vpx/vp8/common/mips/msa/vp8_macros_msa.h
Parag Salasakar fb73ceae85 mips msa vp8 bilinear filter optimization
average improvement ~3x-4x

Change-Id: I8c0b3d5c86c9eb4f802b87c971864d2cfceeb7cc
2015-07-24 09:21:35 +05:30

1332 lines
62 KiB
C

/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_
#define VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_
#include <msa.h>
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#define LD_B(RTYPE, psrc) *((const RTYPE *)(psrc))
#define LD_UB(...) LD_B(v16u8, __VA_ARGS__)
#define LD_SB(...) LD_B(v16i8, __VA_ARGS__)
#define LD_H(RTYPE, psrc) *((const RTYPE *)(psrc))
#define LD_UH(...) LD_H(v8u16, __VA_ARGS__)
#define LD_SH(...) LD_H(v8i16, __VA_ARGS__)
#define ST_B(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
#define ST_UB(...) ST_B(v16u8, __VA_ARGS__)
#define ST_SB(...) ST_B(v16i8, __VA_ARGS__)
#define ST_H(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
#define ST_UH(...) ST_H(v8u16, __VA_ARGS__)
#define ST_SH(...) ST_H(v8i16, __VA_ARGS__)
#if (__mips_isa_rev >= 6)
#define LW(psrc) \
({ \
const uint8_t *psrc_m = (const uint8_t *)(psrc); \
uint32_t val_m; \
\
asm volatile ( \
"lw %[val_m], %[psrc_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m) \
); \
\
val_m; \
})
#if (__mips == 64)
#define LD(psrc) \
({ \
const uint8_t *psrc_m = (const uint8_t *)(psrc); \
uint64_t val_m = 0; \
\
asm volatile ( \
"ld %[val_m], %[psrc_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m) \
); \
\
val_m; \
})
#else // !(__mips == 64)
#define LD(psrc) \
({ \
const uint8_t *psrc_m = (const uint8_t *)(psrc); \
uint32_t val0_m, val1_m; \
uint64_t val_m = 0; \
\
val0_m = LW(psrc_m); \
val1_m = LW(psrc_m + 4); \
\
val_m = (uint64_t)(val1_m); \
val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000); \
val_m = (uint64_t)(val_m | (uint64_t)val0_m); \
\
val_m; \
})
#endif // (__mips == 64)
#define SH(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *)(pdst); \
const uint16_t val_m = (val); \
\
asm volatile ( \
"sh %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#define SW(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *)(pdst); \
const uint32_t val_m = (val); \
\
asm volatile ( \
"sw %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#define SD(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *)(pdst); \
const uint64_t val_m = (val); \
\
asm volatile ( \
"sd %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#else // !(__mips_isa_rev >= 6)
#define LW(psrc) \
({ \
const uint8_t *psrc_m = (const uint8_t *)(psrc); \
uint32_t val_m; \
\
asm volatile ( \
"ulw %[val_m], %[psrc_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m) \
); \
\
val_m; \
})
#if (__mips == 64)
#define LD(psrc) \
({ \
const uint8_t *psrc_m = (const uint8_t *)(psrc); \
uint64_t val_m = 0; \
\
asm volatile ( \
"uld %[val_m], %[psrc_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m) \
); \
\
val_m; \
})
#else // !(__mips == 64)
#define LD(psrc) \
({ \
const uint8_t *psrc_m1 = (const uint8_t *)(psrc); \
uint32_t val0_m, val1_m; \
uint64_t val_m = 0; \
\
val0_m = LW(psrc_m1); \
val1_m = LW(psrc_m1 + 4); \
\
val_m = (uint64_t)(val1_m); \
val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000); \
val_m = (uint64_t)(val_m | (uint64_t)val0_m); \
\
val_m; \
})
#endif // (__mips == 64)
#define SH(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *)(pdst); \
const uint16_t val_m = (val); \
\
asm volatile ( \
"ush %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#define SW(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *)(pdst); \
const uint32_t val_m = (val); \
\
asm volatile ( \
"usw %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#define SD(val, pdst) \
{ \
uint8_t *pdst_m1 = (uint8_t *)(pdst); \
uint32_t val0_m, val1_m; \
\
val0_m = (uint32_t)((val) & 0x00000000FFFFFFFF); \
val1_m = (uint32_t)(((val) >> 32) & 0x00000000FFFFFFFF); \
\
SW(val0_m, pdst_m1); \
SW(val1_m, pdst_m1 + 4); \
}
#endif // (__mips_isa_rev >= 6)
/* Description : Load 4 words with stride
Arguments : Inputs - psrc, stride
Outputs - out0, out1, out2, out3
Details : Load word in 'out0' from (psrc)
Load word in 'out1' from (psrc + stride)
Load word in 'out2' from (psrc + 2 * stride)
Load word in 'out3' from (psrc + 3 * stride)
*/
#define LW4(psrc, stride, out0, out1, out2, out3) \
{ \
out0 = LW((psrc)); \
out1 = LW((psrc) + stride); \
out2 = LW((psrc) + 2 * stride); \
out3 = LW((psrc) + 3 * stride); \
}
/* Description : Load double words with stride
Arguments : Inputs - psrc, stride
Outputs - out0, out1
Details : Load double word in 'out0' from (psrc)
Load double word in 'out1' from (psrc + stride)
*/
#define LD2(psrc, stride, out0, out1) \
{ \
out0 = LD((psrc)); \
out1 = LD((psrc) + stride); \
}
#define LD4(psrc, stride, out0, out1, out2, out3) \
{ \
LD2((psrc), stride, out0, out1); \
