Files
vpx/av1/encoder/quantize.c
Yaowu Xu f883b42cab Port renaming changes from AOMedia
Cherry-Picked the following commits:
0defd8f Changed "WebM" to "AOMedia" & "webm" to "aomedia"
54e6676 Replace "VPx" by "AVx"
5082a36 Change "Vpx" to "Avx"
7df44f1 Replace "Vp9" w/ "Av1"
967f722 Remove kVp9CodecId
828f30c Change "Vp8" to "AOM"
030b5ff AUTHORS regenerated
2524cae Add ref-mv experimental flag
016762b Change copyright notice to AOMedia form
81e5526 Replace vp9 w/ av1
9b94565 Add missing files
fa8ca9f Change "vp9" to "av1"
ec838b7  Convert "vp8" to "aom"
80edfa0 Change "VP9" to "AV1"
d1a11fb Change "vp8" to "aom"
7b58251 Point to WebM test data
dd1a5c8 Replace "VP8" with "AOM"
ff00fc0 Change "VPX" to "AOM"
01dee0b Change "vp10" to "av1" in source code
cebe6f0 Convert "vpx" to "aom"
17b0567 rename vp10*.mk to av1_*.mk
fe5f8a8 rename files vp10_* to av1_*

Change-Id: I6fc3d18eb11fc171e46140c836ad5339cf6c9419
2016-08-31 18:19:03 -07:00

1262 lines
48 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/quant_common.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/quantize.h"
#include "av1/encoder/rd.h"
#if CONFIG_NEW_QUANT
static INLINE int quantize_coeff_nuq(
const tran_low_t coeffv, const int16_t quant, const int16_t quant_shift,
const int16_t dequant, const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr) {
const int coeff = coeffv;
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int i, q;
int tmp = clamp(abs_coeff, INT16_MIN, INT16_MAX);
for (i = 0; i < NUQ_KNOTS; i++) {
if (tmp < cuml_bins_ptr[i]) {
q = i;
break;
}
}
if (i == NUQ_KNOTS) {
tmp -= cuml_bins_ptr[NUQ_KNOTS - 1];
q = NUQ_KNOTS + (((((tmp * quant) >> 16) + tmp) * quant_shift) >> 16);
}
if (q) {
*dqcoeff_ptr = av1_dequant_abscoeff_nuq(q, dequant, dequant_val);
*qcoeff_ptr = (q ^ coeff_sign) - coeff_sign;
*dqcoeff_ptr = *qcoeff_ptr < 0 ? -*dqcoeff_ptr : *dqcoeff_ptr;
} else {
*qcoeff_ptr = 0;
*dqcoeff_ptr = 0;
}
return (q != 0);
}
static INLINE int quantize_coeff_bigtx_nuq(
const tran_low_t coeffv, const int16_t quant, const int16_t quant_shift,
const int16_t dequant, const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, int logsizeby32) {
const int coeff = coeffv;
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int i, q;
int tmp = clamp(abs_coeff, INT16_MIN, INT16_MAX);
for (i = 0; i < NUQ_KNOTS; i++) {
if (tmp < ROUND_POWER_OF_TWO(cuml_bins_ptr[i], 1 + logsizeby32)) {
q = i;
break;
}
}
if (i == NUQ_KNOTS) {
tmp -= ROUND_POWER_OF_TWO(cuml_bins_ptr[NUQ_KNOTS - 1], 1 + logsizeby32);
q = NUQ_KNOTS +
(((((tmp * quant) >> 16) + tmp) * quant_shift) >> (15 - logsizeby32));
}
if (q) {
*dqcoeff_ptr = ROUND_POWER_OF_TWO(
av1_dequant_abscoeff_nuq(q, dequant, dequant_val), 1 + logsizeby32);
// *dqcoeff_ptr = av1_dequant_abscoeff_nuq(q, dequant, dequant_val) >>
// (1 + logsizeby32);
*qcoeff_ptr = (q ^ coeff_sign) - coeff_sign;
*dqcoeff_ptr = *qcoeff_ptr < 0 ? -*dqcoeff_ptr : *dqcoeff_ptr;
} else {
*qcoeff_ptr = 0;
*dqcoeff_ptr = 0;
}
return (q != 0);
}
static INLINE int quantize_coeff_fp_nuq(
const tran_low_t coeffv, const int16_t quant, const int16_t dequant,
const tran_low_t *cuml_bins_ptr, const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr) {
const int coeff = coeffv;
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int i, q;
int tmp = clamp(abs_coeff, INT16_MIN, INT16_MAX);
for (i = 0; i < NUQ_KNOTS; i++) {
if (tmp < cuml_bins_ptr[i]) {
q = i;
break;
}
}
if (i == NUQ_KNOTS) {
q = NUQ_KNOTS +
((((int64_t)tmp - cuml_bins_ptr[NUQ_KNOTS - 1]) * quant) >> 16);
}
if (q) {
*dqcoeff_ptr = av1_dequant_abscoeff_nuq(q, dequant, dequant_val);
*qcoeff_ptr = (q ^ coeff_sign) - coeff_sign;
*dqcoeff_ptr = *qcoeff_ptr < 0 ? -*dqcoeff_ptr : *dqcoeff_ptr;
} else {
*qcoeff_ptr = 0;
*dqcoeff_ptr = 0;
}
return (q != 0);
}
static INLINE int quantize_coeff_bigtx_fp_nuq(
const tran_low_t coeffv, const int16_t quant, const int16_t dequant,
const tran_low_t *cuml_bins_ptr, const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, int logsizeby32) {
const int coeff = coeffv;
