vpx/vp9/encoder/vp9_onyx_if.c
Deb Mukherjee 15b5a6a2c7 Flexible support for various pattern searches
Adds a few pattern searches to achieve various tradeoffs
between motion estimation complexity and performance.
The search framework is unified across these searches so that a
common pattern search function is used for all. Besides it will
be easier to experiment with various patterns or combinations
thereof at different scales in the future.

The new pattern search is multi-scale and is capable of using
different patterns at different scales.

The new hex search uses 8 points at the smallest scale
and 6 points at other scales.
Two other pattern searches - big-diamond and square are
also added. Big diamond uses 4 points at the smallest scale and
8 points in diamond shape at the larger scales.
Square is very similar conceptually to the default n-step search
but is somewhat faster since it keeps only one survivor across
all scales.

Psnr/speed-up results on derf300:

hex: -1.6% psnr%, 6-8% speed-up
big-diamond: -0.96% psnr, 4-5% speedup
square: -0.93% psnr, 4-5% speedup

Change-Id: I02a7ef5193f762601e0994e2c99399a3535a43d2
2013-08-06 11:56:39 -07:00

4133 lines
130 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_psnr.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "./vp9_rtcd.h"
#include "./vpx_scale_rtcd.h"
#if CONFIG_POSTPROC
#include "vp9/common/vp9_postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_mbgraph.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_picklpf.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/encoder/vp9_temporal_filter.h"
#include <math.h>
#include <stdio.h>
#include <limits.h>
extern void print_tree_update_probs();
static void set_default_lf_deltas(VP9_COMP *cpi);
#define DEFAULT_INTERP_FILTER SWITCHABLE
#define SEARCH_BEST_FILTER 0 /* to search exhaustively for
best filter */
#define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state
before trying each new filter */
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
#define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv
for altref computation */
#define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision
mv. Choose a very high value for
now so that HIGH_PRECISION is always
chosen */
#if CONFIG_INTERNAL_STATS
#include "math.h"
extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, int lumamask,
double *weight);
extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, double *ssim_y,
double *ssim_u, double *ssim_v);
#endif
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#ifdef ENTROPY_STATS
extern int intra_mode_stats[VP9_INTRA_MODES]
[VP9_INTRA_MODES]
[VP9_INTRA_MODES];
#endif
#ifdef NMV_STATS
extern void init_nmvstats();
extern void print_nmvstats();
#endif
#ifdef MODE_STATS
extern void init_tx_count_stats();
extern void write_tx_count_stats();
extern void init_switchable_interp_stats();
extern void write_switchable_interp_stats();
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
#if defined(SECTIONBITS_OUTPUT)
extern unsigned __int64 Sectionbits[500];
#endif
extern void vp9_init_quantizer(VP9_COMP *cpi);
// Tables relating active max Q to active min Q
static int kf_low_motion_minq[QINDEX_RANGE];
static int kf_high_motion_minq[QINDEX_RANGE];
static int gf_low_motion_minq[QINDEX_RANGE];
static int gf_high_motion_minq[QINDEX_RANGE];
static int inter_minq[QINDEX_RANGE];
static INLINE void Scale2Ratio(int mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
static int calculate_minq_index(double maxq,
double x3, double x2, double x1, double c) {
int i;
const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
maxq);
// Special case handling to deal with the step from q2.0
// down to lossless mode represented by q 1.0.
if (minqtarget <= 2.0)
return 0;
for (i = 0; i < QINDEX_RANGE; i++) {
if (minqtarget <= vp9_convert_qindex_to_q(i))
return i;
}
return QINDEX_RANGE - 1;
}
static void init_minq_luts(void) {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
const double maxq = vp9_convert_qindex_to_q(i);
kf_low_motion_minq[i] = calculate_minq_index(maxq,
0.000001,
-0.0004,
0.15,
0.0);
kf_high_motion_minq[i] = calculate_minq_index(maxq,
0.000002,
-0.0012,
0.5,
0.0);
gf_low_motion_minq[i] = calculate_minq_index(maxq,
0.0000015,
-0.0009,
0.33,
0.0);
gf_high_motion_minq[i] = calculate_minq_index(maxq,
0.0000021,
-0.00125,
0.45,
0.0);
inter_minq[i] = calculate_minq_index(maxq,
0.00000271,
-0.00113,
0.697,
0.0);
}
}
static void set_mvcost(MACROBLOCK *mb) {
if (mb->e_mbd.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvsadcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvsadcost;
}
}
void vp9_initialize_enc() {
static int init_done = 0;
if (!init_done) {
vp9_initialize_common();
vp9_tokenize_initialize();
vp9_init_quant_tables();
vp9_init_me_luts();
init_minq_luts();
// init_base_skip_probs();
init_done = 1;
}
}
static void setup_features(VP9_COMP *cpi) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
struct loopfilter *const lf = &xd->lf;
struct segmentation *const seg = &xd->seg;
// Set up default state for MB feature flags
seg->enabled = 0;
seg->update_map = 0;
seg->update_data = 0;
vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
vp9_clearall_segfeatures(seg);
lf->mode_ref_delta_enabled = 0;
lf->mode_ref_delta_update = 0;
vp9_zero(lf->ref_deltas);
vp9_zero(lf->mode_deltas);
vp9_zero(lf->last_ref_deltas);
vp9_zero(lf->last_mode_deltas);
set_default_lf_deltas(cpi);
}
static void dealloc_compressor_data(VP9_COMP *cpi) {
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->common.last_frame_seg_map);
cpi->common.last_frame_seg_map = 0;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp9_free_frame_buffers(&cpi->common);
vp9_free_frame_buffer(&cpi->last_frame_uf);
vp9_free_frame_buffer(&cpi->scaled_source);
vp9_free_frame_buffer(&cpi->alt_ref_buffer);
vp9_lookahead_destroy(cpi->lookahead);
vpx_free(cpi->tok);
cpi->tok = 0;
// Activity mask based per mb zbin adjustments
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb_norm_activity_map);
cpi->mb_norm_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
}
// Computes a q delta (in "q index" terms) to get from a starting q value
// to a target value
// target q value
static int compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget) {
int i;
int start_index = cpi->worst_quality;
int target_index = cpi->worst_quality;
// Convert the average q value to an index.
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
start_index = i;
if (vp9_convert_qindex_to_q(i) >= qstart)
break;
}
// Convert the q target to an index
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
target_index = i;
if (vp9_convert_qindex_to_q(i) >= qtarget)
break;
}
return target_index - start_index;
}
static void configure_static_seg_features(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
struct segmentation *seg = &xd->seg;
int high_q = (int)(cpi->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp9_disable_segmentation((VP9_PTR)cpi);
// Clear down the segment features.
vp9_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp9_disable_segmentation((VP9_PTR)cpi);
vp9_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp9_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta - 2));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
seg->abs_delta = SEGMENT_DELTADATA;
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (cpi->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (cpi->source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
seg->abs_delta = SEGMENT_DELTADATA;
qi_delta = compute_qdelta(cpi, cpi->avg_q,
(cpi->avg_q * 1.125));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta + 2));
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
vp9_disable_segmentation((VP9_PTR)cpi);
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
vp9_clearall_segfeatures(seg);
}
} else if (cpi->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
#ifdef ENTROPY_STATS
void vp9_update_mode_context_stats(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i, j;
unsigned int (*inter_mode_counts)[VP9_INTER_MODES - 1][2] =
cm->fc.inter_mode_counts;
int64_t (*mv_ref_stats)[VP9_INTER_MODES - 1][2] = cpi->mv_ref_stats;
FILE *f;
// Read the past stats counters
f = fopen("mode_context.bin", "rb");
if (!f) {
vpx_memset(cpi->mv_ref_stats, 0, sizeof(cpi->mv_ref_stats));
} else {
fread(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f);
fclose(f);
}
// Add in the values for this frame
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < VP9_INTER_MODES - 1; j++) {
mv_ref_stats[i][j][0] += (int64_t)inter_mode_counts[i][j][0];
mv_ref_stats[i][j][1] += (int64_t)inter_mode_counts[i][j][1];
}
}
// Write back the accumulated stats
f = fopen("mode_context.bin", "wb");
fwrite(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f);
fclose(f);
}
void print_mode_context(VP9_COMP *cpi) {
FILE *f = fopen("vp9_modecont.c", "a");
int i, j;
fprintf(f, "#include \"vp9_entropy.h\"\n");
fprintf(
f,
"const int inter_mode_probs[INTER_MODE_CONTEXTS][VP9_INTER_MODES - 1] =");
fprintf(f, "{\n");
for (j = 0; j < INTER_MODE_CONTEXTS; j++) {
fprintf(f, " {/* %d */ ", j);
fprintf(f, " ");
for (i = 0; i < VP9_INTER_MODES - 1; i++) {
int this_prob;
int64_t count = cpi->mv_ref_stats[j][i][0] + cpi->mv_ref_stats[j][i][1];
if (count)
this_prob = ((cpi->mv_ref_stats[j][i][0] * 256) + (count >> 1)) / count;
else
this_prob = 128;
// context probs
fprintf(f, "%5d, ", this_prob);
}
fprintf(f, " },\n");
}
fprintf(f, "};\n");
fclose(f);
}
#endif // ENTROPY_STATS
// DEBUG: Print out the segment id of each MB in the current frame.