LD2((psrc) + 2 * stride, stride, out2, out3); \
}
/* Description : Store 4 words with stride
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
Details : Store word from 'in0' to (pdst)
Store word from 'in1' to (pdst + stride)
Store word from 'in2' to (pdst + 2 * stride)
Store word from 'in3' to (pdst + 3 * stride)
*/
#define SW4(in0, in1, in2, in3, pdst, stride) \
{ \
SW(in0, (pdst)); \
SW(in1, (pdst) + stride); \
SW(in2, (pdst) + 2 * stride); \
SW(in3, (pdst) + 3 * stride); \
}
/* Description : Store 4 double words with stride
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
Details : Store double word from 'in0' to (pdst)
Store double word from 'in1' to (pdst + stride)
Store double word from 'in2' to (pdst + 2 * stride)
Store double word from 'in3' to (pdst + 3 * stride)
*/
#define SD4(in0, in1, in2, in3, pdst, stride) \
{ \
SD(in0, (pdst)); \
SD(in1, (pdst) + stride); \
SD(in2, (pdst) + 2 * stride); \
SD(in3, (pdst) + 3 * stride); \
}
/* Description : Load vectors with 16 byte elements with stride
Arguments : Inputs - psrc, stride
Outputs - out0, out1
Return Type - as per RTYPE
Details : Load 16 byte elements in 'out0' from (psrc)
Load 16 byte elements in 'out1' from (psrc + stride)
*/
#define LD_B2(RTYPE, psrc, stride, out0, out1) \
{ \
out0 = LD_B(RTYPE, (psrc)); \
out1 = LD_B(RTYPE, (psrc) + stride); \
}
#define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__)
#define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__)
#define LD_B3(RTYPE, psrc, stride, out0, out1, out2) \
{ \
LD_B2(RTYPE, (psrc), stride, out0, out1); \
out2 = LD_B(RTYPE, (psrc) + 2 * stride); \
}
#define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__)
#define LD_SB3(...) LD_B3(v16i8, __VA_ARGS__)
#define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) \
{ \
LD_B2(RTYPE, (psrc), stride, out0, out1); \
LD_B2(RTYPE, (psrc) + 2 * stride , stride, out2, out3); \
}
#define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__)
#define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__)
#define LD_B5(RTYPE, psrc, stride, out0, out1, out2, out3, out4) \
{ \
LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
out4 = LD_B(RTYPE, (psrc) + 4 * stride); \
}
#define LD_UB5(...) LD_B5(v16u8, __VA_ARGS__)
#define LD_SB5(...) LD_B5(v16i8, __VA_ARGS__)
#define LD_B8(RTYPE, psrc, stride, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
LD_B4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \
}
#define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__)
#define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__)
/* Description : Load vectors with 8 halfword elements with stride
Arguments : Inputs - psrc, stride
Outputs - out0, out1
Details : Load 8 halfword elements in 'out0' from (psrc)
Load 8 halfword elements in 'out1' from (psrc + stride)
*/
#define LD_H2(RTYPE, psrc, stride, out0, out1) \
{ \
out0 = LD_H(RTYPE, (psrc)); \
out1 = LD_H(RTYPE, (psrc) + (stride)); \
}
#define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__)
#define LD_H4(RTYPE, psrc, stride, out0, out1, out2, out3) \
{ \
LD_H2(RTYPE, (psrc), stride, out0, out1); \
LD_H2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \
}
#define LD_SH4(...) LD_H4(v8i16, __VA_ARGS__)
/* Description : Store vectors of 16 byte elements with stride
Arguments : Inputs - in0, in1, pdst, stride
Details : Store 16 byte elements from 'in0' to (pdst)
Store 16 byte elements from 'in1' to (pdst + stride)
*/
#define ST_B2(RTYPE, in0, in1, pdst, stride) \
{ \
ST_B(RTYPE, in0, (pdst)); \
ST_B(RTYPE, in1, (pdst) + stride); \
}
#define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__)
#define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) \
{ \
ST_B2(RTYPE, in0, in1, (pdst), stride); \
ST_B2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \
}
#define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__)
#define ST_SB4(...) ST_B4(v16i8, __VA_ARGS__)
#define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
pdst, stride) \
{ \
ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride); \
ST_B4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \
}
#define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__)
/* Description : Store vectors of 8 halfword elements with stride
Arguments : Inputs - in0, in1, pdst, stride
Details : Store 8 halfword elements from 'in0' to (pdst)
Store 8 halfword elements from 'in1' to (pdst + stride)
*/
#define ST_H2(RTYPE, in0, in1, pdst, stride) \
{ \
ST_H(RTYPE, in0, (pdst)); \
ST_H(RTYPE, in1, (pdst) + stride); \
}
#define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__)
/* Description : Store 2x4 byte block to destination memory from input vector
Arguments : Inputs - in, stidx, pdst, stride
Details : Index 'stidx' halfword element from 'in' vector is copied to
the GP register and stored to (pdst)