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int i, q;
int tmp = clamp(abs_coeff, INT16_MIN, INT16_MAX);
for (i = 0; i < NUQ_KNOTS; i++) {
if (tmp < ROUND_POWER_OF_TWO(cuml_bins_ptr[i], 1 + logsizeby32)) {
q = i;
break;
}
}
if (i == NUQ_KNOTS) {
q = NUQ_KNOTS +
((((int64_t)tmp -
ROUND_POWER_OF_TWO(cuml_bins_ptr[NUQ_KNOTS - 1], 1 + logsizeby32)) *
quant) >>
(15 - logsizeby32));
}
if (q) {
*dqcoeff_ptr = ROUND_POWER_OF_TWO(
av1_dequant_abscoeff_nuq(q, dequant, dequant_val), 1 + logsizeby32);
// *dqcoeff_ptr = av1_dequant_abscoeff_nuq(q, dequant, dequant_val) >>
// (1 + logsizeby32);
*qcoeff_ptr = (q ^ coeff_sign) - coeff_sign;
*dqcoeff_ptr = *qcoeff_ptr < 0 ? -*dqcoeff_ptr : *dqcoeff_ptr;
} else {
*qcoeff_ptr = 0;
*dqcoeff_ptr = 0;
}
return (q != 0);
}
void quantize_dc_nuq(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t quant,
const int16_t quant_shift, const int16_t dequant,
const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int rc = 0;
if (quantize_coeff_nuq(coeff_ptr[rc], quant, quant_shift, dequant,
cuml_bins_ptr, dequant_val, qcoeff_ptr, dqcoeff_ptr))
eob = 0;
}
*eob_ptr = eob + 1;
}
void quantize_dc_fp_nuq(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t quant,
const int16_t dequant, const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int rc = 0;
if (quantize_coeff_fp_nuq(coeff_ptr[rc], quant, dequant, cuml_bins_ptr,
dequant_val, qcoeff_ptr, dqcoeff_ptr))
eob = 0;
}
*eob_ptr = eob + 1;
}
void quantize_dc_32x32_nuq(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t quant,
const int16_t quant_shift, const int16_t dequant,
const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int rc = 0;
if (quantize_coeff_bigtx_nuq(coeff_ptr[rc], quant, quant_shift, dequant,
cuml_bins_ptr, dequant_val, qcoeff_ptr,
dqcoeff_ptr, 0))
eob = 0;
}
*eob_ptr = eob + 1;
}
void quantize_dc_32x32_fp_nuq(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t quant,
const int16_t dequant,
const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int rc = 0;
if (quantize_coeff_bigtx_fp_nuq(coeff_ptr[rc], quant, dequant,
cuml_bins_ptr, dequant_val, qcoeff_ptr,
dqcoeff_ptr, 0))
eob = 0;
}
*eob_ptr = eob + 1;
}
void quantize_nuq_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, const int16_t *dequant_ptr,
const cuml_bins_type_nuq *cuml_bins_ptr,
const dequant_val_type_nuq *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const uint8_t *band) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
int i;
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
if (quantize_coeff_nuq(coeff_ptr[rc], quant_ptr[rc != 0],
quant_shift_ptr[rc != 0], dequant_ptr[rc != 0],
cuml_bins_ptr[band[i]], dequant_val[band[i]],
&qcoeff_ptr[rc], &dqcoeff_ptr[rc]))
eob = i;
}
}
*eob_ptr = eob + 1;
}
void quantize_fp_nuq_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *quant_ptr,
const int16_t *dequant_ptr,
const cuml_bins_type_nuq *cuml_bins_ptr,
const dequant_val_type_nuq *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const uint8_t *band) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
int i;
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
if (quantize_coeff_fp_nuq(coeff_ptr[rc], quant_ptr[rc != 0],
dequant_ptr[rc != 0], cuml_bins_ptr[band[i]],
dequant_val[band[i]], &qcoeff_ptr[rc],
&dqcoeff_ptr[rc]))
eob = i;
}
}
*eob_ptr = eob + 1;
}
void quantize_32x32_nuq_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
const int16_t *dequant_ptr,
const cuml_bins_type_nuq *cuml_bins_ptr,
const dequant_val_type_nuq *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const uint8_t *band) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
int i;
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
if (quantize_coeff_bigtx_nuq(
coeff_ptr[rc], quant_ptr[rc != 0], quant_shift_ptr[rc != 0],
dequant_ptr[rc != 0], cuml_bins_ptr[band[i]],
dequant_val[band[i]], &qcoeff_ptr[rc], &dqcoeff_ptr[rc], 0))
eob = i;
}
}
*eob_ptr = eob + 1;
}
void quantize_32x32_fp_nuq_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *quant_ptr,
