi->last_skip_false_probs[1] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
|
|
else if (cpi->last_skip_false_probs[1]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
if (cpi->last_skip_false_probs[0] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
|
|
else if(cpi->last_skip_false_probs[0]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
|
|
//as this is for cost estimate, let's make sure it does not go extreme eitehr way
|
|
if (cpi->prob_skip_false < 5)
|
|
cpi->prob_skip_false = 5;
|
|
|
|
if (cpi->prob_skip_false > 250)
|
|
cpi->prob_skip_false = 250;
|
|
|
|
if (cpi->oxcf.number_of_layers == 1 && cpi->is_src_frame_alt_ref)
|
|
cpi->prob_skip_false = 1;
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("skip.stt", "a");
|
|
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
resize_key_frame(cpi);
|
|
vp8_setup_key_frame(cpi);
|
|
}
|
|
|
|
// transform / motion compensation build reconstruction frame
|
|
vp8_encode_frame(cpi);
|
|
|
|
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
|
|
cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
// Test to see if the stats generated for this frame indicate that we should have coded a key frame
|
|
// (assuming that we didn't)!
|
|
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME)
|
|
{
|
|
int key_frame_decision = decide_key_frame(cpi);
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
/* we don't do re-encoding in realtime mode
|
|
* if key frame is decided than we force it on next frame */
|
|
cpi->force_next_frame_intra = key_frame_decision;
|
|
}
|
|
else if (key_frame_decision)
|
|
{
|
|
// Reset all our sizing numbers and recode
|
|
cm->frame_type = KEY_FRAME;
|
|
|
|
vp8_pick_frame_size(cpi);
|
|
|
|
// Clear the Alt reference frame active flag when we have a key frame
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
// Reset the loop filter deltas and segmentation map
|
|
setup_features(cpi);
|
|
|
|
// If segmentation is enabled force a map update for key frames
|
|
if (cpi->mb.e_mbd.segmentation_enabled)
|
|
{
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
vp8_restore_coding_context(cpi);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
|
|
|
|
// Limit Q range for the adaptive loop.
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
|
|
loop_count++;
|
|
Loop = 1;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
vp8_clear_system_state();
|
|
|
|
if (frame_over_shoot_limit == 0)
|
|
frame_over_shoot_limit = 1;
|
|
|
|
// Are we are overshooting and up against the limit of active max Q.
|
|
if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
|
|
(Q == cpi->active_worst_quality) &&
|
|
(cpi->active_worst_quality < cpi->worst_quality) &&
|
|
(cpi->projected_frame_size > frame_over_shoot_limit))
|
|
{
|
|
int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit;
|
|
|
|
// If so is there any scope for relaxing it
|
|
while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0))
|
|
{
|
|
cpi->active_worst_quality++;
|
|
top_index = cpi->active_worst_quality;
|
|
over_size_percent = (int)(over_size_percent * 0.96); // Assume 1 qstep = about 4% on frame size.
|
|
}
|
|
|
|
// If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop.
|
|
active_worst_qchanged = 1;
|
|
}
|
|
else
|
|
active_worst_qchanged = 0;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
// Special case handling for forced key frames
|
|
if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced )
|
|
{
|
|
int last_q = Q;
|
|
int kf_err = vp8_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
|
|
// The key frame is not good enough
|
|
if ( kf_err > ((cpi->ambient_err * 7) >> 3) )
|
|
{
|
|
// Lower q_high
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low;
|
|
|
|
// Adjust Q
|
|
Q = (q_high + q_low) >> 1;
|
|
}
|
|
// The key frame is much better than the previous frame
|
|
else if ( kf_err < (cpi->ambient_err >> 1) )
|
|
{
|
|
// Raise q_low
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high;
|
|
|
|
// Adjust Q
|
|
Q = (q_high + q_low + 1) >> 1;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
if (Q > q_high)
|
|
Q = q_high;
|
|
else if (Q < q_low)
|
|
Q = q_low;
|
|
|
|
Loop = Q != last_q;
|
|
}
|
|
|
|
// Is the projected frame size out of range and are we allowed to attempt to recode.
|
|
else if ( recode_loop_test( cpi,
|
|
frame_over_shoot_limit, frame_under_shoot_limit,
|
|
Q, top_index, bottom_index ) )
|
|
{
|
|
int last_q = Q;
|
|
int Retries = 0;
|
|
|
|
// Frame size out of permitted range:
|
|
// Update correction factor & compute new Q to try...