Index 'stidx+1' halfword element from 'in' vector is copied to
the GP register and stored to (pdst + stride)
Index 'stidx+2' halfword element from 'in' vector is copied to
the GP register and stored to (pdst + 2 * stride)
Index 'stidx+3' halfword element from 'in' vector is copied to
the GP register and stored to (pdst + 3 * stride)
*/
#define ST2x4_UB(in, stidx, pdst, stride) \
{ \
uint16_t out0_m, out1_m, out2_m, out3_m; \
uint8_t *pblk_2x4_m = (uint8_t *)(pdst); \
\
out0_m = __msa_copy_u_h((v8i16)in, (stidx)); \
out1_m = __msa_copy_u_h((v8i16)in, (stidx + 1)); \
out2_m = __msa_copy_u_h((v8i16)in, (stidx + 2)); \
out3_m = __msa_copy_u_h((v8i16)in, (stidx + 3)); \
\
SH(out0_m, pblk_2x4_m); \
SH(out1_m, pblk_2x4_m + stride); \
SH(out2_m, pblk_2x4_m + 2 * stride); \
SH(out3_m, pblk_2x4_m + 3 * stride); \
}
/* Description : Store 4x4 byte block to destination memory from input vector
Arguments : Inputs - in0, in1, pdst, stride
Details : 'Idx0' word element from input vector 'in0' is copied to the
GP register and stored to (pdst)
'Idx1' word element from input vector 'in0' is copied to the
GP register and stored to (pdst + stride)
'Idx2' word element from input vector 'in0' is copied to the
GP register and stored to (pdst + 2 * stride)
'Idx3' word element from input vector 'in0' is copied to the
GP register and stored to (pdst + 3 * stride)
*/
#define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) \
{ \
uint32_t out0_m, out1_m, out2_m, out3_m; \
uint8_t *pblk_4x4_m = (uint8_t *)(pdst); \
\
out0_m = __msa_copy_u_w((v4i32)in0, idx0); \
out1_m = __msa_copy_u_w((v4i32)in0, idx1); \
out2_m = __msa_copy_u_w((v4i32)in1, idx2); \
out3_m = __msa_copy_u_w((v4i32)in1, idx3); \
\
SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \
}
#define ST4x8_UB(in0, in1, pdst, stride) \
{ \
uint8_t *pblk_4x8 = (uint8_t *)(pdst); \
\
ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \
ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \
}
/* Description : Store 8x4 byte block to destination memory from input
vectors
Arguments : Inputs - in0, in1, pdst, stride
Details : Index 0 double word element from 'in0' vector is copied to the
GP register and stored to (pdst)
Index 1 double word element from 'in0' vector is copied to the
GP register and stored to (pdst + stride)
Index 0 double word element from 'in1' vector is copied to the
GP register and stored to (pdst + 2 * stride)
Index 1 double word element from 'in1' vector is copied to the
GP register and stored to (pdst + 3 * stride)
*/
#define ST8x4_UB(in0, in1, pdst, stride) \
{ \
uint64_t out0_m, out1_m, out2_m, out3_m; \
uint8_t *pblk_8x4_m = (uint8_t *)(pdst); \
\
out0_m = __msa_copy_u_d((v2i64)in0, 0); \
out1_m = __msa_copy_u_d((v2i64)in0, 1); \
out2_m = __msa_copy_u_d((v2i64)in1, 0); \
out3_m = __msa_copy_u_d((v2i64)in1, 1); \
\
SD4(out0_m, out1_m, out2_m, out3_m, pblk_8x4_m, stride); \
}
/* Description : Immediate number of elements to slide
Arguments : Inputs - in0_0, in0_1, in1_0, in1_1, slide_val
Outputs - out0, out1
Return Type - as per RTYPE
Details : Byte elements from 'in0_0' vector are slid into 'in1_0' by
value specified in the 'slide_val'
*/
#define SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \
{ \
out0 = (RTYPE)__msa_sldi_b((v16i8)in0_0, (v16i8)in1_0, slide_val); \
out1 = (RTYPE)__msa_sldi_b((v16i8)in0_1, (v16i8)in1_1, slide_val); \
}
#define SLDI_B3(RTYPE, in0_0, in0_1, in0_2, in1_0, in1_1, in1_2, \
out0, out1, out2, slide_val) \
{ \
SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val); \
out2 = (RTYPE)__msa_sldi_b((v16i8)in0_2, (v16i8)in1_2, slide_val); \
}
#define SLDI_B3_UH(...) SLDI_B3(v8u16, __VA_ARGS__)
/* Description : Shuffle byte vector elements as per mask vector
Arguments : Inputs - in0, in1, in2, in3, mask0, mask1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Byte elements from 'in0' & 'in1' are copied selectively to
'out0' as per control vector 'mask0'
*/
#define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \
{ \
out0 = (RTYPE)__msa_vshf_b((v16i8)mask0, (v16i8)in1, (v16i8)in0); \
out1 = (RTYPE)__msa_vshf_b((v16i8)mask1, (v16i8)in3, (v16i8)in2); \
}
#define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__)
#define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__)
#define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__)
#define VSHF_B3(RTYPE, in0, in1, in2, in3, in4, in5, mask0, mask1, mask2, \
out0, out1, out2) \
{ \
VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1); \
out2 = (RTYPE)__msa_vshf_b((v16i8)mask2, (v16i8)in5, (v16i8)in4); \
}
#define VSHF_B3_SB(...) VSHF_B3(v16i8, __VA_ARGS__)
/* Description : Dot product of byte vector elements
Arguments : Inputs - mult0, mult1, cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Unsigned byte elements from 'mult0' are multiplied with