static void print_seg_map(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int row, col;
int map_index = 0;
FILE *statsfile = fopen("segmap.stt", "a");
fprintf(statsfile, "%10d\n", cm->current_video_frame);
for (row = 0; row < cpi->common.mi_rows; row++) {
for (col = 0; col < cpi->common.mi_cols; col++) {
fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]);
map_index++;
}
fprintf(statsfile, "\n");
}
fprintf(statsfile, "\n");
fclose(statsfile);
}
static void update_reference_segmentation_map(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int row, col;
MODE_INFO *mi, *mi_ptr = cm->mi;
uint8_t *cache_ptr = cm->last_frame_seg_map, *cache;
for (row = 0; row < cm->mi_rows; row++) {
mi = mi_ptr;
cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi++, cache++)
cache[0] = mi->mbmi.segment_id;
mi_ptr += cm->mode_info_stride;
cache_ptr += cm->mi_cols;
}
}
static void set_default_lf_deltas(VP9_COMP *cpi) {
struct loopfilter *lf = &cpi->mb.e_mbd.lf;
lf->mode_ref_delta_enabled = 1;
lf->mode_ref_delta_update = 1;
vp9_zero(lf->ref_deltas);
vp9_zero(lf->mode_deltas);
// Test of ref frame deltas
lf->ref_deltas[INTRA_FRAME] = 2;
lf->ref_deltas[LAST_FRAME] = 0;
lf->ref_deltas[GOLDEN_FRAME] = -2;
lf->ref_deltas[ALTREF_FRAME] = -2;
lf->mode_deltas[0] = 0; // Zero
lf->mode_deltas[1] = 0; // New mv
}
static void set_rd_speed_thresholds(VP9_COMP *cpi, int mode, int speed) {
SPEED_FEATURES *sf = &cpi->sf;
int speed_multiplier = speed + 1;
int i;
// Set baseline threshold values
for (i = 0; i < MAX_MODES; ++i)
sf->thresh_mult[i] = mode == 0 ? -500 : 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG] = 0;
sf->thresh_mult[THR_NEARESTA] = 0;
sf->thresh_mult[THR_NEWMV] += speed_multiplier * 1000;
sf->thresh_mult[THR_COMP_NEARESTLA] += speed_multiplier * 1000;
sf->thresh_mult[THR_NEARMV] += speed_multiplier * 1000;
sf->thresh_mult[THR_COMP_NEARESTGA] += speed_multiplier * 1000;
sf->thresh_mult[THR_DC] += speed_multiplier * 1000;
sf->thresh_mult[THR_NEWG] += speed_multiplier * 1000;
sf->thresh_mult[THR_NEWA] += speed_multiplier * 1000;
sf->thresh_mult[THR_NEARA] += speed_multiplier * 1000;
sf->thresh_mult[THR_TM] += speed_multiplier * 1000;
sf->thresh_mult[THR_COMP_NEARLA] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEWLA] += speed_multiplier * 2000;
sf->thresh_mult[THR_NEARG] += speed_multiplier * 1000;
sf->thresh_mult[THR_COMP_NEARGA] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEWGA] += speed_multiplier * 2000;
sf->thresh_mult[THR_SPLITMV] += speed_multiplier * 2500;
sf->thresh_mult[THR_SPLITG] += speed_multiplier * 2500;
sf->thresh_mult[THR_SPLITA] += speed_multiplier * 2500;
sf->thresh_mult[THR_COMP_SPLITLA] += speed_multiplier * 4500;
sf->thresh_mult[THR_COMP_SPLITGA] += speed_multiplier * 4500;
sf->thresh_mult[THR_ZEROMV] += speed_multiplier * 2000;
sf->thresh_mult[THR_ZEROG] += speed_multiplier * 2000;
sf->thresh_mult[THR_ZEROA] += speed_multiplier * 2000;
sf->thresh_mult[THR_COMP_ZEROLA] += speed_multiplier * 2500;
sf->thresh_mult[THR_COMP_ZEROGA] += speed_multiplier * 2500;
sf->thresh_mult[THR_B_PRED] += speed_multiplier * 2500;
sf->thresh_mult[THR_H_PRED] += speed_multiplier * 2000;
sf->thresh_mult[THR_V_PRED] += speed_multiplier * 2000;
sf->thresh_mult[THR_D45_PRED ] += speed_multiplier * 2500;
sf->thresh_mult[THR_D135_PRED] += speed_multiplier * 2500;
sf->thresh_mult[THR_D117_PRED] += speed_multiplier * 2500;
sf->thresh_mult[THR_D153_PRED] += speed_multiplier * 2500;
sf->thresh_mult[THR_D27_PRED] += speed_multiplier * 2500;
sf->thresh_mult[THR_D63_PRED] += speed_multiplier * 2500;
if (cpi->sf.skip_lots_of_modes) {
for (i = 0; i < MAX_MODES; ++i)
sf->thresh_mult[i] = INT_MAX;
sf->thresh_mult[THR_DC] = 2000;
sf->thresh_mult[THR_TM] = 2000;
sf->thresh_mult[THR_NEWMV] = 4000;
sf->thresh_mult[THR_NEWG] = 4000;
sf->thresh_mult[THR_NEWA] = 4000;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG] = 0;
sf->thresh_mult[THR_NEARESTA] = 0;
sf->thresh_mult[THR_NEARMV] = 2000;
sf->thresh_mult[THR_NEARG] = 2000;
sf->thresh_mult[THR_NEARA] = 2000;
sf->thresh_mult[THR_COMP_NEARESTLA] = 2000;
sf->thresh_mult[THR_SPLITMV] = 2500;
sf->thresh_mult[THR_SPLITG] = 2500;
sf->thresh_mult[THR_SPLITA] = 2500;
sf->recode_loop = 0;
}
/* disable frame modes if flags not set */
if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) {
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) {
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
(VP9_LAST_FLAG | VP9_ALT_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
(VP9_GOLD_FLAG | VP9_ALT_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
}
if (sf->disable_splitmv == 1) {
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
}
}
void vp9_set_speed_features(VP9_COMP *cpi) {
SPEED_FEATURES *sf = &cpi->sf;
int mode = cpi->compressor_speed;
int speed = cpi->speed;
int i;
// Only modes 0 and 1 supported for now in experimental code basae
if (mode > 1)
mode = 1;
// Initialise default mode frequency sampling variables
for (i = 0; i < MAX_MODES; i ++) {
cpi->mode_check_freq[i] = 0;
cpi->mode_test_hit_counts[i] = 0;
cpi->mode_chosen_counts[i] = 0;
}
// best quality defaults
sf->RD = 1;
sf->search_method = NSTEP;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->iterative_sub_pixel = 1;
sf->optimize_coefficients = !cpi->oxcf.lossless;
sf->reduce_first_step_size = 0;
sf->auto_mv_step_size = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->comp_inter_joint_search_thresh = BLOCK_4X4;
sf->adaptive_rd_thresh = 0;
sf->use_lastframe_partitioning = 0;
sf->tx_size_search_method = USE_FULL_RD;
sf->use_8tap_always = 0;
sf->use_avoid_tested_higherror = 0;
sf->reference_masking = 0;
sf->skip_lots_of_modes = 0;
sf->adjust_thresholds_by_speed = 0;
sf->partition_by_variance = 0;
sf->use_one_partition_size_always = 0;
sf->less_rectangular_check = 0;
sf->use_square_partition_only = 0;
sf->auto_min_max_partition_size = 0;
sf->auto_min_max_partition_interval = 0;
sf->auto_min_max_partition_count = 0;
// sf->use_max_partition_size = 0;
sf->max_partition_size = BLOCK_64X64;
// sf->use_min_partition_size = 0;
sf->min_partition_size = BLOCK_4X4;
sf->adjust_partitioning_from_last_frame = 0;
sf->last_partitioning_redo_frequency = 4;
sf->disable_splitmv = 0;
sf->mode_search_skip_flags = 0;
sf->last_chroma_intra_mode = TM_PRED;
sf->use_rd_breakout = 0;
sf->skip_encode_sb = 0;
sf->use_uv_intra_rd_estimate = 0;
sf->using_small_partition_info = 0;
// Skip any mode not chosen at size < X for all sizes > X
// Hence BLOCK_64X64 (skip is off)
sf->unused_mode_skip_lvl = BLOCK_64X64;
#if CONFIG_MULTIPLE_ARF
// Switch segmentation off.
sf->static_segmentation = 0;
#else
sf->static_segmentation = 0;
#endif
switch (mode) {
case 0: // best quality mode
sf->search_best_filter = SEARCH_BEST_FILTER;
break;
case 1:
#if CONFIG_MULTIPLE_ARF
// Switch segmentation off.
sf->static_segmentation = 0;
#else
sf->static_segmentation = 0;
#endif
sf->use_avoid_tested_higherror = 1;
sf->adaptive_rd_thresh = 1;
if (speed == 1) {
sf->comp_inter_joint_search_thresh = BLOCK_SIZE_TYPES;
sf->less_rectangular_check = 1;
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0) ?
USE_FULL_RD :
USE_LARGESTALL);
sf->use_square_partition_only = !(cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0);
sf->disable_splitmv =
(MIN(cpi->common.width, cpi->common.height) >= 720)? 1 : 0;
sf->unused_mode_skip_lvl = BLOCK_32X32;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_INTRA_LOWVAR;
sf->use_uv_intra_rd_estimate = 1;
sf->use_rd_breakout = 1;
sf->skip_encode_sb = 1;
sf->auto_mv_step_size = 1;
sf->auto_min_max_partition_size = 1;
// sf->use_max_partition_size = 1;
// sf->use_min_partition_size = 1;
sf->auto_min_max_partition_interval = 1;
}
if (speed == 2) {
sf->adjust_thresholds_by_speed = 1;
sf->less_rectangular_check = 1;
sf->use_square_partition_only = 1;
sf->comp_inter_joint_search_thresh = BLOCK_SIZE_TYPES;
sf->use_lastframe_partitioning = 1;
sf->adjust_partitioning_from_last_frame = 1;
sf->last_partitioning_redo_frequency = 3;
sf->unused_mode_skip_lvl = BLOCK_32X32;
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0) ?
USE_FULL_RD :
USE_LARGESTALL);
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_COMP_REFMISMATCH |
FLAG_SKIP_INTRA_LOWVAR |
FLAG_EARLY_TERMINATE;
sf->last_chroma_intra_mode = DC_PRED;
sf->use_uv_intra_rd_estimate = 1;
sf->use_rd_breakout = 1;
sf->skip_encode_sb = 1;
sf->using_small_partition_info = 1;
sf->disable_splitmv =
(MIN(cpi->common.width, cpi->common.height) >= 720)? 1 : 0;
sf->auto_mv_step_size = 1;
sf->search_method = SQUARE;
}
if (speed == 3) {
sf->comp_inter_joint_search_thresh = BLOCK_SIZE_TYPES;
sf->partition_by_variance = 1;
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0) ?