|
|
|
|
// Frame is too large
|
|
if (cpi->projected_frame_size > cpi->this_frame_target)
|
|
{
|
|
//if ( cpi->zbin_over_quant == 0 )
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value
|
|
|
|
if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low
|
|
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
|
|
|
|
//if ( undershoot_seen || (Q == MAXQ) )
|
|
if (undershoot_seen)
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 1);
|
|
|
|
Q = (q_high + q_low + 1) / 2;
|
|
|
|
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
|
|
if (Q < MAXQ)
|
|
cpi->zbin_over_quant = 0;
|
|
else
|
|
{
|
|
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
|
|
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10))
|
|
{
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries ++;
|
|
}
|
|
}
|
|
|
|
overshoot_seen = 1;
|
|
}
|
|
// Frame is too small
|
|
else
|
|
{
|
|
if (cpi->zbin_over_quant == 0)
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant
|
|
else // else lower zbin_oq_high
|
|
zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low;
|
|
|
|
if (overshoot_seen)
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 1);
|
|
|
|
Q = (q_high + q_low) / 2;
|
|
|
|
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
|
|
if (Q < MAXQ)
|
|
cpi->zbin_over_quant = 0;
|
|
else
|
|
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
else
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
// Special case reset for qlow for constrained quality.
|
|
// This should only trigger where there is very substantial
|
|
// undershoot on a frame and the auto cq level is above
|
|
// the user passsed in value.
|
|
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < q_low) )
|
|
{
|
|
q_low = Q;
|
|
}
|
|
|
|
while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10))
|
|
{
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries ++;
|
|
}
|
|
}
|
|
|
|
undershoot_seen = 1;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
if (Q > q_high)
|
|
Q = q_high;
|
|
else if (Q < q_low)
|
|
Q = q_low;
|
|
|
|
// Clamp cpi->zbin_over_quant
|
|
cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant;
|
|
|
|
//Loop = (Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant);
|
|
Loop = Q != last_q;
|
|
last_zbin_oq = cpi->zbin_over_quant;
|
|
}
|
|
else
|
|
#endif
|
|
Loop = 0;
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
Loop = 0;
|
|
|
|
if (Loop == 1)
|
|
{
|
|
vp8_restore_coding_context(cpi);
|
|
loop_count++;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->tot_recode_hits++;
|
|
#endif
|
|
}
|
|
}
|
|
while (Loop == 1);
|
|
|
|
#if 0
|
|
// Experimental code for lagged and one pass
|
|
// Update stats used for one pass GF selection
|
|
{
|
|
/*
|
|
int frames_so_far;
|
|
double frame_intra_error;
|
|
double frame_coded_error;
|
|
double frame_pcnt_inter;
|
|
double frame_pcnt_motion;
|
|
double frame_mvr;
|
|
double frame_mvr_abs;
|
|
double frame_mvc;
|
|
double frame_mvc_abs;
|
|
*/
|
|
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
|
|
}
|
|
#endif
|
|
|
|
// Special case code to reduce pulsing when key frames are forced at a
|
|
// fixed interval. Note the reconstruction error if it is the frame before
|
|
// the force key frame
|
|
if ( cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0) )
|
|
{
|
|
cpi->ambient_err = vp8_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
}
|
|
|
|
/* This frame's MVs are saved and will be used in next frame's MV predictor.
|
|
* Last frame has one more line(add to bottom) and one more column(add to
|
|
* right) than cm->mip. The edge elements are initialized to 0.
|
|
*/
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
if(!cpi->oxcf.mr_encoder_id && cm->show_frame)
|
|
#else
|
|
if(cm->show_frame) /* do not save for altref frame */
|
|
#endif
|
|
{
|
|
int mb_row;
|
|
int mb_col;
|
|
/* Point to beginning of allocated MODE_INFO arrays. */
|
|
MODE_INFO *tmp = cm->mip;
|
|
|
|
if(cm->frame_type != KEY_FRAME)
|
|
{
|
|
for (mb_row = 0; mb_row < cm->mb_rows+1; mb_row ++)
|
|
{
|
|
for (mb_col = 0; mb_col < cm->mb_cols+1; mb_col ++)
|
|
{
|
|
if(tmp->mbmi.ref_frame != INTRA_FRAME)
|
|
cpi->lfmv[mb_col + mb_row*(cm->mode_info_stride+1)].as_int = tmp->mbmi.mv.as_int;
|
|
|
|
cpi->lf_ref_frame_sign_bias[mb_col + mb_row*(cm->mode_info_stride+1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
|
|
cpi->lf_ref_frame[mb_col + mb_row*(cm->mode_info_stride+1)] = tmp->mbmi.ref_frame;
|
|
tmp++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
vp8_cal_dissimilarity(cpi);
|
|
#endif
|
|
|
|
// Update the GF useage maps.
|
|
// This is done after completing the compression of a frame when all
|
|
// modes etc. are finalized but before loop filter
|
|
if (cpi->oxcf.number_of_layers == 1)
|
|
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
cm->refresh_last_frame = 1;
|
|
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("gfactive.stt", "a");
|
|
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
// For inter frames the current default behavior is that when
|
|
// cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
|
|
// This is purely an encoder decision at present.
