Files
vpx/av1/encoder/subexp.c
Yaowu Xu f883b42cab Port renaming changes from AOMedia
Cherry-Picked the following commits:
0defd8f Changed "WebM" to "AOMedia" & "webm" to "aomedia"
54e6676 Replace "VPx" by "AVx"
5082a36 Change "Vpx" to "Avx"
7df44f1 Replace "Vp9" w/ "Av1"
967f722 Remove kVp9CodecId
828f30c Change "Vp8" to "AOM"
030b5ff AUTHORS regenerated
2524cae Add ref-mv experimental flag
016762b Change copyright notice to AOMedia form
81e5526 Replace vp9 w/ av1
9b94565 Add missing files
fa8ca9f Change "vp9" to "av1"
ec838b7  Convert "vp8" to "aom"
80edfa0 Change "VP9" to "AV1"
d1a11fb Change "vp8" to "aom"
7b58251 Point to WebM test data
dd1a5c8 Replace "VP8" with "AOM"
ff00fc0 Change "VPX" to "AOM"
01dee0b Change "vp10" to "av1" in source code
cebe6f0 Convert "vpx" to "aom"
17b0567 rename vp10*.mk to av1_*.mk
fe5f8a8 rename files vp10_* to av1_*

Change-Id: I6fc3d18eb11fc171e46140c836ad5339cf6c9419
2016-08-31 18:19:03 -07:00

289 lines
10 KiB
C

/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "av1/encoder/bitwriter.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/subexp.h"
#define av1_cost_upd256 ((int)(av1_cost_one(upd) - av1_cost_zero(upd)))
static const uint8_t update_bits[255] = {
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 0,
};
static int recenter_nonneg(int v, int m) {
if (v > (m << 1))
return v;
else if (v >= m)
return ((v - m) << 1);
else
return ((m - v) << 1) - 1;
}
static int remap_prob(int v, int m) {
int i;
static const uint8_t map_table[MAX_PROB - 1] = {
// generated by:
// map_table[j] = split_index(j, MAX_PROB - 1, MODULUS_PARAM);
20, 21, 22, 23, 24, 25, 0, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 1, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 2, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
3, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 4, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 5, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96, 97, 6, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 7, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 8, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 9, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
145, 10, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 11,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 12, 170, 171,
172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 13, 182, 183, 184, 185,
186, 187, 188, 189, 190, 191, 192, 193, 14, 194, 195, 196, 197, 198, 199,
200, 201, 202, 203, 204, 205, 15, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 16, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 17, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
18, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 19,
};
v--;
m--;
if ((m << 1) <= MAX_PROB)
i = recenter_nonneg(v, m) - 1;
else
i = recenter_nonneg(MAX_PROB - 1 - v, MAX_PROB - 1 - m) - 1;
i = map_table[i];
return i;
}
static int prob_diff_update_cost(aom_prob newp, aom_prob oldp) {
int delp = remap_prob(newp, oldp);
return update_bits[delp] << AV1_PROB_COST_SHIFT;
}
static void encode_uniform(aom_writer *w, int v) {
const int l = 8;
const int m = (1 << l) - 190;
if (v < m) {
aom_write_literal(w, v, l - 1);
} else {
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
aom_write_literal(w, (v - m) & 1, 1);
}
}
static INLINE int write_bit_gte(aom_writer *w, int word, int test) {
aom_write_literal(w, word >= test, 1);
return word >= test;
}
static void encode_term_subexp(aom_writer *w, int word) {
if (!write_bit_gte(w, word, 16)) {
aom_write_literal(w, word, 4);
} else if (!write_bit_gte(w, word, 32)) {
aom_write_literal(w, word - 16, 4);
} else if (!write_bit_gte(w, word, 64)) {
aom_write_literal(w, word - 32, 5);
} else {
encode_uniform(w, word - 64);
}
}
void av1_write_prob_diff_update(aom_writer *w, aom_prob newp, aom_prob oldp) {
const int delp = remap_prob(newp, oldp);
encode_term_subexp(w, delp);
}
int av1_prob_diff_update_savings_search(const unsigned int *ct, aom_prob oldp,
aom_prob *bestp, aom_prob upd) {
const int old_b = cost_branch256(ct, oldp);
int bestsavings = 0;
aom_prob newp, bestnewp = oldp;
const int step = *bestp > oldp ? -1 : 1;
for (newp = *bestp; newp != oldp; newp += step) {
const int new_b = cost_branch256(ct, newp);
const int update_b = prob_diff_update_cost(newp, oldp) + av1_cost_upd256;