USE_FULL_RD :
USE_LARGESTALL);
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_COMP_REFMISMATCH |
FLAG_SKIP_INTRA_LOWVAR |
FLAG_EARLY_TERMINATE;
sf->use_rd_breakout = 1;
sf->skip_encode_sb = 1;
sf->disable_splitmv = 1;
sf->auto_mv_step_size = 1;
sf->search_method = BIGDIA;
}
if (speed == 4) {
sf->comp_inter_joint_search_thresh = BLOCK_SIZE_TYPES;
sf->use_one_partition_size_always = 1;
sf->always_this_block_size = BLOCK_16X16;
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0) ?
USE_FULL_RD :
USE_LARGESTALL);
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_COMP_REFMISMATCH |
FLAG_SKIP_INTRA_LOWVAR |
FLAG_EARLY_TERMINATE;
sf->use_rd_breakout = 1;
sf->optimize_coefficients = 0;
sf->auto_mv_step_size = 1;
// sf->reduce_first_step_size = 1;
// sf->reference_masking = 1;
sf->disable_splitmv = 1;
sf->search_method = HEX;
}
/*
if (speed == 2) {
sf->first_step = 0;
sf->comp_inter_joint_search_thresh = BLOCK_8X8;
sf->use_max_partition_size = 1;
sf->max_partition_size = BLOCK_16X16;
}
if (speed == 3) {
sf->first_step = 0;
sf->comp_inter_joint_search_thresh = BLOCK_B8X8;
sf->use_min_partition_size = 1;
sf->min_partition_size = BLOCK_8X8;
}
*/
break;
}; /* switch */
// Set rd thresholds based on mode and speed setting
if (cpi->sf.adjust_thresholds_by_speed)
set_rd_speed_thresholds(cpi, mode, speed);
else
set_rd_speed_thresholds(cpi, mode, 0);
// Slow quant, dct and trellis not worthwhile for first pass
// so make sure they are always turned off.
if (cpi->pass == 1) {
sf->optimize_coefficients = 0;
}
cpi->mb.fwd_txm16x16 = vp9_short_fdct16x16;
cpi->mb.fwd_txm8x8 = vp9_short_fdct8x8;
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) {
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
}
cpi->mb.quantize_b_4x4 = vp9_regular_quantize_b_4x4;
if (cpi->sf.iterative_sub_pixel == 1) {
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step_iteratively;
} else if (cpi->sf.quarter_pixel_search) {
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step;
} else if (cpi->sf.half_pixel_search) {
cpi->find_fractional_mv_step = vp9_find_best_half_pixel_step;
}
cpi->mb.optimize = cpi->sf.optimize_coefficients == 1 && cpi->pass != 1;
#ifdef SPEEDSTATS
frames_at_speed[cpi->speed]++;
#endif
}
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
cpi->lookahead = vp9_lookahead_init(cpi->oxcf.width, cpi->oxcf.height,
cm->subsampling_x, cm->subsampling_y,
cpi->oxcf.lag_in_frames);
if (!cpi->lookahead)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
cpi->oxcf.width, cpi->oxcf.height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
static int alloc_partition_data(VP9_COMP *cpi) {
vpx_free(cpi->mb.pip);
cpi->mb.pip = vpx_calloc(cpi->common.mode_info_stride *
(cpi->common.mi_rows + MI_BLOCK_SIZE),
sizeof(PARTITION_INFO));
if (!cpi->mb.pip)
return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
if (vp9_alloc_frame_buffers(cm, cm->width, cm->height))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (alloc_partition_data(cpi))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
if (vp9_alloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp9_alloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
vpx_free(cpi->tok);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
// Data used for real time vc mode to see if gf needs refreshing
cpi->inter_zz_count = 0;
cpi->gf_bad_count = 0;
cpi->gf_update_recommended = 0;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(cm, cpi->mb_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->mb_norm_activity_map);
CHECK_MEM_ERROR(cm, cpi->mb_norm_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
}
static void update_frame_size(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
vp9_update_frame_size(cm);
// Update size of buffers local to this frame
if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate last frame buffer");
if (vp9_realloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate scaled source buffer");
{
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.search_method == NSTEP) {
vp9_init3smotion_compensation(&cpi->mb, y_stride);
} else if (cpi->sf.search_method == DIAMOND) {
vp9_init_dsmotion_compensation(&cpi->mb, y_stride);
}
}
}
// TODO perhaps change number of steps expose to outside world when setting
// max and min limits. Also this will likely want refining for the extended Q
// range.
//
// Table that converts 0-63 Q range values passed in outside to the Qindex
// range used internally.
static const int q_trans[] = {
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124,
128, 132, 136, 140, 144, 148, 152, 156,
160, 164, 168, 172, 176, 180, 184, 188,
192, 196, 200, 204, 208, 212, 216, 220,
224, 228, 232, 236, 240, 244, 249, 255,
};
int vp9_reverse_trans(int x) {
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
};
void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
if (framerate < 0.1)
framerate = 30;
cpi->oxcf.framerate = framerate;
cpi->output_framerate = cpi->oxcf.framerate;
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->min_frame_bandwidth = MAX(cpi->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
// Set Maximum gf/arf interval
cpi->max_gf_interval = 16;
// Extended interval for genuinely static scenes
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
// Special conditions when alt ref frame enabled in lagged compress mode
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval)
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
static int64_t rescale(int val, int64_t num, int denom) {
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (llval * llnum / llden);
}
static void set_tile_limits(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int min_log2_tile_cols, max_log2_tile_cols;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
}
static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *const cm = &cpi->common;
int i;
cpi->oxcf = *oxcf;
cpi->goldfreq = 7;
cm->version = oxcf->version;
cm->width = oxcf->width;
cm->height = oxcf->height;
cm->subsampling_x = 0;
cm->subsampling_y = 0;
vp9_alloc_compressor_data(cpi);
// change includes all joint functionality
vp9_change_config(ptr, oxcf);
// Initialize active best and worst q and average q values.
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
// Initialise the starting buffer levels
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
cpi->static_mb_pct = 0;
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
set_tile_limits(cpi);
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *const cm = &cpi->common;
if (!cpi || !oxcf)
return;
if (cm->version != oxcf->version) {
cm->version = oxcf->version;
}
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode) {
// Real time and one pass deprecated in test code base
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5);
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
cpi->oxcf.lossless = oxcf->lossless;
if (cpi->oxcf.lossless) {
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add;
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add;
} else {
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add;
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add;
}
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
// cpi->use_golden_frame_only = 0;
// cpi->use_last_frame_only = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->refresh_frame_context = 1;
cm->reset_frame_context = 0;
setup_features(cpi);
cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation
set_mvcost(&cpi->mb);
{
int i;
for (i = 0; i < MAX_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
// At the moment the first order values may not be > MAXQ
cpi->oxcf.fixed_q = MIN(cpi->oxcf.fixed_q, MAXQ);
// local file playback mode == really big buffer
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
}
// Convert target bandwidth from Kbit/s to Bit/s
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
// Set or reset optimal and maximum buffer levels.
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
// Set up frame rate and related parameters rate control values.
vp9_new_framerate(cpi, cpi->oxcf.framerate);
// Set absolute upper and lower quality limits
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
// active values should only be modified if out of new range
cpi->active_worst_quality = clamp(cpi->active_worst_quality,
cpi->oxcf.best_allowed_q,
cpi->oxcf.worst_allowed_q);
cpi->active_best_quality = clamp(cpi->active_best_quality,
cpi->oxcf.best_allowed_q,
cpi->oxcf.worst_allowed_q);
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
cpi->cq_target_quality = cpi->oxcf.cq_level;
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->display_width = cpi->oxcf.width;
cm->display_height = cpi->oxcf.height;
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
cpi->oxcf.Sharpness = MIN(7, cpi->oxcf.Sharpness);
cpi->mb.e_mbd.lf.sharpness_level = cpi->oxcf.Sharpness;
if (cpi->initial_width) {
// Increasing the size of the frame beyond the first seen frame, or some
// otherwise signalled maximum size, is not supported.
// TODO(jkoleszar): exit gracefully.
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
}
update_frame_size(cpi);
if (cpi->oxcf.fixed_q >= 0) {
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
cpi->last_boosted_qindex = cpi->oxcf.fixed_q;
}
cpi->speed = cpi->oxcf.cpu_used;
if (cpi->oxcf.lag_in_frames == 0) {
// force to allowlag to 0 if lag_in_frames is 0;
cpi->oxcf.allow_lag = 0;
} else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) {
// Limit on lag buffers as these are not currently dynamically allocated
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
}
// YX Temp
#if CONFIG_MULTIPLE_ARF
vp9_zero(cpi->alt_ref_source);
#else
cpi->alt_ref_source = NULL;
#endif
cpi->is_src_frame_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
set_tile_limits(cpi);
}
#define M_LOG2_E 0.693147180559945309417
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_nmvjointsadcost(int *mvjointsadcost) {
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[0] = 300;
}
static void cal_nmvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) {
int i;
volatile union {
VP9_COMP *cpi;
VP9_PTR ptr;
} ctx;
VP9_COMP *cpi;
VP9_COMMON *cm;
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP));
// Check that the CPI instance is valid
if (!cpi)
return 0;
cm = &cpi->common;
vp9_zero(*cpi);
if (setjmp(cm->error.jmp)) {
VP9_PTR ptr = ctx.ptr;
ctx.cpi->common.error.setjmp = 0;
vp9_remove_compressor(&ptr);
return 0;
}
cm->error.setjmp = 1;
CHECK_MEM_ERROR(cm, cpi->mb.ss, vpx_calloc(sizeof(search_site),
(MAX_MVSEARCH_STEPS * 8) + 1));
vp9_create_common(cm);
init_config((VP9_PTR)cpi, oxcf);
cm->current_video_frame = 0;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
// Set reference frame sign bias for ALTREF frame to 1 (for now)
cm->ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0;
cpi->alt_is_last = 0;
cpi->gold_is_alt = 0;
// Create the encoder segmentation map and set all entries to 0
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// And a copy in common for temporal coding
CHECK_MEM_ERROR(cm, cm->last_frame_seg_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
CHECK_MEM_ERROR(cm, cpi->active_map, vpx_calloc(cm->MBs, 1));
vpx_memset(cpi->active_map, 1, cm->MBs);
cpi->active_map_enabled = 0;
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0])); i++) {
CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cm->MBs *
sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
#ifdef ENTROPY_STATS
if (cpi->pass != 1)
init_context_counters();
#endif
#ifdef NMV_STATS
init_nmvstats();
#endif
#ifdef MODE_STATS
init_tx_count_stats();
init_switchable_interp_stats();
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90 << 12;
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = 0;
cpi->next_key_frame_forced = 0;
cpi->source_alt_ref_pending = 0;
cpi->source_alt_ref_active = 0;
cpi->refresh_alt_ref_frame = 0;
#if CONFIG_MULTIPLE_ARF
// Turn multiple ARF usage on/off. This is a quick hack for the initial test
// version. It should eventually be set via the codec API.