const int16_t *dequant_ptr,
const cuml_bins_type_nuq *cuml_bins_ptr,
const dequant_val_type_nuq *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const uint8_t *band) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
int i;
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
if (quantize_coeff_bigtx_fp_nuq(
coeff_ptr[rc], quant_ptr[rc != 0], dequant_ptr[rc != 0],
cuml_bins_ptr[band[i]], dequant_val[band[i]], &qcoeff_ptr[rc],
&dqcoeff_ptr[rc], 0))
eob = i;
}
}
*eob_ptr = eob + 1;
}
#endif // CONFIG_NEW_QUANT
void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
*eob_ptr = 0;
}
void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
const MACROBLOCKD_PLANE *pd,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const scan_order *sc, const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
if (qparam->log_scale == 0) {
av1_quantize_fp(coeff_ptr, n_coeffs, skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff_ptr, dqcoeff_ptr,
pd->dequant, eob_ptr, sc->scan, sc->iscan);
} else {
av1_quantize_fp_32x32(coeff_ptr, n_coeffs, skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff_ptr, dqcoeff_ptr,
pd->dequant, eob_ptr, sc->scan, sc->iscan);
}
}
void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
const MACROBLOCKD_PLANE *pd, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr, const scan_order *sc,
const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
if (qparam->log_scale == 0) {
aom_quantize_b(coeff_ptr, n_coeffs, skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff_ptr, dqcoeff_ptr, pd->dequant,
eob_ptr, sc->scan, sc->iscan);
} else {
aom_quantize_b_32x32(coeff_ptr, n_coeffs, skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff_ptr, dqcoeff_ptr,
pd->dequant, eob_ptr, sc->scan, sc->iscan);
}
}
void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
const MACROBLOCKD_PLANE *pd,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const scan_order *sc, const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
(void)sc;
if (qparam->log_scale == 0) {
aom_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round,
p->quant_fp[0], qcoeff_ptr, dqcoeff_ptr, pd->dequant[0],
eob_ptr);
} else {
aom_quantize_dc_32x32(coeff_ptr, skip_block, p->round, p->quant_fp[0],
qcoeff_ptr, dqcoeff_ptr, pd->dequant[0], eob_ptr);
}
}
#if CONFIG_AOM_HIGHBITDEPTH
void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
const MACROBLOCKD_PLANE *pd,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const scan_order *sc,
const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
av1_highbd_quantize_fp(coeff_ptr, n_coeffs, skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff_ptr, dqcoeff_ptr,
pd->dequant, eob_ptr, sc->scan, sc->iscan,
qparam->log_scale);
}
void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
const MACROBLOCKD_PLANE *pd,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const scan_order *sc,
const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
av1_highbd_quantize_b(coeff_ptr, n_coeffs, skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff_ptr, dqcoeff_ptr,
pd->dequant, eob_ptr, sc->scan, sc->iscan,
qparam->log_scale);
}
void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
const MACROBLOCKD_PLANE *pd,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const scan_order *sc,
const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
(void)sc;
av1_highbd_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round,
p->quant_fp[0], qcoeff_ptr, dqcoeff_ptr,
pd->dequant[0], eob_ptr, qparam->log_scale);
}
#if CONFIG_NEW_QUANT
static INLINE int highbd_quantize_coeff_nuq(
const tran_low_t coeffv, const int16_t quant, const int16_t quant_shift,
const int16_t dequant, const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr) {
const int coeff = coeffv;
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int i, q;
int64_t tmp = clamp(abs_coeff, INT32_MIN, INT32_MAX);
for (i = 0; i < NUQ_KNOTS; i++) {
if (tmp < cuml_bins_ptr[i]) {
q = i;
break;
}
}
if (i == NUQ_KNOTS) {
tmp -= cuml_bins_ptr[NUQ_KNOTS - 1];
