Files
vpx/av1/encoder/context_tree.c
Yaowu Xu f883b42cab Port renaming changes from AOMedia
Cherry-Picked the following commits:
0defd8f Changed "WebM" to "AOMedia" & "webm" to "aomedia"
54e6676 Replace "VPx" by "AVx"
5082a36 Change "Vpx" to "Avx"
7df44f1 Replace "Vp9" w/ "Av1"
967f722 Remove kVp9CodecId
828f30c Change "Vp8" to "AOM"
030b5ff AUTHORS regenerated
2524cae Add ref-mv experimental flag
016762b Change copyright notice to AOMedia form
81e5526 Replace vp9 w/ av1
9b94565 Add missing files
fa8ca9f Change "vp9" to "av1"
ec838b7  Convert "vp8" to "aom"
80edfa0 Change "VP9" to "AV1"
d1a11fb Change "vp8" to "aom"
7b58251 Point to WebM test data
dd1a5c8 Replace "VP8" with "AOM"
ff00fc0 Change "VPX" to "AOM"
01dee0b Change "vp10" to "av1" in source code
cebe6f0 Convert "vpx" to "aom"
17b0567 rename vp10*.mk to av1_*.mk
fe5f8a8 rename files vp10_* to av1_*

Change-Id: I6fc3d18eb11fc171e46140c836ad5339cf6c9419
2016-08-31 18:19:03 -07:00

272 lines
9.7 KiB
C

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 2] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
#if CONFIG_EXT_PARTITION
BLOCK_128X128,
#endif // CONFIG_EXT_PARTITION
};
static void alloc_mode_context(AV1_COMMON *cm, int num_4x4_blk,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif
PICK_MODE_CONTEXT *ctx) {
const int num_blk = (num_4x4_blk < 4 ? 4 : num_4x4_blk);
const int num_pix = num_blk << 4;
int i, k;
ctx->num_4x4_blk = num_blk;
#if CONFIG_EXT_PARTITION_TYPES
ctx->partition = partition;
#endif
for (i = 0; i < MAX_MB_PLANE; ++i) {
#if CONFIG_VAR_TX
CHECK_MEM_ERROR(cm, ctx->blk_skip[i], aom_calloc(num_blk, sizeof(uint8_t)));
#endif
for (k = 0; k < 3; ++k) {
CHECK_MEM_ERROR(cm, ctx->coeff[i][k],
aom_memalign(32, num_pix * sizeof(*ctx->coeff[i][k])));
CHECK_MEM_ERROR(cm, ctx->qcoeff[i][k],
aom_memalign(32, num_pix * sizeof(*ctx->qcoeff[i][k])));
CHECK_MEM_ERROR(cm, ctx->dqcoeff[i][k],
aom_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i][k])));
CHECK_MEM_ERROR(cm, ctx->eobs[i][k],
aom_memalign(32, num_blk * sizeof(*ctx->eobs[i][k])));
}
}
if (cm->allow_screen_content_tools) {
for (i = 0; i < 2; ++i) {
CHECK_MEM_ERROR(
cm, ctx->color_index_map[i],
aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i])));
}
}
}
static void free_mode_context(PICK_MODE_CONTEXT *ctx) {
int i, k;
for (i = 0; i < MAX_MB_PLANE; ++i) {
#if CONFIG_VAR_TX
aom_free(ctx->blk_skip[i]);
ctx->blk_skip[i] = 0;
#endif
for (k = 0; k < 3; ++k) {
aom_free(ctx->coeff[i][k]);
ctx->coeff[i][k] = 0;
aom_free(ctx->qcoeff[i][k]);
ctx->qcoeff[i][k] = 0;
aom_free(ctx->dqcoeff[i][k]);
ctx->dqcoeff[i][k] = 0;
aom_free(ctx->eobs[i][k]);
ctx->eobs[i][k] = 0;
}
}
for (i = 0; i < 2; ++i) {
aom_free(ctx->color_index_map[i]);
ctx->color_index_map[i] = 0;
}
}
static void alloc_tree_contexts(AV1_COMMON *cm, PC_TREE *tree,
int num_4x4_blk) {
#if CONFIG_EXT_PARTITION_TYPES
alloc_mode_context(cm, num_4x4_blk, PARTITION_NONE, &tree->none);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ, &tree->horizontal[0]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->vertical[0]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->horizontal[1]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->vertical[1]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_A,
&tree->horizontala[0]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_A,
&tree->horizontala[1]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ_A,
&tree->horizontala[2]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ_B,
&tree->horizontalb[0]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_B,
&tree->horizontalb[1]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_B,
&tree->horizontalb[2]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_A,
&tree->verticala[0]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_A,
&tree->verticala[1]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT_A,
&tree->verticala[2]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT_B,
&tree->verticalb[0]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_B,
&tree->verticalb[1]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_B,
&tree->verticalb[2]);
#ifdef CONFIG_SUPERTX
alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ,
&tree->horizontal_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT, &tree->vertical_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_SPLIT, &tree->split_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ_A,
&tree->horizontala_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ_B,
&tree->horizontalb_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT_A,