|
|
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame)
|
|
cm->copy_buffer_to_arf = 2;
|
|
else
|
|
cm->copy_buffer_to_arf = 0;
|
|
|
|
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded)
|
|
{
|
|
sem_post(&cpi->h_event_start_lpf); /* start loopfilter in separate thread */
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
loopfilter_frame(cpi, cm);
|
|
}
|
|
|
|
update_reference_frames(cm);
|
|
|
|
if (cpi->oxcf.error_resilient_mode)
|
|
{
|
|
cm->refresh_entropy_probs = 0;
|
|
}
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
/* wait that filter_level is picked so that we can continue with stream packing */
|
|
if (cpi->b_multi_threaded)
|
|
sem_wait(&cpi->h_event_end_lpf);
|
|
#endif
|
|
|
|
// build the bitstream
|
|
vp8_pack_bitstream(cpi, dest, dest_end, size);
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
/* wait for loopfilter thread done */
|
|
if (cpi->b_multi_threaded)
|
|
{
|
|
sem_wait(&cpi->h_event_end_lpf);
|
|
}
|
|
#endif
|
|
|
|
/* Move storing frame_type out of the above loop since it is also
|
|
* needed in motion search besides loopfilter */
|
|
cm->last_frame_type = cm->frame_type;
|
|
|
|
// Update rate control heuristics
|
|
cpi->total_byte_count += (*size);
|
|
cpi->projected_frame_size = (*size) << 3;
|
|
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
unsigned int i;
|
|
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
|
|
cpi->layer_context[i].total_byte_count += (*size);
|
|
}
|
|
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 2);
|
|
|
|
cpi->last_q[cm->frame_type] = cm->base_qindex;
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
vp8_adjust_key_frame_context(cpi);
|
|
}
|
|
|
|
// Keep a record of ambient average Q.
|
|
if (cm->frame_type != KEY_FRAME)
|
|
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
|
|
|
|
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
|
|
if ((cm->frame_type != KEY_FRAME) && ((cpi->oxcf.number_of_layers > 1) ||
|
|
(!cm->refresh_golden_frame && !cm->refresh_alt_ref_frame)))
|
|
{
|
|
cpi->ni_frames++;
|
|
|
|
// Calculate the average Q for normal inter frames (not key or GFU
|
|
// frames).
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
}
|
|
else
|
|
{
|
|
// Damp value for first few frames
|
|
if (cpi->ni_frames > 150 )
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
}
|
|
// For one pass, early in the clip ... average the current frame Q
|
|
// value with the worstq entered by the user as a dampening measure
|
|
else
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
|
|
}
|
|
|
|
// If the average Q is higher than what was used in the last frame
|
|
// (after going through the recode loop to keep the frame size within range)
|
|
// then use the last frame value - 1.
|
|
// The -1 is designed to stop Q and hence the data rate, from progressively
|
|
// falling away during difficult sections, but at the same time reduce the number of
|
|
// itterations around the recode loop.
|
|
if (Q > cpi->ni_av_qi)
|
|
cpi->ni_av_qi = Q - 1;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
|
|
// If the frame was massively oversize and we are below optimal buffer level drop next frame
|
|
if ((cpi->drop_frames_allowed) &&
|
|
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) &&
|
|
(cpi->projected_frame_size > (4 * cpi->this_frame_target)))
|
|
{
|
|
cpi->drop_frame = 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Set the count for maximum consecutive dropped frames based upon the ratio of
|
|
// this frame size to the target average per frame bandwidth.
|
|
// (cpi->av_per_frame_bandwidth > 0) is just a sanity check to prevent / 0.
|
|
if (cpi->drop_frames_allowed && (cpi->av_per_frame_bandwidth > 0))
|
|
{
|
|
cpi->max_drop_count = cpi->projected_frame_size / cpi->av_per_frame_bandwidth;
|
|
|
|
if (cpi->max_drop_count > cpi->max_consec_dropped_frames)
|
|
cpi->max_drop_count = cpi->max_consec_dropped_frames;
|
|
}
|
|
|
|
// Update the buffer level variable.
|
|
// Non-viewable frames are a special case and are treated as pure overhead.