cpi->multi_arf_enabled = 1;
if (cpi->multi_arf_enabled) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = 0;
vp9_zero(cpi->frame_coding_order);
vp9_zero(cpi->arf_buffer_idx);
}
#endif
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
cpi->summedp_quality = 0;
cpi->summedp_weights = 0;
}
if (cpi->b_calculate_ssimg) {
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#endif
cpi->first_time_stamp_ever = INT64_MAX;
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->tot_q = 0.0;
cpi->avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q);
cpi->total_byte_count = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->mb.nmvsadcost);
cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate;
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
if (cpi->pass == 1) {
vp9_init_first_pass(cpi);
} else if (cpi->pass == 2) {
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in
+ (packets - 1) * packet_sz);
vp9_init_second_pass(cpi);
}
vp9_set_speed_features(cpi);
// Set starting values of RD threshold multipliers (128 = *1)
for (i = 0; i < MAX_MODES; i++)
cpi->rd_thresh_mult[i] = 128;
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SVFHH, SVFHV, SVFHHV, \
SDX3F, SDX8F, SDX4DF)\
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \
cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \
cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg,
vp9_variance32x16, vp9_sub_pixel_variance32x16,
vp9_sub_pixel_avg_variance32x16, NULL, NULL,
NULL, NULL, NULL,
vp9_sad32x16x4d)
BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg,
vp9_variance16x32, vp9_sub_pixel_variance16x32,
vp9_sub_pixel_avg_variance16x32, NULL, NULL,
NULL, NULL, NULL,
vp9_sad16x32x4d)
BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg,
vp9_variance64x32, vp9_sub_pixel_variance64x32,
vp9_sub_pixel_avg_variance64x32, NULL, NULL,
NULL, NULL, NULL,
vp9_sad64x32x4d)
BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg,
vp9_variance32x64, vp9_sub_pixel_variance32x64,
vp9_sub_pixel_avg_variance32x64, NULL, NULL,
NULL, NULL, NULL,
vp9_sad32x64x4d)
BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg,
vp9_variance32x32, vp9_sub_pixel_variance32x32,
vp9_sub_pixel_avg_variance32x32, vp9_variance_halfpixvar32x32_h,
vp9_variance_halfpixvar32x32_v,
vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8,
vp9_sad32x32x4d)
BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg,
vp9_variance64x64, vp9_sub_pixel_variance64x64,
vp9_sub_pixel_avg_variance64x64, vp9_variance_halfpixvar64x64_h,
vp9_variance_halfpixvar64x64_v,
vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8,
vp9_sad64x64x4d)
BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg,
vp9_variance16x16, vp9_sub_pixel_variance16x16,
vp9_sub_pixel_avg_variance16x16, vp9_variance_halfpixvar16x16_h,
vp9_variance_halfpixvar16x16_v,
vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8,
vp9_sad16x16x4d)
BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg,
vp9_variance16x8, vp9_sub_pixel_variance16x8,
vp9_sub_pixel_avg_variance16x8, NULL, NULL, NULL,
vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg,
vp9_variance8x16, vp9_sub_pixel_variance8x16,
vp9_sub_pixel_avg_variance8x16, NULL, NULL, NULL,
vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg,
vp9_variance8x8, vp9_sub_pixel_variance8x8,
vp9_sub_pixel_avg_variance8x8, NULL, NULL, NULL,
vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg,
vp9_variance8x4, vp9_sub_pixel_variance8x4,
vp9_sub_pixel_avg_variance8x4, NULL, NULL,
NULL, NULL, vp9_sad8x4x8,
vp9_sad8x4x4d)
BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg,
vp9_variance4x8, vp9_sub_pixel_variance4x8,
vp9_sub_pixel_avg_variance4x8, NULL, NULL,
NULL, NULL, vp9_sad4x8x8,
vp9_sad4x8x4d)
BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg,
vp9_variance4x4, vp9_sub_pixel_variance4x4,
vp9_sub_pixel_avg_variance4x4, NULL, NULL, NULL,
vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
cpi->full_search_sad = vp9_full_search_sad;
cpi->diamond_search_sad = vp9_diamond_search_sad;
cpi->refining_search_sad = vp9_refining_search_sad;
// make sure frame 1 is okay
cpi->error_bins[0] = cpi->common.MBs;
/* vp9_init_quantizer() is first called here. Add check in
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp9_init_quantizer() for every frame.
*/
vp9_init_quantizer(cpi);
vp9_loop_filter_init(cm, &cpi->mb.e_mbd.lf);
cpi->common.error.setjmp = 0;
vp9_zero(cpi->y_uv_mode_count)
return (VP9_PTR) cpi;
}
void vp9_remove_compressor(VP9_PTR *ptr) {
VP9_COMP *cpi = (VP9_COMP *)(*ptr);
int i;
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0)) {
if (cpi->pass == 2) {
vp9_end_second_pass(cpi);
}
#ifdef ENTROPY_STATS
if (cpi->pass != 1) {
print_context_counters();
print_tree_update_probs();
print_mode_context(cpi);
}
#endif
#ifdef NMV_STATS
if (cpi->pass != 1)
print_nmvstats();
#endif
#ifdef MODE_STATS
if (cpi->pass != 1) {
write_tx_count_stats();
write_switchable_interp_stats();
}
#endif
#if CONFIG_INTERNAL_STATS
vp9_clear_system_state();
// printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
if (cpi->pass != 1) {
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
if (cpi->b_calculate_psnr) {
YV12_BUFFER_CONFIG *lst_yv12 =
&cpi->common.yv12_fb[cpi->common.ref_frame_map[cpi->lst_fb_idx]];
double samples = 3.0 / 2 * cpi->count *
lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error);
double total_psnr2 = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error2);
double total_ssim = 100 * pow(cpi->summed_quality /
cpi->summed_weights, 8.0);
double total_ssimp = 100 * pow(cpi->summedp_quality /
cpi->summedp_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"VPXSSIM\tVPSSIMP\t Time(ms)\n");
fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr,
cpi->totalp / cpi->count, total_psnr2, total_ssim, total_ssimp,
total_encode_time);
// fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n",
// dr, cpi->total / cpi->count, total_psnr,
// cpi->totalp / cpi->count, total_psnr2, total_ssim,
// total_encode_time, cpi->tot_recode_hits);
}
if (cpi->b_calculate_ssimg) {
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
// fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr,
// cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
// cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits);
}
fclose(f);
}
#endif
#ifdef ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("vp9_modecontext.c", "w");
fprintf(fmode, "\n#include \"vp9_entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp9_kf_default_bmode_counts ");
fprintf(fmode, "[VP9_INTRA_MODES][VP9_INTRA_MODES]"
"[VP9_INTRA_MODES] =\n{\n");
for (i = 0; i < VP9_INTRA_MODES; i++) {
fprintf(fmode, " { // Above Mode : %d\n", i);
for (j = 0; j < VP9_INTRA_MODES; j++) {
fprintf(fmode, " {");
for (k = 0; k < VP9_INTRA_MODES; k++) {
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, // left_mode %d\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0) {
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; i++)
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
cpi->time_compress_data / 1000,
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++) {
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
vp9_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(uint8_t *orig, int orig_stride,
uint8_t *recon, int recon_stride,
unsigned int cols, unsigned int rows) {
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16) {
for (col = 0; col + 16 <= cols; col += 16) {
unsigned int sse;
vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols) {
unsigned int border_row, border_col;
uint8_t *border_orig = orig;
uint8_t *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++) {
for (border_col = col; border_col < cols; border_col++) {
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++) {
for (col = 0; col < cols; col++) {
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
static void generate_psnr_packet(VP9_COMP *cpi) {
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = orig->y_crop_width;
unsigned int height = orig->y_crop_height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
width, height);
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = orig->uv_crop_width;
height = orig->uv_crop_height;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; i++)
pkt.data.psnr.psnr[i] = vp9_mse2psnr(pkt.data.psnr.samples[i], 255.0,
(double)pkt.data.psnr.sse[i]);
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->refresh_last_frame = 0;
if (ref_frame_flags & VP9_LAST_FLAG)
cpi->refresh_last_frame = 1;
if (ref_frame_flags & VP9_GOLD_FLAG)
cpi->refresh_golden_frame = 1;
if (ref_frame_flags & VP9_ALT_FLAG)
cpi->refresh_alt_ref_frame = 1;
return 0;
}
int vp9_copy_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx];
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx];
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx];
else
return -1;
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp9_get_reference_enc(VP9_PTR ptr, int index, YV12_BUFFER_CONFIG **fb) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *cm = &cpi->common;
if (index < 0 || index >= NUM_REF_FRAMES)
return -1;
*fb = &cm->yv12_fb[cm->ref_frame_map[index]];
return 0;
}
int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx];
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx];
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx];
else
return -1;
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp9_update_entropy(VP9_PTR comp, int update) {
((VP9_COMP *)comp)->common.refresh_frame_context = update;
return 0;
}
#ifdef OUTPUT_YUV_SRC
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
}
#endif
#ifdef OUTPUT_YUV_REC
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
uint8_t *src = s->y_buffer;
int h = cm->height;
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
#if CONFIG_ALPHA
if (s->alpha_buffer) {
src = s->alpha_buffer;
h = s->alpha_height;
do {
fwrite(src, s->alpha_width, 1, yuv_rec_file);
src += s->alpha_stride;
} while (--h);
}
#endif
fflush(yuv_rec_file);
}
#endif
static void scale_and_extend_frame(YV12_BUFFER_CONFIG *src_fb,
YV12_BUFFER_CONFIG *dst_fb) {
const int in_w = src_fb->y_crop_width;
const int in_h = src_fb->y_crop_height;
const int out_w = dst_fb->y_crop_width;
const int out_h = dst_fb->y_crop_height;
int x, y, i;
uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer,
src_fb->alpha_buffer};
int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride,
src_fb->alpha_stride};
uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer,
dst_fb->alpha_buffer};
int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride,
dst_fb->alpha_stride};
for (y = 0; y < out_h; y += 16) {
for (x = 0; x < out_w; x += 16) {
for (i = 0; i < MAX_MB_PLANE; ++i) {
const int factor = i == 0 ? 1 : 2;
const int x_q4 = x * (16 / factor) * in_w / out_w;
const int y_q4 = y * (16 / factor) * in_h / out_h;
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
uint8_t *src = srcs[i] + y / factor * in_h / out_h * src_stride +
x / factor * in_w / out_w;
uint8_t *dst = dsts[i] + y / factor * dst_stride + x / factor;
vp9_convolve8(src, src_stride, dst, dst_stride,
vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w,
vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h,
16 / factor, 16 / factor);
}
}
}
vp8_yv12_extend_frame_borders(dst_fb);
}
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
// this frame refreshes means next frames don't unless specified by user
cpi->frames_since_golden = 0;
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled)
#endif
// Clear the alternate reference update pending flag.