unsigned byte elements from 'cnst0' producing a result
twice the size of input i.e. unsigned halfword.
The multiplication result of adjacent odd-even elements
are added together and written to the 'out0' vector
*/
#define DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE)__msa_dotp_u_h((v16u8)mult0, (v16u8)cnst0); \
out1 = (RTYPE)__msa_dotp_u_h((v16u8)mult1, (v16u8)cnst1); \
}
#define DOTP_UB2_UH(...) DOTP_UB2(v8u16, __VA_ARGS__)
#define DOTP_UB4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, \
out0, out1, out2, out3) \
{ \
DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DOTP_UB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DOTP_UB4_UH(...) DOTP_UB4(v8u16, __VA_ARGS__)
/* Description : Dot product of byte vector elements
Arguments : Inputs - mult0, mult1, cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Signed byte elements from 'mult0' are multiplied with
signed byte elements from 'cnst0' producing a result
twice the size of input i.e. signed halfword.
The multiplication result of adjacent odd-even elements
are added together and written to the 'out0' vector
*/
#define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \
out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \
}
#define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__)
#define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) \
{ \
DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__)
/* Description : Dot product & addition of byte vector elements
Arguments : Inputs - mult0, mult1, cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Signed byte elements from 'mult0' are multiplied with
signed byte elements from 'cnst0' producing a result
twice the size of input i.e. signed halfword.
The multiplication result of adjacent odd-even elements
are added to the 'out0' vector
*/
#define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE)__msa_dpadd_s_h((v8i16)out0, (v16i8)mult0, (v16i8)cnst0); \
out1 = (RTYPE)__msa_dpadd_s_h((v8i16)out1, (v16i8)mult1, (v16i8)cnst1); \
}
#define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__)
#define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) \
{ \
DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__)
/* Description : Clips all signed halfword elements of input vector
between 0 & 255
Arguments : Input - in
Output - out_m
Return Type - signed halfword
*/
#define CLIP_SH_0_255(in) \
({ \
v8i16 max_m = __msa_ldi_h(255); \
v8i16 out_m; \
\
out_m = __msa_maxi_s_h((v8i16)in, 0); \
out_m = __msa_min_s_h((v8i16)max_m, (v8i16)out_m); \
out_m; \
})
#define CLIP_SH2_0_255(in0, in1) \
{ \
in0 = CLIP_SH_0_255(in0); \
in1 = CLIP_SH_0_255(in1); \
}
#define CLIP_SH4_0_255(in0, in1, in2, in3) \
{ \
CLIP_SH2_0_255(in0, in1); \
CLIP_SH2_0_255(in2, in3); \
}
/* Description : Clips all signed word elements of input vector
between 0 & 255
Arguments : Input - in
Output - out_m
Return Type - signed word
*/
#define CLIP_SW_0_255(in) \
({ \
v4i32 max_m = __msa_ldi_w(255); \
v4i32 out_m; \
\
out_m = __msa_maxi_s_w((v4i32)in, 0); \
out_m = __msa_min_s_w((v4i32)max_m, (v4i32)out_m); \
out_m; \
})
/* Description : Interleave even byte elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even byte elements of 'in0' and 'in1' are interleaved
and written to 'out0'
*/
#define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \
out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \
}
#define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__)
#define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__)
#define ILVEV_B2_SD(...) ILVEV_B2(v2i64, __VA_ARGS__)
/* Description : Interleave even halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even halfword elements of 'in0' and 'in1' are interleaved
and written to 'out0'
*/
#define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \
out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \
}
#define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__)
/* Description : Interleave even word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even word elements of 'in0' and 'in1' are interleaved
and written to 'out0'
*/
#define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \
out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \
}
#define ILVEV_W2_SD(...) ILVEV_W2(v2i64, __VA_ARGS__)
/* Description : Interleave even double word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even double word elements of 'in0' and 'in1' are interleaved
and written to 'out0'
*/
#define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \
out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \
}
#define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__)
/* Description : Interleave left half of byte elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of byte elements of 'in0' and 'in1' are interleaved
and written to 'out0'.