|
|
if ( !cm->show_frame )
|
|
cpi->bits_off_target -= cpi->projected_frame_size;
|
|
else
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
|
|
|
|
// Clip the buffer level to the maximum specified buffer size
|
|
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
|
|
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
|
|
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
|
|
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
|
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
|
|
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
|
|
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
|
|
|
|
// Actual bits spent
|
|
cpi->total_actual_bits += cpi->projected_frame_size;
|
|
|
|
// Debug stats
|
|
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
// Propagate values to higher temporal layers
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
|
|
{
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
int bits_off_for_this_layer = lc->target_bandwidth / lc->frame_rate
|
|
- cpi->projected_frame_size;
|
|
|
|
lc->bits_off_target += bits_off_for_this_layer;
|
|
|
|
// Clip buffer level to maximum buffer size for the layer
|
|
if (lc->bits_off_target > lc->maximum_buffer_size)
|
|
lc->bits_off_target = lc->maximum_buffer_size;
|
|
|
|
lc->total_actual_bits += cpi->projected_frame_size;
|
|
lc->total_target_vs_actual += bits_off_for_this_layer;
|
|
lc->buffer_level = lc->bits_off_target;
|
|
}
|
|
}
|
|
|
|
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->twopass.kf_group_bits < 0)
|
|
cpi->twopass.kf_group_bits = 0 ;
|
|
}
|
|
else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
|
|
{
|
|
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0 ;
|
|
}
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[2] = cm->base_qindex;
|
|
}
|
|
else if (cpi->common.refresh_golden_frame)
|
|
{
|
|
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[1] = cm->base_qindex;
|
|
}
|
|
else
|
|
{
|
|
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[0] = cm->base_qindex;
|
|
|
|
//update the baseline
|
|
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
|
|
|
|
}
|
|
}
|
|
|
|
#if 0 && CONFIG_INTERNAL_STATS
|
|
{
|
|
FILE *f = fopen("tmp.stt", "a");
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if (cpi->twopass.total_left_stats.coded_error != 0.0)
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %10d %6d %6d"
|
|
"%6d %6d %6d %5d %5d %5d %8d %8.2f %10d %10.3f"
|
|
"%10.3f %8d\n",
|
|
cpi->common.current_video_frame, cpi->this_frame_target,
|
|
cpi->projected_frame_size,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
cpi->buffer_level,
|
|
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits, cm->base_qindex,
|
|
cpi->active_best_quality, cpi->active_worst_quality,
|
|
cpi->ni_av_qi, cpi->cq_target_quality,
|
|
cpi->zbin_over_quant,
|
|
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor,
|
|
(int)cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
(double)cpi->twopass.bits_left /
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
cpi->tot_recode_hits);
|
|
else
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %10d %6d %6d"
|
|
"%6d %6d %6d %5d %5d %5d %8d %8.2f %10d %10.3f"
|
|
"%8d\n",
|
|
cpi->common.current_video_frame,
|
|
cpi->this_frame_target, cpi->projected_frame_size,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
cpi->buffer_level,
|
|
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits, cm->base_qindex,
|
|
cpi->active_best_quality, cpi->active_worst_quality,
|
|
cpi->ni_av_qi, cpi->cq_target_quality,
|
|
cpi->zbin_over_quant,
|
|
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor,
|
|
(int)cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
cpi->tot_recode_hits);
|
|
|
|
fclose(f);
|
|
|
|
{
|
|
FILE *fmodes = fopen("Modes.stt", "a");
|
|
int i;
|
|
|
|
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
|
|
cpi->common.current_video_frame,
|
|
cm->frame_type, cm->refresh_golden_frame,
|
|
cm->refresh_alt_ref_frame);
|
|
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
|
|
|
|
fprintf(fmodes, "\n");
|
|
|
|
fclose(fmodes);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// If this was a kf or Gf note the Q
|
|
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
|
|
cm->last_kf_gf_q = cm->base_qindex;
|
|
|
|
if (cm->refresh_golden_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
|
|
|
|
if (cm->refresh_alt_ref_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
|
|
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed
|
|
cpi->gold_is_last = 1;
|
|
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
|
|
cpi->gold_is_last = 0;
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed
|
|
cpi->alt_is_last = 1;
|
|
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other
|
|
cpi->alt_is_last = 0;
|
|
|
|
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed
|
|
cpi->gold_is_alt = 1;
|
|
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
|
|
cpi->gold_is_alt = 0;
|
|
|
|
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
|
|
|
|
if (cpi->gold_is_last)
|
|
cpi->ref_frame_flags &= ~VP8_GOLD_FLAG;
|
|
|
|
if (cpi->alt_is_last)
|
|
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
|
|
|
|
if (cpi->gold_is_alt)
|
|
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
|
|
|
|
|
|
if (!cpi->oxcf.error_resilient_mode)
|
|
{
|
|
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME))
|
|
// Update the alternate reference frame stats as appropriate.
|
|
update_alt_ref_frame_stats(cpi);
|
|
else
|
|
// Update the Golden frame stats as appropriate.
|
|
update_golden_frame_stats(cpi);
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
// Tell the caller that the frame was coded as a key frame
|
|
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
|
|
|
|
// As this frame is a key frame the next defaults to an inter frame.
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
cpi->last_frame_percent_intra = 100;
|
|
}
|
|
else
|
|
{
|
|
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
|
|
|
|
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
|
|
}
|
|
|
|
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
|
|
|
|
// Dont increment frame counters if this was an altref buffer update not a real frame
|
|
if (cm->show_frame)
|
|
{
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
}
|
|
|
|
// reset to normal state now that we are done.