q = NUQ_KNOTS + (((((tmp * quant) >> 16) + tmp) * quant_shift) >> 16);
}
if (q) {
*dqcoeff_ptr = av1_dequant_abscoeff_nuq(q, dequant, dequant_val);
*qcoeff_ptr = (q ^ coeff_sign) - coeff_sign;
*dqcoeff_ptr = *qcoeff_ptr < 0 ? -*dqcoeff_ptr : *dqcoeff_ptr;
} else {
*qcoeff_ptr = 0;
*dqcoeff_ptr = 0;
}
return (q != 0);
}
static INLINE int highbd_quantize_coeff_fp_nuq(
const tran_low_t coeffv, const int16_t quant, const int16_t dequant,
const tran_low_t *cuml_bins_ptr, const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr) {
const int coeff = coeffv;
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int i, q;
int64_t tmp = clamp(abs_coeff, INT32_MIN, INT32_MAX);
for (i = 0; i < NUQ_KNOTS; i++) {
if (tmp < cuml_bins_ptr[i]) {
q = i;
break;
}
}
if (i == NUQ_KNOTS) {
q = NUQ_KNOTS + (((tmp - cuml_bins_ptr[NUQ_KNOTS - 1]) * quant) >> 16);
}
if (q) {
*dqcoeff_ptr = av1_dequant_abscoeff_nuq(q, dequant, dequant_val);
*qcoeff_ptr = (q ^ coeff_sign) - coeff_sign;
*dqcoeff_ptr = *qcoeff_ptr < 0 ? -*dqcoeff_ptr : *dqcoeff_ptr;
} else {
*qcoeff_ptr = 0;
*dqcoeff_ptr = 0;
}
return (q != 0);
}
static INLINE int highbd_quantize_coeff_bigtx_fp_nuq(
const tran_low_t coeffv, const int16_t quant, const int16_t dequant,
const tran_low_t *cuml_bins_ptr, const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, int logsizeby32) {
const int coeff = coeffv;
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int i, q;
int64_t tmp = clamp(abs_coeff, INT32_MIN, INT32_MAX);
for (i = 0; i < NUQ_KNOTS; i++) {
if (tmp < ROUND_POWER_OF_TWO(cuml_bins_ptr[i], 1 + logsizeby32)) {
q = i;
break;
}
}
if (i == NUQ_KNOTS) {
q = NUQ_KNOTS + (((tmp - ROUND_POWER_OF_TWO(cuml_bins_ptr[NUQ_KNOTS - 1],
1 + logsizeby32)) *
quant) >>
(15 - logsizeby32));
}
if (q) {
*dqcoeff_ptr = ROUND_POWER_OF_TWO(
av1_dequant_abscoeff_nuq(q, dequant, dequant_val), 1 + logsizeby32);
*qcoeff_ptr = (q ^ coeff_sign) - coeff_sign;
*dqcoeff_ptr = *qcoeff_ptr < 0 ? -*dqcoeff_ptr : *dqcoeff_ptr;
} else {
*qcoeff_ptr = 0;
*dqcoeff_ptr = 0;
}
return (q != 0);
}
static INLINE int highbd_quantize_coeff_bigtx_nuq(
const tran_low_t coeffv, const int16_t quant, const int16_t quant_shift,
const int16_t dequant, const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, int logsizeby32) {
const int coeff = coeffv;
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int i, q;
int64_t tmp = clamp(abs_coeff, INT32_MIN, INT32_MAX);
for (i = 0; i < NUQ_KNOTS; i++) {
if (tmp < ROUND_POWER_OF_TWO(cuml_bins_ptr[i], 1 + logsizeby32)) {
q = i;
break;
}
}
if (i == NUQ_KNOTS) {
tmp -= ROUND_POWER_OF_TWO(cuml_bins_ptr[NUQ_KNOTS - 1], 1 + logsizeby32);
q = NUQ_KNOTS +
(((((tmp * quant) >> 16) + tmp) * quant_shift) >> (15 - logsizeby32));
}
if (q) {
*dqcoeff_ptr = ROUND_POWER_OF_TWO(
av1_dequant_abscoeff_nuq(q, dequant, dequant_val), 1 + logsizeby32);
*qcoeff_ptr = (q ^ coeff_sign) - coeff_sign;
*dqcoeff_ptr = *qcoeff_ptr < 0 ? -*dqcoeff_ptr : *dqcoeff_ptr;
} else {
*qcoeff_ptr = 0;
*dqcoeff_ptr = 0;
}
return (q != 0);
}
void highbd_quantize_dc_nuq(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t quant,
const int16_t quant_shift, const int16_t dequant,
const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int rc = 0;
if (highbd_quantize_coeff_nuq(coeff_ptr[rc], quant, quant_shift, dequant,
cuml_bins_ptr, dequant_val, qcoeff_ptr,
dqcoeff_ptr))
eob = 0;
}
*eob_ptr = eob + 1;
}
void highbd_quantize_dc_fp_nuq(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t quant,
const int16_t dequant,
const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int rc = 0;
if (highbd_quantize_coeff_fp_nuq(coeff_ptr[rc], quant, dequant,
cuml_bins_ptr, dequant_val, qcoeff_ptr,
dqcoeff_ptr))
eob = 0;
}
*eob_ptr = eob + 1;
}
void highbd_quantize_nuq_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
const int16_t *dequant_ptr,
const cuml_bins_type_nuq *cuml_bins_ptr,
const dequant_val_type_nuq *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const uint8_t *band) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
int i;