*/
#define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \
out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \
}
#define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__)
#define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__)
#define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__)
#define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__)
#define ILVL_B4_SH(...) ILVL_B4(v8i16, __VA_ARGS__)
/* Description : Interleave left half of halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of halfword elements of 'in0' and 'in1' are
interleaved and written to 'out0'.
*/
#define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \
out1 = (RTYPE)__msa_ilvl_h((v8i16)in2, (v8i16)in3); \
}
#define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__)
#define ILVL_H2_SW(...) ILVL_H2(v4i32, __VA_ARGS__)
/* Description : Interleave left half of word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of word elements of 'in0' and 'in1' are interleaved
and written to 'out0'.
*/
#define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \
out1 = (RTYPE)__msa_ilvl_w((v4i32)in2, (v4i32)in3); \
}
#define ILVL_W2_SH(...) ILVL_W2(v8i16, __VA_ARGS__)
/* Description : Interleave right half of byte elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Right half of byte elements of 'in0' and 'in1' are interleaved
and written to out0.
*/
#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \
out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \
}
#define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__)
#define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__)
#define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__)
#define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__)
#define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__)
#define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__)
#define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__)
#define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__)
#define ILVR_B4_SW(...) ILVR_B4(v4i32, __VA_ARGS__)
/* Description : Interleave right half of halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Right half of halfword elements of 'in0' and 'in1' are
interleaved and written to 'out0'.
*/
#define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \
out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \
}
#define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__)
#define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__)
#define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__)
#define ILVR_H4_SW(...) ILVR_H4(v4i32, __VA_ARGS__)
#define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \
out1 = (RTYPE)__msa_ilvr_w((v4i32)in2, (v4i32)in3); \
}
#define ILVR_W2_SH(...) ILVR_W2(v8i16, __VA_ARGS__)
/* Description : Interleave right half of double word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Right half of double word elements of 'in0' and 'in1' are
interleaved and written to 'out0'.
*/
#define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvr_d((v2i64)(in0), (v2i64)(in1)); \
out1 = (RTYPE)__msa_ilvr_d((v2i64)(in2), (v2i64)(in3)); \
}
#define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__)
#define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__)
#define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__)
#define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__)
#define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__)
/* Description : Interleave both left and right half of input vectors
Arguments : Inputs - in0, in1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Right half of byte elements from 'in0' and 'in1' are
interleaved and written to 'out0'
*/
#define ILVRL_B2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \
out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \
}
#define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__)
#define ILVRL_H2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \
out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \
}
#define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__)
#define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__)
#define ILVRL_W2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \
out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \
}
#define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__)
#define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__)
#define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__)
/* Description : Saturate the halfword element values to the max
unsigned value of (sat_val + 1) bits
The element data width remains unchanged
Arguments : Inputs - in0, in1, sat_val
Outputs - in place operation
Return Type - as per RTYPE
Details : Each unsigned halfword element from 'in0' is saturated to the
value generated with (sat_val + 1) bit range
The results are written in place
*/
#define SAT_SH2(RTYPE, in0, in1, sat_val) \
{ \
in0 = (RTYPE)__msa_sat_s_h((v8i16)in0, sat_val); \
in1 = (RTYPE)__msa_sat_s_h((v8i16)in1, sat_val); \
}
#define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__)
#define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val) \
{ \
SAT_SH2(RTYPE, in0, in1, sat_val); \
SAT_SH2(RTYPE, in2, in3, sat_val); \
}
#define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__)
/* Description : Indexed halfword element values are replicated to all
elements in output vector
Arguments : Inputs - in, idx0, idx1
Outputs - out0, out1
Return Type - as per RTYPE
Details : 'idx0' element value from 'in' vector is replicated to all
elements in 'out0' vector
Valid index range for halfword operation is 0-7
*/
#define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1) \
{ \
out0 = (RTYPE)__msa_splati_h((v8i16)in, idx0); \
out1 = (RTYPE)__msa_splati_h((v8i16)in, idx1); \
}
#define SPLATI_H2_SB(...) SPLATI_H2(v16i8, __VA_ARGS__)
#define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__)
#define SPLATI_H3(RTYPE, in, idx0, idx1, idx2, \
out0, out1, out2) \
{ \
SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \
out2 = (RTYPE)__msa_splati_h((v8i16)in, idx2); \
}
#define SPLATI_H3_SB(...) SPLATI_H3(v16i8, __VA_ARGS__)
#define SPLATI_H3_SH(...) SPLATI_H3(v8i16, __VA_ARGS__)
/* Description : Pack even byte elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even byte elements of 'in0' are copied to the left half of
'out0' & even byte elements of 'in1' are copied to the right
half of 'out0'.