|
|
|
|
|
|
|
|
#if 0
|
|
{
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
recon_file = fopen(filename, "wb");
|
|
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
|
|
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
#endif
|
|
|
|
// DEBUG
|
|
//vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show);
|
|
|
|
|
|
}
|
|
|
|
|
|
static void check_gf_quality(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int gf_active_pct = (100 * cpi->gf_active_count) / (cm->mb_rows * cm->mb_cols);
|
|
int gf_ref_usage_pct = (cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] * 100) / (cm->mb_rows * cm->mb_cols);
|
|
int last_ref_zz_useage = (cpi->inter_zz_count * 100) / (cm->mb_rows * cm->mb_cols);
|
|
|
|
// Gf refresh is not currently being signalled
|
|
if (cpi->gf_update_recommended == 0)
|
|
{
|
|
if (cpi->common.frames_since_golden > 7)
|
|
{
|
|
// Low use of gf
|
|
if ((gf_active_pct < 10) || ((gf_active_pct + gf_ref_usage_pct) < 15))
|
|
{
|
|
// ...but last frame zero zero usage is reasonbable so a new gf might be appropriate
|
|
if (last_ref_zz_useage >= 25)
|
|
{
|
|
cpi->gf_bad_count ++;
|
|
|
|
if (cpi->gf_bad_count >= 8) // Check that the condition is stable
|
|
{
|
|
cpi->gf_update_recommended = 1;
|
|
cpi->gf_bad_count = 0;
|
|
}
|
|
}
|
|
else
|
|
cpi->gf_bad_count = 0; // Restart count as the background is not stable enough
|
|
}
|
|
else
|
|
cpi->gf_bad_count = 0; // Gf useage has picked up so reset count
|
|
}
|
|
}
|
|
// If the signal is set but has not been read should we cancel it.
|
|
else if (last_ref_zz_useage < 15)
|
|
{
|
|
cpi->gf_update_recommended = 0;
|
|
cpi->gf_bad_count = 0;
|
|
}
|
|
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("gfneeded.stt", "a");
|
|
fprintf(f, "%10d %10d %10d %10d %10ld \n",
|
|
cm->current_video_frame,
|
|
cpi->common.frames_since_golden,
|
|
gf_active_pct, gf_ref_usage_pct,
|
|
cpi->gf_update_recommended);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned char * dest_end, unsigned int *frame_flags)
|
|
{
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
vp8_second_pass(cpi);
|
|
|
|
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
|
|
cpi->twopass.bits_left -= 8 * *size;
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
|
|
*cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->frame_rate);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us.
|
|
#if HAVE_NEON
|
|
extern void vp8_push_neon(int64_t *store);
|
|
extern void vp8_pop_neon(int64_t *store);
|
|
#endif
|
|
|
|
|
|
int vp8_receive_raw_frame(VP8_COMP *cpi, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time)
|
|
{
|
|
#if HAVE_NEON
|
|
int64_t store_reg[8];
|
|
#endif
|
|
VP8_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer timer;
|
|
int res = 0;
|
|
|
|
#if HAVE_NEON
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->cpu_caps & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_push_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
if(vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
|
|
frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL))
|
|
res = -1;
|
|
cm->clr_type = sd->clrtype;
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
|
|
|
|
#if HAVE_NEON
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->cpu_caps & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
static int frame_is_reference(const VP8_COMP *cpi)
|
|
{
|
|
const VP8_COMMON *cm = &cpi->common;
|
|
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame
|
|
|| cm->refresh_golden_frame || cm->refresh_alt_ref_frame
|
|
|| cm->copy_buffer_to_gf || cm->copy_buffer_to_arf
|
|
|| cm->refresh_entropy_probs
|
|
|| xd->mode_ref_lf_delta_update
|
|
|| xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
|
|
}
|
|
|
|
|
|
int vp8_get_compressed_data(VP8_COMP *cpi, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, unsigned char *dest_end, int64_t *time_stamp, int64_t *time_end, int flush)
|
|
{
|
|
#if HAVE_NEON
|
|
int64_t store_reg[8];
|
|
#endif
|
|
VP8_COMMON *cm;
|
|
struct vpx_usec_timer tsctimer;
|
|
struct vpx_usec_timer ticktimer;
|
|
struct vpx_usec_timer cmptimer;
|
|
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
|
|
|
|
if (!cpi)
|
|
return -1;
|
|
|
|
cm = &cpi->common;
|
|
|
|
if (setjmp(cpi->common.error.jmp))
|
|
{
|
|
cpi->common.error.setjmp = 0;
|
|
return VPX_CODEC_CORRUPT_FRAME;
|
|
}
|
|
|
|
cpi->common.error.setjmp = 1;
|
|
|
|
#if HAVE_NEON
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->cpu_caps & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_push_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
vpx_usec_timer_start(&cmptimer);
|
|
|
|
cpi->source = NULL;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
// Should we code an alternate reference frame
|
|
if (cpi->oxcf.error_resilient_mode == 0 &&
|
|
cpi->oxcf.play_alternate &&
|
|
cpi->source_alt_ref_pending)
|
|
{
|
|
if ((cpi->source = vp8_lookahead_peek(cpi->lookahead,
|
|
cpi->frames_till_gf_update_due)))
|
|
{
|
|
cpi->alt_ref_source = cpi->source;
|
|
if (cpi->oxcf.arnr_max_frames > 0)
|
|
{
|
|
vp8_temporal_filter_prepare_c(cpi,
|
|
cpi->frames_till_gf_update_due);
|
|
force_src_buffer = &cpi->alt_ref_buffer;
|
|
}
|
|
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
|
|
cm->refresh_alt_ref_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
cm->show_frame = 0;
|
|
cpi->source_alt_ref_pending = 0; // Clear Pending alt Ref flag.