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
if (highbd_quantize_coeff_nuq(
coeff_ptr[rc], quant_ptr[rc != 0], quant_shift_ptr[rc != 0],
dequant_ptr[rc != 0], cuml_bins_ptr[band[i]],
dequant_val[band[i]], &qcoeff_ptr[rc], &dqcoeff_ptr[rc]))
eob = i;
}
}
*eob_ptr = eob + 1;
}
void highbd_quantize_32x32_nuq_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
const int16_t *dequant_ptr,
const cuml_bins_type_nuq *cuml_bins_ptr,
const dequant_val_type_nuq *dequant_val,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const int16_t *scan, const uint8_t *band) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
int i;
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
if (highbd_quantize_coeff_bigtx_nuq(
coeff_ptr[rc], quant_ptr[rc != 0], quant_shift_ptr[rc != 0],
dequant_ptr[rc != 0], cuml_bins_ptr[band[i]],
dequant_val[band[i]], &qcoeff_ptr[rc], &dqcoeff_ptr[rc], 0))
eob = i;
}
}
*eob_ptr = eob + 1;
}
void highbd_quantize_32x32_fp_nuq_c(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, int skip_block,
const int16_t *quant_ptr,
const int16_t *dequant_ptr,
const cuml_bins_type_nuq *cuml_bins_ptr,
const dequant_val_type_nuq *dequant_val,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const int16_t *scan, const uint8_t *band) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
int i;
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
if (highbd_quantize_coeff_bigtx_fp_nuq(
coeff_ptr[rc], quant_ptr[rc != 0], dequant_ptr[rc != 0],
cuml_bins_ptr[band[i]], dequant_val[band[i]], &qcoeff_ptr[rc],
&dqcoeff_ptr[rc], 0))
eob = i;
}
}
*eob_ptr = eob + 1;
}
void highbd_quantize_fp_nuq_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *quant_ptr,
const int16_t *dequant_ptr,
const cuml_bins_type_nuq *cuml_bins_ptr,
const dequant_val_type_nuq *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const uint8_t *band) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
int i;
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
if (highbd_quantize_coeff_fp_nuq(
coeff_ptr[rc], quant_ptr[rc != 0], dequant_ptr[rc != 0],
cuml_bins_ptr[band[i]], dequant_val[band[i]], &qcoeff_ptr[rc],
&dqcoeff_ptr[rc]))
eob = i;
}
}
*eob_ptr = eob + 1;
}
void highbd_quantize_dc_32x32_nuq(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block,
const int16_t quant, const int16_t quant_shift, const int16_t dequant,
const tran_low_t *cuml_bins_ptr, const tran_low_t *dequant_val,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int rc = 0;
if (highbd_quantize_coeff_bigtx_nuq(coeff_ptr[rc], quant, quant_shift,
dequant, cuml_bins_ptr, dequant_val,
qcoeff_ptr, dqcoeff_ptr, 0))
eob = 0;
}
*eob_ptr = eob + 1;
}
void highbd_quantize_dc_32x32_fp_nuq(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block,
const int16_t quant, const int16_t dequant, const tran_low_t *cuml_bins_ptr,
const tran_low_t *dequant_val, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int rc = 0;
if (highbd_quantize_coeff_bigtx_fp_nuq(coeff_ptr[rc], quant, dequant,
cuml_bins_ptr, dequant_val,
qcoeff_ptr, dqcoeff_ptr, 0))
eob = 0;
}
*eob_ptr = eob + 1;
}
#endif // CONFIG_NEW_QUANT
#endif // CONFIG_AOM_HIGHBITDEPTH
void av1_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const int16_t *iscan
#if CONFIG_AOM_QM
,
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr
#endif
) {
int i, eob = -1;
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
#if CONFIG_AOM_QM
const qm_val_t wt = qm_ptr[rc];
const qm_val_t iwt = iqm_ptr[rc];
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
#endif
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int64_t tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
int tmp32;
#if CONFIG_AOM_QM
tmp32 = (int)((tmp * wt * quant_ptr[rc != 0]) >> (16 + AOM_QM_BITS));
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant;
#else
tmp32 = (int)((tmp * quant_ptr[rc != 0]) >> 16);
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
#endif
if (tmp32) eob = i;
}
}
*eob_ptr = eob + 1;
}
#if CONFIG_AOM_HIGHBITDEPTH
void av1_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan,