const int savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
int av1_prob_diff_update_savings_search_model(const unsigned int *ct,
const aom_prob *oldp,
aom_prob *bestp, aom_prob upd,
int stepsize) {
int i, old_b, new_b, update_b, savings, bestsavings;
int newp;
const int step_sign = *bestp > oldp[PIVOT_NODE] ? -1 : 1;
const int step = stepsize * step_sign;
aom_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES];
av1_model_to_full_probs(oldp, oldplist);
memcpy(newplist, oldp, sizeof(aom_prob) * UNCONSTRAINED_NODES);
for (i = UNCONSTRAINED_NODES, old_b = 0; i < ENTROPY_NODES; ++i)
old_b += cost_branch256(ct + 2 * i, oldplist[i]);
old_b += cost_branch256(ct + 2 * PIVOT_NODE, oldplist[PIVOT_NODE]);
bestsavings = 0;
bestnewp = oldp[PIVOT_NODE];
assert(stepsize > 0);
for (newp = *bestp; (newp - oldp[PIVOT_NODE]) * step_sign < 0; newp += step) {
if (newp < 1 || newp > 255) continue;
newplist[PIVOT_NODE] = newp;
av1_model_to_full_probs(newplist, newplist);
for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i)
new_b += cost_branch256(ct + 2 * i, newplist[i]);
new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]);
update_b = prob_diff_update_cost(newp, oldp[PIVOT_NODE]) + av1_cost_upd256;
savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
#if CONFIG_ENTROPY
static int get_cost(unsigned int ct[][2], aom_prob p, int n) {
int i, p0 = p;
unsigned int total_ct[2] = { 0, 0 };
int cost = 0;
for (i = 0; i <= n; ++i) {
cost += cost_branch256(ct[i], p);
total_ct[0] += ct[i][0];
total_ct[1] += ct[i][1];
if (i < n)
p = av1_merge_probs(p0, total_ct, COEF_COUNT_SAT_BITS,
COEF_MAX_UPDATE_FACTOR_BITS);
}
return cost;
}
int av1_prob_update_search_subframe(unsigned int ct[][2], aom_prob oldp,
aom_prob *bestp, aom_prob upd, int n) {
const int old_b = get_cost(ct, oldp, n);
int bestsavings = 0;
aom_prob newp, bestnewp = oldp;
const int step = *bestp > oldp ? -1 : 1;
for (newp = *bestp; newp != oldp; newp += step) {
const int new_b = get_cost(ct, newp, n);
const int update_b = prob_diff_update_cost(newp, oldp) + av1_cost_upd256;
const int savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
int av1_prob_update_search_model_subframe(
unsigned int ct[ENTROPY_NODES][COEF_PROBS_BUFS][2], const aom_prob *oldp,
aom_prob *bestp, aom_prob upd, int stepsize, int n) {
int i, old_b, new_b, update_b, savings, bestsavings;
int newp;
const int step_sign = *bestp > oldp[PIVOT_NODE] ? -1 : 1;
const int step = stepsize * step_sign;
aom_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES];
av1_model_to_full_probs(oldp, oldplist);
memcpy(newplist, oldp, sizeof(aom_prob) * UNCONSTRAINED_NODES);
for (i = UNCONSTRAINED_NODES, old_b = 0; i < ENTROPY_NODES; ++i)
old_b += get_cost(ct[i], oldplist[i], n);
old_b += get_cost(ct[PIVOT_NODE], oldplist[PIVOT_NODE], n);
bestsavings = 0;
bestnewp = oldp[PIVOT_NODE];
assert(stepsize > 0);
for (newp = *bestp; (newp - oldp[PIVOT_NODE]) * step_sign < 0; newp += step) {
if (newp < 1 || newp > 255) continue;
newplist[PIVOT_NODE] = newp;
av1_model_to_full_probs(newplist, newplist);
for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i)
new_b += get_cost(ct[i], newplist[i], n);
new_b += get_cost(ct[PIVOT_NODE], newplist[PIVOT_NODE], n);
update_b = prob_diff_update_cost(newp, oldp[PIVOT_NODE]) + av1_cost_upd256;
savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
#endif // CONFIG_ENTROPY
void av1_cond_prob_diff_update(aom_writer *w, aom_prob *oldp,
const unsigned int ct[2]) {
const aom_prob upd = DIFF_UPDATE_PROB;
aom_prob newp = get_binary_prob(ct[0], ct[1]);
const int savings =
av1_prob_diff_update_savings_search(ct, *oldp, &newp, upd);
assert(newp >= 1);
if (savings > 0) {
aom_write(w, 1, upd);
av1_write_prob_diff_update(w, newp, *oldp);
*oldp = newp;
} else {
aom_write(w, 0, upd);
}
}
int av1_cond_prob_diff_update_savings(aom_prob *oldp,
const unsigned int ct[2]) {
const aom_prob upd = DIFF_UPDATE_PROB;
aom_prob newp = get_binary_prob(ct[0], ct[1]);
const int savings =
av1_prob_diff_update_savings_search(ct, *oldp, &newp, upd);
return savings;
}
void aom_write_primitive_symmetric(aom_writer *w, int word,
unsigned int abs_bits) {
if (word == 0) {
aom_write_bit(w, 0);
} else {
const int x = abs(word);
const int s = word < 0;
aom_write_bit(w, 1);
aom_write_bit(w, s);
aom_write_literal(w, x - 1, abs_bits);
}
}