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (!cpi->source)
|
|
{
|
|
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush)))
|
|
{
|
|
cm->show_frame = 1;
|
|
|
|
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
|
|
&& (cpi->source == cpi->alt_ref_source);
|
|
|
|
if(cpi->is_src_frame_alt_ref)
|
|
cpi->alt_ref_source = NULL;
|
|
}
|
|
}
|
|
|
|
if (cpi->source)
|
|
{
|
|
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
|
|
cpi->un_scaled_source = cpi->Source;
|
|
*time_stamp = cpi->source->ts_start;
|
|
*time_end = cpi->source->ts_end;
|
|
*frame_flags = cpi->source->flags;
|
|
}
|
|
else
|
|
{
|
|
*size = 0;
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done)
|
|
{
|
|
vp8_end_first_pass(cpi); /* get last stats packet */
|
|
cpi->twopass.first_pass_done = 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if HAVE_NEON
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->cpu_caps & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
if (cpi->source->ts_start < cpi->first_time_stamp_ever)
|
|
{
|
|
cpi->first_time_stamp_ever = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
|
|
}
|
|
|
|
// adjust frame rates based on timestamps given
|
|
if (!cm->refresh_alt_ref_frame || (cpi->oxcf.number_of_layers > 1))
|
|
{
|
|
int64_t this_duration;
|
|
int step = 0;
|
|
|
|
if (cpi->source->ts_start == cpi->first_time_stamp_ever)
|
|
{
|
|
this_duration = cpi->source->ts_end - cpi->source->ts_start;
|
|
step = 1;
|
|
}
|
|
else
|
|
{
|
|
int64_t last_duration;
|
|
|
|
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
|
|
last_duration = cpi->last_end_time_stamp_seen
|
|
- cpi->last_time_stamp_seen;
|
|
// do a step update if the duration changes by 10%
|
|
if (last_duration)
|
|
step = ((this_duration - last_duration) * 10 / last_duration);
|
|
}
|
|
|
|
if (this_duration)
|
|
{
|
|
if (step)
|
|
cpi->ref_frame_rate = 10000000.0 / this_duration;
|
|
else
|
|
{
|
|
double avg_duration, interval;
|
|
|
|
/* Average this frame's rate into the last second's average
|
|
* frame rate. If we haven't seen 1 second yet, then average
|
|
* over the whole interval seen.
|
|
*/
|
|
interval = cpi->source->ts_end - cpi->first_time_stamp_ever;
|
|
if(interval > 10000000.0)
|
|
interval = 10000000;
|
|
|
|
avg_duration = 10000000.0 / cpi->ref_frame_rate;
|
|
avg_duration *= (interval - avg_duration + this_duration);
|
|
avg_duration /= interval;
|
|
|
|
cpi->ref_frame_rate = 10000000.0 / avg_duration;
|
|
}
|
|
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
int i;
|
|
|
|
// Update frame rates for each layer
|
|
for (i=0; i<cpi->oxcf.number_of_layers; i++)
|
|
{
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
lc->frame_rate = cpi->ref_frame_rate /
|
|
cpi->oxcf.rate_decimator[i];
|
|
}
|
|
}
|
|
else
|
|
vp8_new_frame_rate(cpi, cpi->ref_frame_rate);
|
|
}
|
|
|
|
cpi->last_time_stamp_seen = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
|
|
}
|
|
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
int layer;
|
|
|
|
update_layer_contexts (cpi);
|
|
|
|
// Restore layer specific context & set frame rate
|
|
layer = cpi->oxcf.layer_id[
|
|
cm->current_video_frame % cpi->oxcf.periodicity];
|
|
restore_layer_context (cpi, layer);
|
|
vp8_new_frame_rate (cpi, cpi->layer_context[layer].frame_rate);
|
|
}
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
if (cpi->oxcf.number_of_layers == 1)
|
|
check_gf_quality(cpi);
|
|
vpx_usec_timer_start(&tsctimer);
|
|
vpx_usec_timer_start(&ticktimer);
|
|
}
|
|
|
|
// start with a 0 size frame
|
|
*size = 0;
|
|
|
|
// Clear down mmx registers
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
cm->frame_type = INTER_FRAME;
|
|
cm->frame_flags = *frame_flags;
|
|
|
|
#if 0
|
|
|
|
if (cm->refresh_alt_ref_frame)
|
|
{
|
|
//cm->refresh_golden_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
}
|
|
else
|
|
{
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
}
|
|
|
|
#endif
|
|
/* find a free buffer for the new frame */
|
|
{
|
|
int i = 0;
|
|
for(; i < NUM_YV12_BUFFERS; i++)
|
|
{
|
|
if(!cm->yv12_fb[i].flags)
|
|
{
|
|
cm->new_fb_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(i < NUM_YV12_BUFFERS );
|
|
}
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 1)
|
|
{
|
|
Pass1Encode(cpi, size, dest, frame_flags);
|
|
}
|
|
else if (cpi->pass == 2)
|
|
{
|
|
Pass2Encode(cpi, size, dest, dest_end, frame_flags);
|
|
}
|
|
else
|
|
#endif
|
|
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
unsigned int duration, duration2;
|
|
vpx_usec_timer_mark(&tsctimer);
|
|
vpx_usec_timer_mark(&ticktimer);
|
|
|
|
duration = vpx_usec_timer_elapsed(&ticktimer);
|
|
duration2 = (unsigned int)((double)duration / 2);
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->avg_encode_time == 0)
|
|
cpi->avg_encode_time = duration;
|
|
else
|
|
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
|
|
}
|
|
|
|
if (duration2)
|
|
{
|
|
//if(*frame_flags!=1)
|
|
{
|
|
|
|
if (cpi->avg_pick_mode_time == 0)
|
|
cpi->avg_pick_mode_time = duration2;
|
|
else
|
|
cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (cm->refresh_entropy_probs == 0)
|
|
{
|
|
vpx_memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
|
|
}
|
|
|
|
// Save the contexts separately for alt ref, gold and last.