cpi->source_alt_ref_pending = 0;
// Set the alternate reference frame active flag
cpi->source_alt_ref_active = 1;
}
static void update_golden_frame_stats(VP9_COMP *cpi) {
// Update the Golden frame usage counts.
if (cpi->refresh_golden_frame) {
// this frame refreshes means next frames don't unless specified by user
cpi->refresh_golden_frame = 0;
cpi->frames_since_golden = 0;
// ******** Fixed Q test code only ************
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
if (cpi->oxcf.fixed_q >= 0 &&
cpi->oxcf.play_alternate && !cpi->refresh_alt_ref_frame) {
cpi->source_alt_ref_pending = 1;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending)
cpi->source_alt_ref_active = 0;
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
} else if (!cpi->refresh_alt_ref_frame) {
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
if (cpi->frames_till_alt_ref_frame)
cpi->frames_till_alt_ref_frame--;
cpi->frames_since_golden++;
}
}
static int find_fp_qindex() {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
if (vp9_convert_qindex_to_q(i) >= 30.0) {
break;
}
}
if (i == QINDEX_RANGE)
i--;
return i;
}
static void Pass1Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) {
(void) size;
(void) dest;
(void) frame_flags;
vp9_set_quantizer(cpi, find_fp_qindex());
vp9_first_pass(cpi);
}
#define WRITE_RECON_BUFFER 0
#if WRITE_RECON_BUFFER
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
// write the frame
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) {
#define EDGE_THRESH 128
int i, j;
int num_edge_pels = 0;
int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
uint8_t *prev = frame->y_buffer + 1;
uint8_t *curr = frame->y_buffer + 1 + frame->y_stride;
uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride;
for (i = 1; i < frame->y_height - 1; i++) {
for (j = 1; j < frame->y_width - 1; j++) {
/* Sobel hor and ver gradients */
int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]);
int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]);
h = (h < 0 ? -h : h);
v = (v < 0 ? -v : v);
if (h > EDGE_THRESH || v > EDGE_THRESH)
num_edge_pels++;
curr++;
prev++;
next++;
}
curr += frame->y_stride - frame->y_width + 2;
prev += frame->y_stride - frame->y_width + 2;
next += frame->y_stride - frame->y_width + 2;
}
return (double)num_edge_pels / num_pels;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(VP9_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq) {
int force_recode = 0;
VP9_COMMON *cm = &cpi->common;
// Is frame recode allowed at all
// Yes if either recode mode 1 is selected or mode two is selected
// and the frame is a key frame. golden frame or alt_ref_frame
if ((cpi->sf.recode_loop == 1) ||
((cpi->sf.recode_loop == 2) &&
((cm->frame_type == KEY_FRAME) ||
cpi->refresh_golden_frame ||
cpi->refresh_alt_ref_frame))) {
// General over and under shoot tests
if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq))) {
force_recode = 1;
}
// Special Constrained quality tests
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
// Undershoot and below auto cq level
if (q > cpi->cq_target_quality &&
cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3)) {
force_recode = 1;
} else if (q > cpi->oxcf.cq_level &&
cpi->projected_frame_size < cpi->min_frame_bandwidth &&
cpi->active_best_quality > cpi->oxcf.cq_level) {
// Severe undershoot and between auto and user cq level
force_recode = 1;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
static void update_reference_frames(VP9_COMP * const cpi) {
VP9_COMMON * const cm = &cpi->common;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
}
#if CONFIG_MULTIPLE_ARF
else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
#endif
/* Preserve the previously existing golden frame and update the frame in
* the alt ref slot instead. This is highly specific to the current use of
* alt-ref as a forward reference, and this needs to be generalized as
* other uses are implemented (like RTC/temporal scaling)
*
* The update to the buffer in the alt ref slot was signaled in
* vp9_pack_bitstream(), now swap the buffer pointers so that it's treated
* as the golden frame next time.
*/
int tmp;
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1];
}
#endif
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[arf_idx], cm->new_fb_idx);
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
}
}
if (cpi->refresh_last_frame) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
}
}
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
struct loopfilter *lf = &xd->lf;
if (xd->lossless) {
lf->filter_level = 0;
} else {
struct vpx_usec_timer timer;
vp9_clear_system_state();
vpx_usec_timer_start(&timer);
vp9_pick_filter_level(cpi->Source, cpi);
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (lf->filter_level > 0) {
vp9_set_alt_lf_level(cpi, lf->filter_level);
vp9_loop_filter_frame(cm, xd, lf->filter_level, 0);
}
vp9_extend_frame_inner_borders(cm->frame_to_show,
cm->subsampling_x, cm->subsampling_y);
}
static void scale_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i;
for (i = 0; i < 3; i++) {
YV12_BUFFER_CONFIG *ref = &cm->yv12_fb[cm->ref_frame_map[i]];
if (ref->y_crop_width != cm->width ||
ref->y_crop_height != cm->height) {
int new_fb = get_free_fb(cm);
vp9_realloc_frame_buffer(&cm->yv12_fb[new_fb],
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS);
scale_and_extend_frame(ref, &cm->yv12_fb[new_fb]);
cpi->scaled_ref_idx[i] = new_fb;
} else {
cpi->scaled_ref_idx[i] = cm->ref_frame_map[i];
cm->fb_idx_ref_cnt[cm->ref_frame_map[i]]++;
}
}
}
static void release_scaled_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i;
for (i = 0; i < 3; i++)
cm->fb_idx_ref_cnt[cpi->scaled_ref_idx[i]]--;
}
static void full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < DCT_EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[DCT_EOB_MODEL_TOKEN] = full_count[DCT_EOB_TOKEN];
}
static void full_to_model_counts(
vp9_coeff_count_model *model_count, vp9_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < BLOCK_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
}
}
static void encode_frame_to_data_rate(VP9_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned int *frame_flags) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
TX_SIZE t;
int q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int loop = 0;
int loop_count;
int q_low;
int q_high;
int top_index;
int bottom_index;
int active_worst_qchanged = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
SPEED_FEATURES *sf = &cpi->sf;
unsigned int max_mv_def = MIN(cpi->common.width, cpi->common.height);
struct segmentation *seg = &xd->seg;
#if RESET_FOREACH_FILTER
int q_low0;
int q_high0;
int Q0;
int active_best_quality0;
int active_worst_quality0;
double rate_correction_factor0;
double gf_rate_correction_factor0;
#endif
/* list of filters to search over */
int mcomp_filters_to_search[] = {
EIGHTTAP, EIGHTTAP_SHARP, EIGHTTAP_SMOOTH, SWITCHABLE
};
int mcomp_filters = sizeof(mcomp_filters_to_search) /
sizeof(*mcomp_filters_to_search);
int mcomp_filter_index = 0;
int64_t mcomp_filter_cost[4];
/* Scale the source buffer, if required */
if (cm->mi_cols * 8 != cpi->un_scaled_source->y_width ||
cm->mi_rows * 8 != cpi->un_scaled_source->y_height) {
scale_and_extend_frame(cpi->un_scaled_source, &cpi->scaled_source);
cpi->Source = &cpi->scaled_source;
} else {
cpi->Source = cpi->un_scaled_source;
}
scale_references(cpi);
// Clear down mmx registers to allow floating point in what follows
vp9_clear_system_state();
// For an alt ref frame in 2 pass we skip the call to the second
// pass function that sets the target bandwidth so must set it here
if (cpi->refresh_alt_ref_frame) {
// Per frame bit target for the alt ref frame
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
// per second target bitrate
cpi->target_bandwidth = (int)(cpi->twopass.gf_bits *
cpi->output_framerate);
}
// Clear zbin over-quant value and mode boost values.
cpi->zbin_mode_boost = 0;
// Enable or disable mode based tweaking of the zbin
// For 2 Pass Only used where GF/ARF prediction quality
// is above a threshold
cpi->zbin_mode_boost = 0;
// if (cpi->oxcf.lossless)
cpi->zbin_mode_boost_enabled = 0;
// else
// cpi->zbin_mode_boost_enabled = 1;
// Current default encoder behaviour for the altref sign bias
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = cpi->source_alt_ref_active;
// Check to see if a key frame is signaled
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) {
// Key frame from VFW/auto-keyframe/first frame
cm->frame_type = KEY_FRAME;
}
// Set default state for segment based loop filter update flags
xd->lf.mode_ref_delta_update = 0;
// Initialize cpi->mv_step_param to default based on max resolution
cpi->mv_step_param = vp9_init_search_range(cpi, max_mv_def);
// Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate.