#if CONFIG_AOM_QM
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr,
#endif
int log_scale) {
int i;
int eob = -1;
const int scale = 1 << log_scale;
const int shift = 16 - log_scale;
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
memset(qcoeff_ptr, 0, count * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, count * sizeof(*dqcoeff_ptr));
if (!skip_block) {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
#if CONFIG_AOM_QM
const qm_val_t wt = qm_ptr[rc];
const qm_val_t iwt = iqm_ptr[rc];
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
#endif
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int64_t tmp = abs_coeff + round_ptr[rc != 0];
#if CONFIG_AOM_QM
const uint32_t abs_qcoeff =
(uint32_t)((tmp * quant_ptr[rc != 0] * wt) >> (shift + AOM_QM_BITS));
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant / scale;
#else
const uint32_t abs_qcoeff =
(uint32_t)((tmp * quant_ptr[rc != 0]) >> shift);
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / scale;
#endif
if (abs_qcoeff) eob = i;
}
}
*eob_ptr = eob + 1;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
// TODO(jingning) Refactor this file and combine functions with similar
// operations.
void av1_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan
#if CONFIG_AOM_QM
,
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr
#endif
) {
int i, eob = -1;
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
#if CONFIG_AOM_QM
const qm_val_t wt = qm_ptr[rc];
const qm_val_t iwt = iqm_ptr[rc];
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
int64_t tmp = 0;
#endif
const int coeff_sign = (coeff >> 31);
int tmp32 = 0;
int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
#if CONFIG_AOM_QM
if (abs_coeff * wt >= (dequant_ptr[rc != 0] << (AOM_QM_BITS - 2))) {
#else
if (abs_coeff >= (dequant_ptr[rc != 0] >> 2)) {
#endif
abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
abs_coeff = clamp(abs_coeff, INT16_MIN, INT16_MAX);
#if CONFIG_AOM_QM
tmp = abs_coeff * wt;
tmp32 = (int)(tmp * quant_ptr[rc != 0]) >> (AOM_QM_BITS + 15);
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = (qcoeff_ptr[rc] * dequant) / 2;
#else
tmp32 = (abs_coeff * quant_ptr[rc != 0]) >> 15;
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = (qcoeff_ptr[rc] * dequant_ptr[rc != 0]) / 2;
#endif
}
if (tmp32) eob = i;
}
}
*eob_ptr = eob + 1;
}
#if CONFIG_AOM_HIGHBITDEPTH
void av1_highbd_quantize_b_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan,
#if CONFIG_AOM_QM
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr,
#endif
int log_scale) {
int i, non_zero_count = (int)n_coeffs, eob = -1;
int zbins[2] = { zbin_ptr[0], zbin_ptr[1] };
int round[2] = { round_ptr[0], round_ptr[1] };
int nzbins[2];
int scale = 1;
int shift = 16;
(void)iscan;
if (log_scale > 0) {
zbins[0] = ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale);
zbins[1] = ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale);
round[0] = ROUND_POWER_OF_TWO(round_ptr[0], log_scale);
round[1] = ROUND_POWER_OF_TWO(round_ptr[1], log_scale);
scale = 1 << log_scale;
shift = 16 - log_scale;
}
nzbins[0] = zbins[0] * -1;
nzbins[1] = zbins[1] * -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
// Pre-scan pass
for (i = (int)n_coeffs - 1; i >= 0; i--) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
#if CONFIG_AOM_QM
uint32_t abs_qcoeff = 0;
const qm_val_t wt = qm_ptr[rc];
const qm_val_t iwt = iqm_ptr[rc];
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
#endif
if (coeff < zbins[rc != 0] && coeff > nzbins[rc != 0])
non_zero_count--;
else
break;
}
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
#if CONFIG_AOM_QM
if (abs_coeff * wt >= (zbins[rc != 0] << AOM_QM_BITS)) {
#else
if (abs_coeff >= zbins[rc != 0]) {
#endif
const int64_t tmp1 = abs_coeff + round[rc != 0];
const int64_t tmp2 = ((tmp1 * quant_ptr[rc != 0]) >> 16) + tmp1;
#if CONFIG_AOM_QM
const uint32_t abs_qcoeff = (uint32_t)(
(tmp2 * wt * quant_shift_ptr[rc != 0]) >> (AOM_QM_BITS + shift));