|
|
// (TODO jbb -> Optimize this with pointers to avoid extra copies. )
|
|
if(cm->refresh_alt_ref_frame)
|
|
vpx_memcpy(&cpi->lfc_a, &cm->fc, sizeof(cm->fc));
|
|
|
|
if(cm->refresh_golden_frame)
|
|
vpx_memcpy(&cpi->lfc_g, &cm->fc, sizeof(cm->fc));
|
|
|
|
if(cm->refresh_last_frame)
|
|
vpx_memcpy(&cpi->lfc_n, &cm->fc, sizeof(cm->fc));
|
|
|
|
// if its a dropped frame honor the requests on subsequent frames
|
|
if (*size > 0)
|
|
{
|
|
cpi->droppable = !frame_is_reference(cpi);
|
|
|
|
// return to normal state
|
|
cm->refresh_entropy_probs = 1;
|
|
cm->refresh_alt_ref_frame = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
}
|
|
|
|
// Save layer specific state
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
save_layer_context (cpi);
|
|
|
|
vpx_usec_timer_mark(&cmptimer);
|
|
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
|
|
|
|
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
|
|
{
|
|
generate_psnr_packet(cpi);
|
|
}
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
cpi->bytes += *size;
|
|
|
|
if (cm->show_frame)
|
|
{
|
|
|
|
cpi->count ++;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
double ye,ue,ve;
|
|
double frame_psnr;
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
|
|
int y_samples = orig->y_height * orig->y_width ;
|
|
int uv_samples = orig->uv_height * orig->uv_width ;
|
|
int t_samples = y_samples + 2 * uv_samples;
|
|
int64_t sq_error, sq_error2;
|
|
|
|
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height);
|
|
|
|
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride, orig->uv_width, orig->uv_height);
|
|
|
|
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride, orig->uv_width, orig->uv_height);
|
|
|
|
sq_error = ye + ue + ve;
|
|
|
|
frame_psnr = vp8_mse2psnr(t_samples, 255.0, sq_error);
|
|
|
|
cpi->total_y += vp8_mse2psnr(y_samples, 255.0, ye);
|
|
cpi->total_u += vp8_mse2psnr(uv_samples, 255.0, ue);
|
|
cpi->total_v += vp8_mse2psnr(uv_samples, 255.0, ve);
|
|
cpi->total_sq_error += sq_error;
|
|
cpi->total += frame_psnr;
|
|
{
|
|
double frame_psnr2, frame_ssim2 = 0;
|
|
double weight = 0;
|
|
|
|
vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0);
|
|
vp8_clear_system_state();
|
|
|
|
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
pp->y_buffer, pp->y_stride, orig->y_width, orig->y_height);
|
|
|
|
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
pp->u_buffer, pp->uv_stride, orig->uv_width, orig->uv_height);
|
|
|
|
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
pp->v_buffer, pp->uv_stride, orig->uv_width, orig->uv_height);
|
|
|
|
sq_error2 = ye + ue + ve;
|
|
|
|
frame_psnr2 = vp8_mse2psnr(t_samples, 255.0, sq_error2);
|
|
|
|
cpi->totalp_y += vp8_mse2psnr(y_samples, 255.0, ye);
|
|
cpi->totalp_u += vp8_mse2psnr(uv_samples, 255.0, ue);
|
|
cpi->totalp_v += vp8_mse2psnr(uv_samples, 255.0, ve);
|
|
cpi->total_sq_error2 += sq_error2;
|
|
cpi->totalp += frame_psnr2;
|
|
|
|
frame_ssim2 = vp8_calc_ssim(cpi->Source,
|
|
&cm->post_proc_buffer, 1, &weight);
|
|
|
|
cpi->summed_quality += frame_ssim2 * weight;
|
|
cpi->summed_weights += weight;
|
|
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
int i;
|
|
|
|
for (i=cpi->current_layer;
|
|
i<cpi->oxcf.number_of_layers; i++)
|
|
{
|
|
cpi->frames_in_layer[i]++;
|
|
|
|
cpi->bytes_in_layer[i] += *size;
|
|
cpi->sum_psnr[i] += frame_psnr;
|
|
cpi->sum_psnr_p[i] += frame_psnr2;
|
|
cpi->total_error2[i] += sq_error;
|
|
cpi->total_error2_p[i] += sq_error2;
|
|
cpi->sum_ssim[i] += frame_ssim2 * weight;
|
|
cpi->sum_weights[i] += weight;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
double y, u, v, frame_all;
|
|
frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show,
|
|
&y, &u, &v);
|
|
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
{
|
|
int i;
|
|
|
|
for (i=cpi->current_layer;
|
|
i<cpi->oxcf.number_of_layers; i++)
|
|
{
|
|
if (!cpi->b_calculate_psnr)
|
|
cpi->frames_in_layer[i]++;
|
|
|
|
cpi->total_ssimg_y_in_layer[i] += y;
|
|
cpi->total_ssimg_u_in_layer[i] += u;
|
|