*/
#define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \
out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \
}
#define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__)
#define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__)
#define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__)
#define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__)
#define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__)
/* Description : Pack even halfword elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even halfword elements of 'in0' are copied to the left half of
'out0' & even halfword elements of 'in1' are copied to the
right half of 'out0'.
*/
#define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \
out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \
}
#define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__)
#define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__)
/* Description : Pack even double word elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even double elements of 'in0' are copied to the left half of
'out0' & even double elements of 'in1' are copied to the right
half of 'out0'.
*/
#define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_pckev_d((v2i64)in0, (v2i64)in1); \
out1 = (RTYPE)__msa_pckev_d((v2i64)in2, (v2i64)in3); \
}
#define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__)
#define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__)
/* Description : Pack odd double word elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Odd double word elements of 'in0' are copied to the left half
of 'out0' & odd double word elements of 'in1' are copied to
the right half of 'out0'.
*/
#define PCKOD_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE)__msa_pckod_d((v2i64)in0, (v2i64)in1); \
out1 = (RTYPE)__msa_pckod_d((v2i64)in2, (v2i64)in3); \
}
#define PCKOD_D2_UB(...) PCKOD_D2(v16u8, __VA_ARGS__)
#define PCKOD_D2_SH(...) PCKOD_D2(v8i16, __VA_ARGS__)
/* Description : Each byte element is logically xor'ed with immediate 128
Arguments : Inputs - in0, in1
Outputs - in place operation
Return Type - as per RTYPE
Details : Each unsigned byte element from input vector 'in0' is
logically xor'ed with 128 and the result is stored in-place.
*/
#define XORI_B2_128(RTYPE, in0, in1) \
{ \
in0 = (RTYPE)__msa_xori_b((v16u8)in0, 128); \
in1 = (RTYPE)__msa_xori_b((v16u8)in1, 128); \
}
#define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__)
#define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__)
#define XORI_B3_128(RTYPE, in0, in1, in2) \
{ \
XORI_B2_128(RTYPE, in0, in1); \
in2 = (RTYPE)__msa_xori_b((v16u8)in2, 128); \
}
#define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__)
#define XORI_B4_128(RTYPE, in0, in1, in2, in3) \
{ \
XORI_B2_128(RTYPE, in0, in1); \
XORI_B2_128(RTYPE, in2, in3); \
}
#define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__)
#define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__)
#define XORI_B5_128(RTYPE, in0, in1, in2, in3, in4) \
{ \
XORI_B3_128(RTYPE, in0, in1, in2); \
XORI_B2_128(RTYPE, in3, in4); \
}
#define XORI_B5_128_SB(...) XORI_B5_128(v16i8, __VA_ARGS__)
#define XORI_B8_128(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7) \
{ \
XORI_B4_128(RTYPE, in0, in1, in2, in3); \
XORI_B4_128(RTYPE, in4, in5, in6, in7); \
}
#define XORI_B8_128_SB(...) XORI_B8_128(v16i8, __VA_ARGS__)
/* Description : Arithmetic shift right all elements of vector
(generic for all data types)
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in place operation
Return Type - as per input vector RTYPE
Details : Each element of vector 'in0' is right shifted by 'shift' and
the result is written in-place. 'shift' is a GP variable.
*/
#define SRA_4V(in0, in1, in2, in3, shift) \
{ \
in0 = in0 >> shift; \
in1 = in1 >> shift; \
in2 = in2 >> shift; \
in3 = in3 >> shift; \
}
/* Description : Shift right arithmetic rounded (immediate)
Arguments : Inputs - in0, in1, shift
Outputs - in place operation
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right arithmetically by
the value in 'shift'. The last discarded bit is added to the
shifted value for rounding and the result is written in-place.