if (sf->auto_mv_step_size) {
if ((cpi->common.frame_type == KEY_FRAME) || cpi->common.intra_only) {
// initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame
cpi->max_mv_magnitude = max_mv_def;
} else {
if (cm->show_frame)
// allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution
cpi->mv_step_param = vp9_init_search_range(
cpi, MIN(max_mv_def, 2 * cpi->max_mv_magnitude));
cpi->max_mv_magnitude = 0;
}
}
// Set various flags etc to special state if it is a key frame
if (cm->frame_type == KEY_FRAME) {
int i;
// Reset the loop filter deltas and segmentation map
setup_features(cpi);
// If segmentation is enabled force a map update for key frames
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame
cpi->source_alt_ref_active = 0;
// Reset the RD threshold multipliers to default of * 1 (128)
for (i = 0; i < MAX_MODES; i++)
cpi->rd_thresh_mult[i] = 128;
cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0);
cm->frame_parallel_decoding_mode =
(cpi->oxcf.frame_parallel_decoding_mode != 0);
if (cm->error_resilient_mode) {
cm->frame_parallel_decoding_mode = 1;
cm->reset_frame_context = 0;
cm->refresh_frame_context = 0;
}
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed for now in second pass of two pass (as requires lagged coding)
// and if the relevant speed feature flag is set.
if ((cpi->pass == 2) && (cpi->sf.static_segmentation)) {
configure_static_seg_features(cpi);
}
// Decide how big to make the frame
vp9_pick_frame_size(cpi);
vp9_clear_system_state();
// Set an active best quality and if necessary active worst quality
q = cpi->active_worst_quality;
if (cm->frame_type == KEY_FRAME) {
#if !CONFIG_MULTIPLE_ARF
// Special case for key frames forced because we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping
if (cpi->this_key_frame_forced) {
int delta_qindex;
int qindex = cpi->last_boosted_qindex;
double last_boosted_q = vp9_convert_qindex_to_q(qindex);
delta_qindex = compute_qdelta(cpi, last_boosted_q,
(last_boosted_q * 0.75));
cpi->active_best_quality = MAX(qindex + delta_qindex, cpi->best_quality);
} else {
int high = 5000;
int low = 400;
double q_adj_factor = 1.0;
double q_val;
// Baseline value derived from cpi->active_worst_quality and kf boost
if (cpi->kf_boost > high) {
cpi->active_best_quality = kf_low_motion_minq[q];
} else if (cpi->kf_boost < low) {
cpi->active_best_quality = kf_high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - cpi->kf_boost;
const int qdiff = kf_high_motion_minq[q] - kf_low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
cpi->active_best_quality = kf_low_motion_minq[q] + adjustment;
}
// Allow somewhat lower kf minq with small image formats.
if ((cm->width * cm->height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Make a further adjustment based on the kf zero motion measure.
q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);
// Convert the adjustment factor to a qindex delta on active_best_quality.
q_val = vp9_convert_qindex_to_q(cpi->active_best_quality);
cpi->active_best_quality +=
compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
}
#else
double current_q;
// Force the KF quantizer to be 30% of the active_worst_quality.
current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality);
cpi->active_best_quality = cpi->active_worst_quality
+ compute_qdelta(cpi, current_q, current_q * 0.3);
#endif
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
int high = 2000;
int low = 400;
// Use the lower of cpi->active_worst_quality and recent
// average Q as basis for GF/ARF Q limit unless last frame was
// a key frame.
if (cpi->frames_since_key > 1 &&
cpi->avg_frame_qindex < cpi->active_worst_quality) {
q = cpi->avg_frame_qindex;
}
// For constrained quality dont allow Q less than the cq level
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
q < cpi->cq_target_quality) {
q = cpi->cq_target_quality;
}
if (cpi->gfu_boost > high) {
cpi->active_best_quality = gf_low_motion_minq[q];
} else if (cpi->gfu_boost < low) {
cpi->active_best_quality = gf_high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - cpi->gfu_boost;
const int qdiff = gf_high_motion_minq[q] - gf_low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
cpi->active_best_quality = gf_low_motion_minq[q] + adjustment;
}
// Constrained quality use slightly lower active best.
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
cpi->active_best_quality = cpi->active_best_quality * 15 / 16;
} else {
#ifdef ONE_SHOT_Q_ESTIMATE
#ifdef STRICT_ONE_SHOT_Q
cpi->active_best_quality = q;
#else
cpi->active_best_quality = inter_minq[q];
#endif
#else
cpi->active_best_quality = inter_minq[q];
#endif
// For the constant/constrained quality mode we don't want
// q to fall below the cq level.
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality)) {
// If we are strongly undershooting the target rate in the last
// frames then use the user passed in cq value not the auto
// cq value.
if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth)
cpi->active_best_quality = cpi->oxcf.cq_level;
else
cpi->active_best_quality = cpi->cq_target_quality;
}
}
// Clip the active best and worst quality values to limits
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
if (cpi->active_best_quality > cpi->worst_quality)
cpi->active_best_quality = cpi->worst_quality;
if (cpi->active_worst_quality < cpi->active_best_quality)
cpi->active_worst_quality = cpi->active_best_quality;
// Special case code to try and match quality with forced key frames
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
q = cpi->last_boosted_qindex;
} else {
// Determine initial Q to try
q = vp9_regulate_q(cpi, cpi->this_frame_target);
}
vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
&frame_over_shoot_limit);
#if CONFIG_MULTIPLE_ARF
// Force the quantizer determined by the coding order pattern.
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME)) {
double new_q;
double current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality);
int level = cpi->this_frame_weight;
assert(level >= 0);
// Set quantizer steps at 10% increments.
new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
q = cpi->active_worst_quality + compute_qdelta(cpi, current_q, new_q);
bottom_index = q;
top_index = q;
q_low = q;
q_high = q;
printf("frame:%d q:%d\n", cm->current_video_frame, q);
} else {
#endif
// Limit Q range for the adaptive loop.
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
#if CONFIG_MULTIPLE_ARF
}
#endif
loop_count = 0;
vp9_zero(cpi->rd_tx_select_threshes);
if (cm->frame_type != KEY_FRAME) {
/* TODO: Decide this more intelligently */
if (sf->search_best_filter) {
cm->mcomp_filter_type = mcomp_filters_to_search[0];
mcomp_filter_index = 0;
} else {
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
}
/* TODO: Decide this more intelligently */
xd->allow_high_precision_mv = q < HIGH_PRECISION_MV_QTHRESH;
set_mvcost(&cpi->mb);
}
#if CONFIG_POSTPROC
if (cpi->oxcf.noise_sensitivity > 0) {
int l = 0;
switch (cpi->oxcf.noise_sensitivity) {
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
vp9_denoise(cpi->Source, cpi->Source, l);
}
#endif
#ifdef OUTPUT_YUV_SRC
vp9_write_yuv_frame(cpi->Source);
#endif
#if RESET_FOREACH_FILTER
if (sf->search_best_filter) {
q_low0 = q_low;
q_high0 = q_high;
Q0 = Q;
rate_correction_factor0 = cpi->rate_correction_factor;
gf_rate_correction_factor0 = cpi->gf_rate_correction_factor;
active_best_quality0 = cpi->active_best_quality;
active_worst_quality0 = cpi->active_worst_quality;
}
#endif
do {
vp9_clear_system_state(); // __asm emms;
vp9_set_quantizer(cpi, q);
if (loop_count == 0) {
// Set up entropy depending on frame type.
if (cm->frame_type == KEY_FRAME) {
/* Choose which entropy context to use. When using a forward reference
* frame, it immediately follows the keyframe, and thus benefits from
* using the same entropy context established by the keyframe.
* Otherwise, use the default context 0.
*/
cm->frame_context_idx = cpi->oxcf.play_alternate;
vp9_setup_key_frame(cpi);
} else {
/* Choose which entropy context to use. Currently there are only two
* contexts used, one for normal frames and one for alt ref frames.
*/
cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame;
vp9_setup_inter_frame(cpi);
}
}
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vp9_clear_system_state(); // __asm emms;
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
vp9_save_coding_context(cpi);
cpi->dummy_packing = 1;
vp9_pack_bitstream(cpi, dest, size);
cpi->projected_frame_size = (*size) << 3;
vp9_restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
active_worst_qchanged = 0;
// Special case handling for forced key frames
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
int last_q = q;
int kf_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
int high_err_target = cpi->ambient_err;
int low_err_target = cpi->ambient_err >> 1;
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
cpi->projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
cpi->projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
// Adjust Q
q = (q * high_err_target) / kf_err;
q = MIN(q, (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
cpi->projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
// Adjust Q
q = (q * low_err_target) / kf_err;
q = MIN(q, (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
}
// Is the projected frame size out of range and are we allowed to attempt to recode.