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
dqcoeff_ptr[rc] = (qcoeff_ptr[rc] * dequant) / scale;
#else
const uint32_t abs_qcoeff =
(uint32_t)((tmp2 * quant_shift_ptr[rc != 0]) >> shift);
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / scale;
#endif // CONFIG_AOM_QM
if (abs_qcoeff) eob = i;
}
}
}
*eob_ptr = eob + 1;
}
#endif
#if CONFIG_AOM_HIGHBITDEPTH
void av1_highbd_quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs,
int skip_block, const int16_t *round_ptr,
const int16_t quant, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr,
uint16_t *eob_ptr, const int log_scale) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int coeff = coeff_ptr[0];
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int64_t tmp = abs_coeff + round_ptr[0];
const uint32_t abs_qcoeff = (uint32_t)((tmp * quant) >> (16 - log_scale));
qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
dqcoeff_ptr[0] = qcoeff_ptr[0] * dequant_ptr / (1 << log_scale);
if (abs_qcoeff) eob = 0;
}
*eob_ptr = eob + 1;
}
#endif
static void invert_quant(int16_t *quant, int16_t *shift, int d) {
unsigned t;
int l, m;
t = d;
for (l = 0; t > 1; l++) t >>= 1;
m = 1 + (1 << (16 + l)) / d;
*quant = (int16_t)(m - (1 << 16));
*shift = 1 << (16 - l);
}
static int get_qzbin_factor(int q, aom_bit_depth_t bit_depth) {
const int quant = av1_dc_quant(q, 0, bit_depth);
#if CONFIG_AOM_HIGHBITDEPTH
switch (bit_depth) {
case AOM_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80);
case AOM_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80);
case AOM_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80);
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
#else
(void)bit_depth;
return q == 0 ? 64 : (quant < 148 ? 84 : 80);
#endif
}
void av1_init_quantizer(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
QUANTS *const quants = &cpi->quants;
int i, q, quant;
#if CONFIG_NEW_QUANT
int dq;
#endif
for (q = 0; q < QINDEX_RANGE; q++) {
const int qzbin_factor = get_qzbin_factor(q, cm->bit_depth);
const int qrounding_factor = q == 0 ? 64 : 48;
for (i = 0; i < 2; ++i) {
int qrounding_factor_fp = 64;
// y
quant = i == 0 ? av1_dc_quant(q, cm->y_dc_delta_q, cm->bit_depth)
: av1_ac_quant(q, 0, cm->bit_depth);
invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i], quant);
quants->y_quant_fp[q][i] = (1 << 16) / quant;
quants->y_round_fp[q][i] = (qrounding_factor_fp * quant) >> 7;
quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
quants->y_round[q][i] = (qrounding_factor * quant) >> 7;
cpi->y_dequant[q][i] = quant;
// uv
quant = i == 0 ? av1_dc_quant(q, cm->uv_dc_delta_q, cm->bit_depth)
: av1_ac_quant(q, cm->uv_ac_delta_q, cm->bit_depth);
invert_quant(&quants->uv_quant[q][i], &quants->uv_quant_shift[q][i],
quant);
quants->uv_quant_fp[q][i] = (1 << 16) / quant;
quants->uv_round_fp[q][i] = (qrounding_factor_fp * quant) >> 7;
quants->uv_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
quants->uv_round[q][i] = (qrounding_factor * quant) >> 7;
cpi->uv_dequant[q][i] = quant;
}
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq++) {
for (i = 0; i < COEF_BANDS; i++) {
const int quant = cpi->y_dequant[q][i != 0];
const int uvquant = cpi->uv_dequant[q][i != 0];
av1_get_dequant_val_nuq(quant, q, i, cpi->y_dequant_val_nuq[dq][q][i],
quants->y_cuml_bins_nuq[dq][q][i], dq);
av1_get_dequant_val_nuq(uvquant, q, i,
cpi->uv_dequant_val_nuq[dq][q][i],
quants->uv_cuml_bins_nuq[dq][q][i], dq);
}
}
#endif // CONFIG_NEW_QUANT
for (i = 2; i < 8; i++) { // 8: SIMD width
quants->y_quant[q][i] = quants->y_quant[q][1];
quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1];
quants->y_round_fp[q][i] = quants->y_round_fp[q][1];
quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
quants->y_zbin[q][i] = quants->y_zbin[q][1];
quants->y_round[q][i] = quants->y_round[q][1];
cpi->y_dequant[q][i] = cpi->y_dequant[q][1];
quants->uv_quant[q][i] = quants->uv_quant[q][1];
quants->uv_quant_fp[q][i] = quants->uv_quant_fp[q][1];
quants->uv_round_fp[q][i] = quants->uv_round_fp[q][1];
quants->uv_quant_shift[q][i] = quants->uv_quant_shift[q][1];