'shift' is an immediate value.
*/
#define SRARI_H2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE)__msa_srari_h((v8i16)in0, shift); \
in1 = (RTYPE)__msa_srari_h((v8i16)in1, shift); \
}
#define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__)
#define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__)
#define SRARI_H4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRARI_H2(RTYPE, in0, in1, shift); \
SRARI_H2(RTYPE, in2, in3, shift); \
}
#define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__)
#define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__)
#define SRARI_W2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \
in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \
}
#define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRARI_W2(RTYPE, in0, in1, shift); \
SRARI_W2(RTYPE, in2, in3, shift); \
}
#define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__)
/* Description : Multiplication of pairs of vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Details : Each element from 'in0' is multiplied with elements from 'in1'
and the result is written to 'out0'
*/
#define MUL2(in0, in1, in2, in3, out0, out1) \
{ \
out0 = in0 * in1; \
out1 = in2 * in3; \
}
#define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
MUL2(in0, in1, in2, in3, out0, out1); \
MUL2(in4, in5, in6, in7, out2, out3); \
}
/* Description : Addition of 2 pairs of vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Details : Each element in 'in0' is added to 'in1' and result is written
to 'out0'.
*/
#define ADD2(in0, in1, in2, in3, out0, out1) \
{ \
out0 = in0 + in1; \
out1 = in2 + in3; \
}
#define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ADD2(in0, in1, in2, in3, out0, out1); \
ADD2(in4, in5, in6, in7, out2, out3); \
}
/* Description : Sign extend halfword elements from input vector and return
the result in pair of vectors
Arguments : Input - in (halfword vector)
Outputs - out0, out1 (sign extended word vectors)
Return Type - signed word
Details : Sign bit of halfword elements from input vector 'in' is
extracted and interleaved right with same vector 'in0' to
generate 4 signed word elements in 'out0'
Then interleaved left with same vector 'in0' to
generate 4 signed word elements in 'out1'
*/
#define UNPCK_SH_SW(in, out0, out1) \
{ \
v8i16 tmp_m; \
\
tmp_m = __msa_clti_s_h((v8i16)in, 0); \
ILVRL_H2_SW(tmp_m, in, out0, out1); \
}
/* Description : Butterfly of 4 input vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1, out2, out3
Details : Butterfly operation
*/
#define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
out0 = in0 + in3; \
out1 = in1 + in2; \
\
out2 = in1 - in2; \
out3 = in0 - in3; \
}
/* Description : Transpose 16x4 block into 4x16 with byte elements in vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7,
in8, in9, in10, in11, in12, in13, in14, in15
Outputs - out0, out1, out2, out3
Return Type - unsigned byte
*/
#define TRANSPOSE16x4_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
in8, in9, in10, in11, in12, in13, in14, in15, \
out0, out1, out2, out3) \
{ \
v2i64 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
\
ILVEV_W2_SD(in0, in4, in8, in12, tmp0_m, tmp1_m); \
out1 = (v16u8)__msa_ilvev_d(tmp1_m, tmp0_m); \
\
ILVEV_W2_SD(in1, in5, in9, in13, tmp0_m, tmp1_m); \
out3 = (v16u8)__msa_ilvev_d(tmp1_m, tmp0_m); \
\
ILVEV_W2_SD(in2, in6, in10, in14, tmp0_m, tmp1_m); \
\
tmp2_m = __msa_ilvev_d(tmp1_m, tmp0_m); \
ILVEV_W2_SD(in3, in7, in11, in15, tmp0_m, tmp1_m); \
\
tmp3_m = __msa_ilvev_d(tmp1_m, tmp0_m); \
ILVEV_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \
out0 = (v16u8)__msa_ilvev_h((v8i16)tmp1_m, (v8i16)tmp0_m); \
out2 = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \
\
tmp0_m = (v2i64)__msa_ilvod_b((v16i8)out3, (v16i8)out1); \
tmp1_m = (v2i64)__msa_ilvod_b((v16i8)tmp3_m, (v16i8)tmp2_m); \
out1 = (v16u8)__msa_ilvev_h((v8i16)tmp1_m, (v8i16)tmp0_m); \
out3 = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \
}
/* Description : Transpose 16x8 block into 8x16 with byte elements in vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7,
in8, in9, in10, in11, in12, in13, in14, in15
Outputs - out0, out1, out2, out3, out4, out5, out6, out7
Return Type - unsigned byte
*/
#define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
in8, in9, in10, in11, in12, in13, in14, in15, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \
\
ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \
ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \
ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \
ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \
\
tmp0_m = (v16u8)__msa_ilvev_b((v16i8)out6, (v16i8)out7); \
tmp4_m = (v16u8)__msa_ilvod_b((v16i8)out6, (v16i8)out7); \
tmp1_m = (v16u8)__msa_ilvev_b((v16i8)out4, (v16i8)out5); \
tmp5_m = (v16u8)__msa_ilvod_b((v16i8)out4, (v16i8)out5); \
out5 = (v16u8)__msa_ilvev_b((v16i8)out2, (v16i8)out3); \
tmp6_m = (v16u8)__msa_ilvod_b((v16i8)out2, (v16i8)out3); \
out7 = (v16u8)__msa_ilvev_b((v16i8)out0, (v16i8)out1); \
tmp7_m = (v16u8)__msa_ilvod_b((v16i8)out0, (v16i8)out1); \
\
ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \
out0 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \
out4 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \
\
tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \
tmp3_m = (v16u8)__msa_ilvod_h((v8i16)out7, (v8i16)out5); \
out2 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \
out6 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \
\
ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \
out1 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \
out5 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \
\
tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \
tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \
tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \
tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \
out3 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \
out7 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \
}
/* Description : Transpose 8x4 block with half word elements in vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3, out4, out5, out6, out7
Return Type - signed halfword
*/
#define TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
\
ILVR_H2_SH(in1, in0, in3, in2, tmp0_m, tmp1_m); \
ILVL_H2_SH(in1, in0, in3, in2, tmp2_m, tmp3_m); \
ILVR_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out0, out2); \
ILVL_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out1, out3); \
}
/* Description : Transpose 4x4 block with word elements in vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1, out2, out3
Return Type - signed word
*/
#define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
v4i32 s0_m, s1_m, s2_m, s3_m; \
\
ILVRL_W2_SW(in1, in0, s0_m, s1_m); \
ILVRL_W2_SW(in3, in2, s2_m, s3_m); \
\
out0 = (v4i32)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m); \
out1 = (v4i32)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \
out2 = (v4i32)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \
out3 = (v4i32)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \
}
/* Description : Dot product and addition of 3 signed halfword input vectors
Arguments : Inputs - in0, in1, in2, coeff0, coeff1, coeff2
Output - out0_m
Return Type - signed halfword
Details : Dot product of 'in0' with 'coeff0'
Dot product of 'in1' with 'coeff1'
Dot product of 'in2' with 'coeff2'
Addition of all the 3 vector results
out0_m = (in0 * coeff0) + (in1 * coeff1) + (in2 * coeff2)
*/
#define DPADD_SH3_SH(in0, in1, in2, coeff0, coeff1, coeff2) \
({ \
v8i16 tmp1_m; \
v8i16 out0_m; \
\
out0_m = __msa_dotp_s_h((v16i8)in0, (v16i8)coeff0); \
out0_m = __msa_dpadd_s_h(out0_m, (v16i8)in1, (v16i8)coeff1); \
tmp1_m = __msa_dotp_s_h((v16i8)in2, (v16i8)coeff2); \
out0_m = __msa_adds_s_h(out0_m, tmp1_m); \
\
out0_m; \
})
/* Description : Pack even elements of input vectors & xor with 128
Arguments : Inputs - in0, in1
Output - out_m
Return Type - unsigned byte
Details : Signed byte even elements from 'in0' and 'in1' are packed
together in one vector and the resulting vector is xor'ed with
128 to shift the range from signed to unsigned byte
*/
#define PCKEV_XORI128_UB(in0, in1) \
({ \
v16u8 out_m; \
out_m = (v16u8)__msa_pckev_b((v16i8)in1, (v16i8)in0); \
out_m = (v16u8)__msa_xori_b((v16u8)out_m, 128); \
out_m; \
})
/* Description : Pack even byte elements and store byte vector in destination
memory
Arguments : Inputs - in0, in1, pdst
*/
#define PCKEV_ST_SB(in0, in1, pdst) \
{ \
v16i8 tmp_m; \
tmp_m = __msa_pckev_b((v16i8)in1, (v16i8)in0); \
ST_SB(tmp_m, (pdst)); \
}
/* Description : Horizontal 2 tap filter kernel code
Arguments : Inputs - in0, in1, mask, coeff, shift
*/
#define HORIZ_2TAP_FILT_UH(in0, in1, mask, coeff, shift) \
({ \
v16i8 tmp0_m; \
v8u16 tmp1_m; \
\
tmp0_m = __msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0); \
tmp1_m = __msa_dotp_u_h((v16u8)tmp0_m, (v16u8)coeff); \
tmp1_m = (v8u16)__msa_srari_h((v8i16)tmp1_m, shift); \
\
tmp1_m; \
})
#endif /* VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_ */