else if (recode_loop_test(cpi,
frame_over_shoot_limit, frame_under_shoot_limit,
q, top_index, bottom_index)) {
int last_q = q;
int retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (cpi->projected_frame_size > cpi->this_frame_target) {
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
if (undershoot_seen || loop_count > 1) {
// Update rate_correction_factor unless cpi->active_worst_quality
// has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 1);
q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->this_frame_target);
while (q < q_low && retries < 10) {
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->this_frame_target);
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
if (overshoot_seen || loop_count > 1) {
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 1);
q = (q_high + q_low) / 2;
} else {
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->this_frame_target);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < q_low) {
q_low = q;
}
while (q > q_high && retries < 10) {
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->this_frame_target);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else {
loop = 0;
}
if (cpi->is_src_frame_alt_ref)
loop = 0;
if (!loop && cm->frame_type != KEY_FRAME && sf->search_best_filter) {
if (mcomp_filter_index < mcomp_filters) {
int64_t err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
int64_t rate = cpi->projected_frame_size << 8;
mcomp_filter_cost[mcomp_filter_index] =
(RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err));
mcomp_filter_index++;
if (mcomp_filter_index < mcomp_filters) {
cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index];
loop_count = -1;
loop = 1;
} else {
int f;
int64_t best_cost = mcomp_filter_cost[0];
int mcomp_best_filter = mcomp_filters_to_search[0];
for (f = 1; f < mcomp_filters; f++) {
if (mcomp_filter_cost[f] < best_cost) {
mcomp_best_filter = mcomp_filters_to_search[f];
best_cost = mcomp_filter_cost[f];
}
}
if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters - 1]) {
loop_count = -1;
loop = 1;
cm->mcomp_filter_type = mcomp_best_filter;
}
/*
printf(" best filter = %d, ( ", mcomp_best_filter);
for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]);
printf(")\n");
*/
}
#if RESET_FOREACH_FILTER
if (loop) {
overshoot_seen = 0;
undershoot_seen = 0;
q_low = q_low0;
q_high = q_high0;
q = Q0;
cpi->rate_correction_factor = rate_correction_factor0;
cpi->gf_rate_correction_factor = gf_rate_correction_factor0;
cpi->active_best_quality = active_best_quality0;
cpi->active_worst_quality = active_worst_quality0;
}
#endif
}
}
if (loop) {
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
} while (loop);
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
cpi->ambient_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
}
if (cm->frame_type == KEY_FRAME)
cpi->refresh_last_frame = 1;
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 1000);
#endif
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 2000);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 3000);
#endif
// build the bitstream
cpi->dummy_packing = 0;
vp9_pack_bitstream(cpi, dest, size);
if (xd->seg.update_map)
update_reference_segmentation_map(cpi);
release_scaled_references(cpi);
update_reference_frames(cpi);
for (t = TX_4X4; t <= TX_32X32; t++)
full_to_model_counts(cpi->common.counts.coef[t],
cpi->coef_counts[t]);
if (!cpi->common.error_resilient_mode &&
!cpi->common.frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(&cpi->common);
}
if (cpi->common.frame_type != KEY_FRAME) {
FRAME_COUNTS *counts = &cpi->common.counts;
vp9_copy(counts->y_mode, cpi->y_mode_count);
vp9_copy(counts->uv_mode, cpi->y_uv_mode_count);
vp9_copy(counts->partition, cpi->partition_count);
vp9_copy(counts->intra_inter, cpi->intra_inter_count);
vp9_copy(counts->comp_inter, cpi->comp_inter_count);
vp9_copy(counts->single_ref, cpi->single_ref_count);
vp9_copy(counts->comp_ref, cpi->comp_ref_count);
counts->mv = cpi->NMVcount;
if (!cpi->common.error_resilient_mode &&
!cpi->common.frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(&cpi->common);
vp9_adapt_mv_probs(&cpi->common, cpi->mb.e_mbd.allow_high_precision_mv);
}
}
#ifdef ENTROPY_STATS
vp9_update_mode_context_stats(cpi);
#endif
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
// Update rate control heuristics
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
// Keep record of last boosted (KF/KF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ((cm->base_qindex < cpi->last_boosted_qindex) ||
((cpi->static_mb_pct < 100) &&
((cm->frame_type == KEY_FRAME) ||
cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
cpi->last_boosted_qindex = cm->base_qindex;
}
if (cm->frame_type == KEY_FRAME) {
vp9_adjust_key_frame_context(cpi);
}
// Keep a record of ambient average Q.
if (cm->frame_type != KEY_FRAME)
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
if (cm->frame_type != KEY_FRAME &&
!cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
cpi->ni_frames++;
cpi->tot_q += vp9_convert_qindex_to_q(q);
cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU frames).
cpi->ni_tot_qi += q;
cpi->ni_av_qi = cpi->ni_tot_qi / cpi->ni_frames;
}
// Update the buffer level variable.
// Non-viewable frames are a special case and are treated as pure overhead.
if (!cm->show_frame)
cpi->bits_off_target -= cpi->projected_frame_size;
else
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
// Clip the buffer level at the maximum buffer size
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
// Rolling monitors of whether we are over or underspending used to help
// regulate min and Max Q in two pass.
if (cm->frame_type != KEY_FRAME) {
cpi->rolling_target_bits =
((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits =
((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits =
((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits =
((cpi->long_rolling_actual_bits * 31) +
cpi->projected_frame_size + 16) / 32;
}
// Actual bits spent
cpi->total_actual_bits += cpi->projected_frame_size;
// Debug stats
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
if (cm->frame_type == KEY_FRAME) {
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
}
// Update the skip mb flag probabilities based on the distribution seen
// in this frame.
// update_base_skip_probs(cpi);
#if 0 && CONFIG_INTERNAL_STATS
{
FILE *f = fopen("tmp.stt", "a");
int recon_err;
vp9_clear_system_state(); // __asm emms;
recon_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%6d %6d %5d %5d %5d %8.2f %10d %10.3f"
"%10.3f %8d %10d %10d %10d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size, 0, //loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
(int)cpi->total_actual_bits,
vp9_convert_qindex_to_q(cm->base_qindex),
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
vp9_convert_qindex_to_q(cpi->active_best_quality),
vp9_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp9_convert_qindex_to_q(cpi->ni_av_qi),
vp9_convert_qindex_to_q(cpi->cq_target_quality),
cpi->refresh_last_frame,
cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
cpi->kf_zeromotion_pct);
else
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%5d %5d %5d %8d %8d %8.2f %10d %10.3f"
"%8d %10d %10d %10d\n",
cpi->common.current_video_frame,
cpi->this_frame_target, cpi->projected_frame_size,
0, //loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
(int)cpi->total_actual_bits,
vp9_convert_qindex_to_q(cm->base_qindex),
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
vp9_convert_qindex_to_q(cpi->active_best_quality),
vp9_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp9_convert_qindex_to_q(cpi->ni_av_qi),
vp9_convert_qindex_to_q(cpi->cq_target_quality),
cpi->refresh_last_frame,
cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
cpi->kf_zeromotion_pct);
fclose(f);
if (0) {
FILE *fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; i++)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
#if 0
// Debug stats for segment feature experiments.
print_seg_map(cpi);
#endif
// If this was a kf or Gf note the Q
if ((cm->frame_type == KEY_FRAME)
|| cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
cm->last_kf_gf_q = cm->base_qindex;
if (cpi->refresh_golden_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
if (cpi->refresh_last_frame & cpi->refresh_golden_frame)
cpi->gold_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_last = 0;
if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 0;
if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame)
cpi->gold_is_alt = 1;
else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame
&& (cm->frame_type != KEY_FRAME))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
#if CONFIG_MULTIPLE_ARF
// Reset the sequence number.
if (cpi->multi_arf_enabled) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
cpi->new_frame_coding_order_period = -1;
}
#endif
// As this frame is a key frame the next defaults to an inter frame.
cm->frame_type = INTER_FRAME;
} else {
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
#if CONFIG_MULTIPLE_ARF
/* Increment position in the coded frame sequence. */
if (cpi->multi_arf_enabled) {
++cpi->sequence_number;
if (cpi->sequence_number >= cpi->frame_coding_order_period) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
cpi->new_frame_coding_order_period = -1;
}
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
assert(cpi->this_frame_weight >= 0);
}
#endif
}
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
xd->seg.update_map = 0;
xd->seg.update_data = 0;
xd->lf.mode_ref_delta_update = 0;
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
// reset to normal state now that we are done.
cm->last_show_frame = cm->show_frame;
if (cm->show_frame) {
// current mip will be the prev_mip for the next frame
MODE_INFO *temp = cm->prev_mip;
cm->prev_mip = cm->mip;
cm->mip = temp;
// update the upper left visible macroblock ptrs
cm->mi = cm->mip + cm->mode_info_stride + 1;
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
++cpi->frames_since_key;
}
// restore prev_mi
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].buffer_alloc,
cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].frame_size,
1, recon_file);
fclose(recon_file);
}
#endif
#ifdef OUTPUT_YUV_REC
vp9_write_yuv_rec_frame(cm);
#endif
}
static void Pass2Encode(VP9_COMP *cpi, unsigned long *size,
unsigned char *dest, unsigned int *frame_flags) {
if (!cpi->refresh_alt_ref_frame)
vp9_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
// vp9_print_modes_and_motion_vectors(&cpi->common, "encode.stt");
#ifdef DISABLE_RC_LONG_TERM_MEM
cpi->twopass.bits_left -= cpi->this_frame_target;
#else
cpi->twopass.bits_left -= 8 * *size;
#endif
if (!cpi->refresh_alt_ref_frame) {
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
* cpi->oxcf.two_pass_vbrmin_section / 100);
if (two_pass_min_rate < lower_bounds_min_rate)
two_pass_min_rate = lower_bounds_min_rate;
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.framerate);
}
}
int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
VP9_COMP *cpi = (VP9_COMP *) ptr;
VP9_COMMON *cm = &cpi->common;
struct vpx_usec_timer timer;
int res = 0;
if (!cpi->initial_width) {
// TODO(jkoleszar): Support 1/4 subsampling?
cm->subsampling_x = sd->uv_width < sd->y_width;
cm->subsampling_y = sd->uv_height < sd->y_height;
alloc_raw_frame_buffers(cpi);
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
}
vpx_usec_timer_start(&timer);
if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
cpi->active_map_enabled ? cpi->active_map : NULL))
res = -1;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
return res;
}
static int frame_is_reference(const VP9_COMP *cpi) {
const VP9_COMMON *cm = &cpi->common;
const MACROBLOCKD *mb = &cpi->mb.e_mbd;
return cm->frame_type == KEY_FRAME ||
cpi->refresh_last_frame ||
cpi->refresh_golden_frame ||
cpi->refresh_alt_ref_frame ||
cm->refresh_frame_context ||
mb->lf.mode_ref_delta_update ||
mb->seg.update_map ||
mb->seg.update_data;
}
#if CONFIG_MULTIPLE_ARF
int is_next_frame_arf(VP9_COMP *cpi) {
// Negative entry in frame_coding_order indicates an ARF at this position.
return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0;
}
#endif
int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags,
unsigned long *size, unsigned char *dest,
int64_t *time_stamp, int64_t *time_end, int flush) {
VP9_COMP *cpi = (VP9_COMP *) ptr;
VP9_COMMON *cm = &cpi->common;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
int i;
// FILE *fp_out = fopen("enc_frame_type.txt", "a");
if (!cpi)
return -1;
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV;
set_mvcost(&cpi->mb);
// Should we code an alternate reference frame.
if (cpi->oxcf.play_alternate && cpi->source_alt_ref_pending) {
int frames_to_arf;
#if CONFIG_MULTIPLE_ARF
assert(!cpi->multi_arf_enabled ||
cpi->frame_coding_order[cpi->sequence_number] < 0);
if (cpi->multi_arf_enabled && (cpi->pass == 2))
frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number])
- cpi->next_frame_in_order;
else
#endif
frames_to_arf = cpi->frames_till_gf_update_due;
assert(frames_to_arf < cpi->twopass.frames_to_key);
if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) {
#if CONFIG_MULTIPLE_ARF
cpi->alt_ref_source[cpi->arf_buffered] = cpi->source;
#else
cpi->alt_ref_source = cpi->source;
#endif
if (cpi->oxcf.arnr_max_frames > 0) {
// Produce the filtered ARF frame.