quants->uv_zbin[q][i] = quants->uv_zbin[q][1];
quants->uv_round[q][i] = quants->uv_round[q][1];
cpi->uv_dequant[q][i] = cpi->uv_dequant[q][1];
}
}
}
void av1_init_plane_quantizers(const AV1_COMP *cpi, MACROBLOCK *x,
int segment_id) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const QUANTS *const quants = &cpi->quants;
const int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
const int rdmult = av1_compute_rd_mult(cpi, qindex + cm->y_dc_delta_q);
int i;
#if CONFIG_AOM_QM
int minqm = cm->min_qmlevel;
int maxqm = cm->max_qmlevel;
// Quant matrix only depends on the base QP so there is only one set per frame
int qmlevel = (lossless || cm->using_qmatrix == 0)
? NUM_QM_LEVELS - 1
: aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
#endif
#if CONFIG_NEW_QUANT
int dq;
#endif
// Y
x->plane[0].quant = quants->y_quant[qindex];
x->plane[0].quant_fp = quants->y_quant_fp[qindex];
x->plane[0].round_fp = quants->y_round_fp[qindex];
x->plane[0].quant_shift = quants->y_quant_shift[qindex];
x->plane[0].zbin = quants->y_zbin[qindex];
x->plane[0].round = quants->y_round[qindex];
#if CONFIG_AOM_QM
memcpy(&xd->plane[0].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][0],
sizeof(cm->gqmatrix[qmlevel][0]));
memcpy(&xd->plane[0].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][0],
sizeof(cm->giqmatrix[qmlevel][0]));
#endif
xd->plane[0].dequant = cpi->y_dequant[qindex];
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq++) {
x->plane[0].cuml_bins_nuq[dq] = quants->y_cuml_bins_nuq[dq][qindex];
xd->plane[0].dequant_val_nuq[dq] = cpi->y_dequant_val_nuq[dq][qindex];
}
#endif // CONFIG_NEW_QUANT
x->plane[0].quant_thred[0] = x->plane[0].zbin[0] * x->plane[0].zbin[0];
x->plane[0].quant_thred[1] = x->plane[0].zbin[1] * x->plane[0].zbin[1];
// UV
for (i = 1; i < 3; i++) {
x->plane[i].quant = quants->uv_quant[qindex];
x->plane[i].quant_fp = quants->uv_quant_fp[qindex];
x->plane[i].round_fp = quants->uv_round_fp[qindex];
x->plane[i].quant_shift = quants->uv_quant_shift[qindex];
x->plane[i].zbin = quants->uv_zbin[qindex];
x->plane[i].round = quants->uv_round[qindex];
#if CONFIG_AOM_QM
memcpy(&xd->plane[i].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][1],
sizeof(cm->gqmatrix[qmlevel][1]));
memcpy(&xd->plane[i].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][1],
sizeof(cm->giqmatrix[qmlevel][1]));
#endif
xd->plane[i].dequant = cpi->uv_dequant[qindex];
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq++) {
x->plane[i].cuml_bins_nuq[dq] = quants->uv_cuml_bins_nuq[dq][qindex];
xd->plane[i].dequant_val_nuq[dq] = cpi->uv_dequant_val_nuq[dq][qindex];
}
#endif // CONFIG_NEW_QUANT
x->plane[i].quant_thred[0] = x->plane[i].zbin[0] * x->plane[i].zbin[0];
x->plane[i].quant_thred[1] = x->plane[i].zbin[1] * x->plane[i].zbin[1];
}
x->skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
x->q_index = qindex;
set_error_per_bit(x, rdmult);
av1_initialize_me_consts(cpi, x, x->q_index);
}
void av1_frame_init_quantizer(AV1_COMP *cpi) {
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
}
void av1_set_quantizer(AV1_COMMON *cm, int q) {
// quantizer has to be reinitialized with av1_init_quantizer() if any
// delta_q changes.
cm->base_qindex = q;
cm->y_dc_delta_q = 0;
cm->uv_dc_delta_q = 0;
cm->uv_ac_delta_q = 0;
}
// Table that converts 0-63 Q-range values passed in outside to the Qindex
// range used internally.
static const int quantizer_to_qindex[] = {
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48,
52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100,
104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152,
156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204,
208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255,
};
int av1_quantizer_to_qindex(int quantizer) {
return quantizer_to_qindex[quantizer];
}
int av1_qindex_to_quantizer(int qindex) {
int quantizer;
for (quantizer = 0; quantizer < 64; ++quantizer)
if (quantizer_to_qindex[quantizer] >= qindex) return quantizer;
return 63;
}