&tree->verticala_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT_B,
&tree->verticalb_supertx);
#endif // CONFIG_SUPERTX
#else
alloc_mode_context(cm, num_4x4_blk, &tree->none);
alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[0]);
alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[0]);
#ifdef CONFIG_SUPERTX
alloc_mode_context(cm, num_4x4_blk, &tree->horizontal_supertx);
alloc_mode_context(cm, num_4x4_blk, &tree->vertical_supertx);
alloc_mode_context(cm, num_4x4_blk, &tree->split_supertx);
#endif
if (num_4x4_blk > 4) {
alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[1]);
alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[1]);
} else {
memset(&tree->horizontal[1], 0, sizeof(tree->horizontal[1]));
memset(&tree->vertical[1], 0, sizeof(tree->vertical[1]));
}
#endif // CONFIG_EXT_PARTITION_TYPES
}
static void free_tree_contexts(PC_TREE *tree) {
#if CONFIG_EXT_PARTITION_TYPES
int i;
for (i = 0; i < 3; i++) {
free_mode_context(&tree->horizontala[i]);
free_mode_context(&tree->horizontalb[i]);
free_mode_context(&tree->verticala[i]);
free_mode_context(&tree->verticalb[i]);
}
#endif // CONFIG_EXT_PARTITION_TYPES
free_mode_context(&tree->none);
free_mode_context(&tree->horizontal[0]);
free_mode_context(&tree->horizontal[1]);
free_mode_context(&tree->vertical[0]);
free_mode_context(&tree->vertical[1]);
#ifdef CONFIG_SUPERTX
free_mode_context(&tree->horizontal_supertx);
free_mode_context(&tree->vertical_supertx);
free_mode_context(&tree->split_supertx);
#if CONFIG_EXT_PARTITION_TYPES
free_mode_context(&tree->horizontala_supertx);
free_mode_context(&tree->horizontalb_supertx);
free_mode_context(&tree->verticala_supertx);
free_mode_context(&tree->verticalb_supertx);
#endif // CONFIG_EXT_PARTITION_TYPES
#endif // CONFIG_SUPERTX
}
// This function sets up a tree of contexts such that at each square
// partition level. There are contexts for none, horizontal, vertical, and
// split. Along with a block_size value and a selected block_size which
// represents the state of our search.
void av1_setup_pc_tree(AV1_COMMON *cm, ThreadData *td) {
int i, j;
#if CONFIG_EXT_PARTITION
const int leaf_nodes = 256;
const int tree_nodes = 256 + 64 + 16 + 4 + 1;
#else
const int leaf_nodes = 64;
const int tree_nodes = 64 + 16 + 4 + 1;
#endif // CONFIG_EXT_PARTITION
int pc_tree_index = 0;
PC_TREE *this_pc;
PICK_MODE_CONTEXT *this_leaf;
int square_index = 1;
int nodes;
aom_free(td->leaf_tree);
CHECK_MEM_ERROR(cm, td->leaf_tree,
aom_calloc(leaf_nodes, sizeof(*td->leaf_tree)));
aom_free(td->pc_tree);
CHECK_MEM_ERROR(cm, td->pc_tree,
aom_calloc(tree_nodes, sizeof(*td->pc_tree)));
this_pc = &td->pc_tree[0];
this_leaf = &td->leaf_tree[0];
// 4x4 blocks smaller than 8x8 but in the same 8x8 block share the same
// context so we only need to allocate 1 for each 8x8 block.
for (i = 0; i < leaf_nodes; ++i) {
#if CONFIG_EXT_PARTITION_TYPES
alloc_mode_context(cm, 1, PARTITION_NONE, &td->leaf_tree[i]);
#else
alloc_mode_context(cm, 1, &td->leaf_tree[i]);
#endif
}
// Sets up all the leaf nodes in the tree.
for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
tree->block_size = square[0];
alloc_tree_contexts(cm, tree, 4);
tree->leaf_split[0] = this_leaf++;
for (j = 1; j < 4; j++) tree->leaf_split[j] = tree->leaf_split[0];
}
// Each node has 4 leaf nodes, fill each block_size level of the tree
// from leafs to the root.
for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
for (i = 0; i < nodes; ++i) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
alloc_tree_contexts(cm, tree, 4 << (2 * square_index));
tree->block_size = square[square_index];
for (j = 0; j < 4; j++) tree->split[j] = this_pc++;
++pc_tree_index;
}
++square_index;
}
// Set up the root node for the largest superblock size
i = MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2;
td->pc_root[i] = &td->pc_tree[tree_nodes - 1];
td->pc_root[i]->none.best_mode_index = 2;
// Set up the root nodes for the rest of the possible superblock sizes
while (--i >= 0) {
td->pc_root[i] = td->pc_root[i + 1]->split[0];
td->pc_root[i]->none.best_mode_index = 2;
}
}
void av1_free_pc_tree(ThreadData *td) {
#if CONFIG_EXT_PARTITION
const int leaf_nodes = 256;
const int tree_nodes = 256 + 64 + 16 + 4 + 1;
#else
const int leaf_nodes = 64;
const int tree_nodes = 64 + 16 + 4 + 1;
#endif // CONFIG_EXT_PARTITION
int i;
// Set up all 4x4 mode contexts
for (i = 0; i < leaf_nodes; ++i) free_mode_context(&td->leaf_tree[i]);
// Sets up all the leaf nodes in the tree.
for (i = 0; i < tree_nodes; ++i) free_tree_contexts(&td->pc_tree[i]);
aom_free(td->pc_tree);
td->pc_tree = NULL;
aom_free(td->leaf_tree);
td->leaf_tree = NULL;
}