// TODO(agrange) merge these two functions.
configure_arnr_filter(cpi, cm->current_video_frame + frames_to_arf,
cpi->gfu_boost);
vp9_temporal_filter_prepare(cpi, frames_to_arf);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
cpi->is_src_frame_alt_ref = 0;
// TODO(agrange) This needs to vary depending on where the next ARF is.
cpi->frames_till_alt_ref_frame = frames_to_arf;
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled)
#endif
cpi->source_alt_ref_pending = 0; // Clear Pending altf Ref flag.
}
}
if (!cpi->source) {
#if CONFIG_MULTIPLE_ARF
int i;
#endif
if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
cm->show_frame = 1;
#if CONFIG_MULTIPLE_ARF
// Is this frame the ARF overlay.
cpi->is_src_frame_alt_ref = 0;
for (i = 0; i < cpi->arf_buffered; ++i) {
if (cpi->source == cpi->alt_ref_source[i]) {
cpi->is_src_frame_alt_ref = 1;
cpi->refresh_golden_frame = 1;
break;
}
}
#else
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
&& (cpi->source == cpi->alt_ref_source);
#endif
if (cpi->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
#if CONFIG_MULTIPLE_ARF
cpi->alt_ref_source[i] = NULL;
#else
cpi->alt_ref_source = NULL;
#endif
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
#if CONFIG_MULTIPLE_ARF
++cpi->next_frame_in_order;
#endif
}
}
if (cpi->source) {
cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
: &cpi->source->img;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
// fprintf(fp_out, " Frame:%d", cm->current_video_frame);
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
// fprintf(fp_out, " seq_no:%d this_frame_weight:%d",
// cpi->sequence_number, cpi->this_frame_weight);
} else {
// fprintf(fp_out, "\n");
}
#else
// fprintf(fp_out, "\n");
#endif
#if CONFIG_MULTIPLE_ARF
if ((cm->frame_type != KEY_FRAME) && (cpi->pass == 2))
cpi->source_alt_ref_pending = is_next_frame_arf(cpi);
#endif
} else {
*size = 0;
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
vp9_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
// fclose(fp_out);
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
// adjust frame rates based on timestamps given
if (!cpi->refresh_alt_ref_frame) {
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
} else {
int64_t last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
vp9_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = MIN((double)(cpi->source->ts_end
- cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->oxcf.framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp9_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
// start with a 0 size frame
*size = 0;
// Clear down mmx registers
vp9_clear_system_state(); // __asm emms;
/* find a free buffer for the new frame, releasing the reference previously
* held.
*/
cm->fb_idx_ref_cnt[cm->new_fb_idx]--;
cm->new_fb_idx = get_free_fb(cm);
#if CONFIG_MULTIPLE_ARF
/* Set up the correct ARF frame. */
if (cpi->refresh_alt_ref_frame) {
++cpi->arf_buffered;
}
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
(cpi->pass == 2)) {
cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number];
}
#endif
/* Get the mapping of L/G/A to the reference buffer pool */
cm->active_ref_idx[0] = cm->ref_frame_map[cpi->lst_fb_idx];
cm->active_ref_idx[1] = cm->ref_frame_map[cpi->gld_fb_idx];
cm->active_ref_idx[2] = cm->ref_frame_map[cpi->alt_fb_idx];
#if 0 // CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
fprintf(fp_out, " idx(%d, %d, %d, %d) active(%d, %d, %d)",
cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx, cm->new_fb_idx,
cm->active_ref_idx[0], cm->active_ref_idx[1], cm->active_ref_idx[2]);
if (cpi->refresh_alt_ref_frame)
fprintf(fp_out, " type:ARF");
if (cpi->is_src_frame_alt_ref)
fprintf(fp_out, " type:OVERLAY[%d]", cpi->alt_fb_idx);
fprintf(fp_out, "\n");
}
#endif
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
// Reset the frame pointers to the current frame size
vp9_realloc_frame_buffer(&cm->yv12_fb[cm->new_fb_idx],
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS);
// Calculate scaling factors for each of the 3 available references
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
vp9_setup_scale_factors(cm, i);
vp9_setup_interp_filters(&cpi->mb.e_mbd, DEFAULT_INTERP_FILTER, cm);
if (cpi->pass == 1) {
Pass1Encode(cpi, size, dest, frame_flags);
} else if (cpi->pass == 2) {
Pass2Encode(cpi, size, dest, frame_flags);
} else {
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
if (cm->refresh_frame_context)
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
if (*size > 0) {
// if its a dropped frame honor the requests on subsequent frames
cpi->droppable = !frame_is_reference(cpi);
// return to normal state
cm->reset_frame_context = 0;
cm->refresh_frame_context = 1;
cpi->refresh_alt_ref_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1) {
cpi->bytes += *size;
if (cm->show_frame) {
cpi->count++;
if (cpi->b_calculate_psnr) {
double ye, ue, ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
int y_samples = orig->y_height * orig->y_width;
int uv_samples = orig->uv_height * orig->uv_width;
int t_samples = y_samples + 2 * uv_samples;
double sq_error;
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
orig->y_crop_width, orig->y_crop_height);
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
orig->uv_crop_width, orig->uv_crop_height);
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
orig->uv_crop_width, orig->uv_crop_height);
sq_error = ye + ue + ve;
frame_psnr = vp9_mse2psnr(t_samples, 255.0, sq_error);
cpi->total_y += vp9_mse2psnr(y_samples, 255.0, ye);
cpi->total_u += vp9_mse2psnr(uv_samples, 255.0, ue);
cpi->total_v += vp9_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
{
double frame_psnr2, frame_ssim2 = 0;
double weight = 0;
#if CONFIG_POSTPROC
vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
cpi->mb.e_mbd.lf.filter_level * 10 / 6);
#endif
vp9_clear_system_state();
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
pp->y_buffer, pp->y_stride,
orig->y_crop_width, orig->y_crop_height);
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
pp->u_buffer, pp->uv_stride,
orig->uv_crop_width, orig->uv_crop_height);
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
pp->v_buffer, pp->uv_stride,
orig->uv_crop_width, orig->uv_crop_height);
sq_error = ye + ue + ve;
frame_psnr2 = vp9_mse2psnr(t_samples, 255.0, sq_error);
cpi->totalp_y += vp9_mse2psnr(y_samples, 255.0, ye);
cpi->totalp_u += vp9_mse2psnr(uv_samples, 255.0, ue);
cpi->totalp_v += vp9_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error2 += sq_error;
cpi->totalp += frame_psnr2;
frame_ssim2 = vp9_calc_ssim(cpi->Source,
recon, 1, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
frame_ssim2 = vp9_calc_ssim(cpi->Source,
&cm->post_proc_buffer, 1, &weight);
cpi->summedp_quality += frame_ssim2 * weight;
cpi->summedp_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
}
if (cpi->b_calculate_ssimg) {
double y, u, v, frame_all;
frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show,
&y, &u, &v);
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
}
}
#endif
// fclose(fp_out);
return 0;
}
int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest,
vp9_ppflags_t *flags) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (!cpi->common.show_frame)
return -1;
else {
int ret;
#if CONFIG_POSTPROC
ret = vp9_post_proc_frame(&cpi->common, &cpi->mb.e_mbd.lf, dest, flags);
#else
if (cpi->common.frame_to_show) {
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.width;
dest->y_height = cpi->common.height;
dest->uv_height = cpi->common.height / 2;
ret = 0;
} else {
ret = -1;
}
#endif // !CONFIG_POSTPROC
vp9_clear_system_state();
return ret;
}
}
int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows,
unsigned int cols, int delta_q[MAX_SEGMENTS],
int delta_lf[MAX_SEGMENTS],
unsigned int threshold[MAX_SEGMENTS]) {
VP9_COMP *cpi = (VP9_COMP *) comp;
signed char feature_data[SEG_LVL_MAX][MAX_SEGMENTS];
struct segmentation *seg = &cpi->mb.e_mbd.seg;
int i;
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
if (!map) {
vp9_disable_segmentation((VP9_PTR)cpi);
return 0;
}
// Set the segmentation Map
vp9_set_segmentation_map((VP9_PTR)cpi, map);
// Activate segmentation.
vp9_enable_segmentation((VP9_PTR)cpi);
// Set up the quan, LF and breakout threshold segment data
for (i = 0; i < MAX_SEGMENTS; i++) {
feature_data[SEG_LVL_ALT_Q][i] = delta_q[i];
feature_data[SEG_LVL_ALT_LF][i] = delta_lf[i];
cpi->segment_encode_breakout[i] = threshold[i];
}
// Enable the loop and quant changes in the feature mask
for (i = 0; i < MAX_SEGMENTS; i++) {
if (delta_q[i])
vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
else
vp9_disable_segfeature(seg, i, SEG_LVL_ALT_Q);
if (delta_lf[i])
vp9_enable_segfeature(seg, i, SEG_LVL_ALT_LF);
else
vp9_disable_segfeature(seg, i, SEG_LVL_ALT_LF);
}
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp9_set_active_map(VP9_PTR comp, unsigned char *map,
unsigned int rows, unsigned int cols) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
if (map) {
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
} else {
cpi->active_map_enabled = 0;
}
return 0;
} else {
// cpi->active_map_enabled = 0;
return -1;
}
}
int vp9_set_internal_size(VP9_PTR comp,
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
VP9_COMP *cpi = (VP9_COMP *) comp;
VP9_COMMON *cm = &cpi->common;
int hr = 0, hs = 0, vr = 0, vs = 0;
if (horiz_mode > ONETWO || vert_mode > ONETWO)
return -1;
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
int i, j;
int total = 0;
uint8_t *src = source->y_buffer;
uint8_t *dst = dest->y_buffer;
// Loop through the Y plane raw and reconstruction data summing
// (square differences)
for (i = 0; i < source->y_height; i += 16) {
for (j = 0; j < source->y_width; j += 16) {
unsigned int sse;
total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
&sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return total;
}
int vp9_get_quantizer(VP9_PTR c) {
return ((VP9_COMP *)c)->common.base_qindex;
}