cpi->total_ssimg_v_in_layer[i] += v;
|
|
cpi->total_ssimg_all_in_layer[i] += frame_all;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cpi->total_ssimg_y += y;
|
|
cpi->total_ssimg_u += u;
|
|
cpi->total_ssimg_v += v;
|
|
cpi->total_ssimg_all += frame_all;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
|
|
{
|
|
skiptruecount += cpi->skip_true_count;
|
|
skipfalsecount += cpi->skip_false_count;
|
|
}
|
|
|
|
#endif
|
|
#if 0
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("skip.stt", "a");
|
|
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
|
|
|
|
if (cpi->is_src_frame_alt_ref == 1)
|
|
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if HAVE_NEON
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->cpu_caps & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
cpi->common.error.setjmp = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_get_preview_raw_frame(VP8_COMP *cpi, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
return -1;
|
|
else
|
|
{
|
|
int ret;
|
|
#if CONFIG_POSTPROC
|
|
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
|
|
#else
|
|
|
|
if (cpi->common.frame_to_show)
|
|
{
|
|
*dest = *cpi->common.frame_to_show;
|
|
dest->y_width = cpi->common.Width;
|
|
dest->y_height = cpi->common.Height;
|
|
dest->uv_height = cpi->common.Height / 2;
|
|
ret = 0;
|
|
}
|
|
else
|
|
{
|
|
ret = -1;
|
|
}
|
|
|
|
#endif //!CONFIG_POSTPROC
|
|
vp8_clear_system_state();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
int vp8_set_roimap(VP8_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4])
|
|
{
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
|
|
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
|
|
return -1;
|
|
|
|
if (!map)
|
|
{
|
|
disable_segmentation(cpi);
|
|
return 0;
|
|
}
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map(cpi, map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation(cpi);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = delta_q[0];
|
|
feature_data[MB_LVL_ALT_Q][1] = delta_q[1];
|
|
feature_data[MB_LVL_ALT_Q][2] = delta_q[2];
|
|
feature_data[MB_LVL_ALT_Q][3] = delta_q[3];
|
|
|
|
// Set up the loop segment data s
|
|
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
|
|
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
|
|
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
|
|
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
|
|
|
|
cpi->segment_encode_breakout[0] = threshold[0];
|
|
cpi->segment_encode_breakout[1] = threshold[1];
|
|
cpi->segment_encode_breakout[2] = threshold[2];
|
|
cpi->segment_encode_breakout[3] = threshold[3];
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_set_active_map(VP8_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols)
|
|
{
|
|
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols)
|
|
{
|
|
if (map)
|
|
{
|
|
vpx_memcpy(cpi->active_map, map, rows * cols);
|
|
cpi->active_map_enabled = 1;
|
|
}
|
|
else
|
|
cpi->active_map_enabled = 0;
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
//cpi->active_map_enabled = 0;
|
|
return -1 ;
|
|
}
|
|
}
|
|
|
|
int vp8_set_internal_size(VP8_COMP *cpi, VPX_SCALING horiz_mode, VPX_SCALING vert_mode)
|
|
{
|
|
if (horiz_mode <= ONETWO)
|
|
cpi->common.horiz_scale = horiz_mode;
|
|
else
|
|
return -1;
|
|
|
|
if (vert_mode <= ONETWO)
|
|
cpi->common.vert_scale = vert_mode;
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest)
|
|
{
|
|
int i, j;
|
|
int Total = 0;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
unsigned char *dst = dest->y_buffer;
|
|
|
|
// Loop through the Y plane raw and reconstruction data summing (square differences)
|
|
for (i = 0; i < source->y_height; i += 16)
|
|
{
|
|
for (j = 0; j < source->y_width; j += 16)
|
|
{
|
|
unsigned int sse;
|
|
Total += vp8_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
|
|
}
|
|
|
|
src += 16 * source->y_stride;
|
|
dst += 16 * dest->y_stride;
|
|
}
|
|
|
|
return Total;
|
|
}
|
|
|
|
|
|
int vp8_get_quantizer(VP8_COMP *cpi)
|
|
{
|
|
return cpi->common.base_qindex;
|
|
}
|